Abstract
The purpose of this study was to investigate the relationship between fasting serum leptin, adiponectin and resistin levels and bone mineral density (BMD) in osteoporosis patients and a non-osteoporosis control group. We studied 81 non-diabetic osteoporosis patients (92 % female, 8 % male; mean age 54.5 ± 15.5 years and body mass index [BMI] 28.2 ± 4.6) and 120 non-diabetic individuals with normal BMD as controls (86 % female, 14 % male; mean age 39.7 ± 10.4 years and BMI 28.8 ± 4.4). BMD was studied by dual-energy X-ray absorptiometry from the lumbar spine (L1–L4) and femoral neck and fasting blood samples were taken for biochemical measurement of fasting blood glucose, leptin, adiponectin and resistin. Fasting levels of plasma adiponectin had a significant negative correlation with BMD of the femoral neck and lumbar spine in the osteoporosis group (r = −0.478, P = 0.003, r = −0.513, P = 0.023) but not in the non-osteoporosis group (r = −0.158, P = 0.057, r = −0.23, P = 0.465). Fasting plasma levels of resistin were significantly correlated only with femur BMD in the osteoporosis group, and not significantly correlated with lumbar spine BMD (r = −0.244, P = 0.048 vs r = 0.276, P = 0.56). Leptin did not have a significant correlation with BMD in either the osteoporosis or non-osteoporosis groups (P > 0.05). Adiponectin had a significant negative correlation with BMD of the lumbar spine and femoral neck. The correlation between leptin and resistin are not inconclusive.
Similar content being viewed by others
References
Lim S, Joung H, Shin CS, Lee HK, Kim KS, Shin EK, Kim HY, Lim MK, Cho SI (2004) Body composition changes with age have gender-specific impacts on bone mineral density. Bone 35:792–798
Felson DT, Zhang Y, Hannan MT, Anderson J (1993) Effects of weight and body mass index on bone mineral density in men and women. J Bone Miner Res 8:567–573
Glauber HS, Vollmer WM, Nevitt MC, Ensrud KE, Orwoll ES (1995) Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J Clin Endocrinol Metab 80:1118–1123
Lenchik L, Register TC, Lohman K, Hsu F-C, Nicklas BJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW (2003) Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33:646–651
won Muhlen D, Safii S, Jassal SK, Svartberg J, Barrett-Connor E (2007) Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos Int 18:1337–1344
Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K (1997) Analysis of an expression profile of genes in the human adipose tissue. Gene 190:227–235
Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura Nakamura T et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83
Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L (2001) Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest 108:1875–1881
Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953
Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol 8:51–62
Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, Syversen U, Reseland JE (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35:842–849
Williams GA, Wang Y, Callon KE, Watson M, Lam JB, Lin JM, Janice BB, Costa JL, Orpe A, Broom N, Naot D, Reid IR, Cornish J (2009) In vitro and in vivo effects of adiponectin on bone. Endocrinology 150:3603–3610
Brennan AM, Mantzoros CS (2006) Drug insight: the role of leptin in human physiology and pathophysiology-emerging clinica applications. Nat Rev Endocrinol 2:318–327
Thomas T, Burguera B, Melton LJ, Atkinson E, Riggs BL, Khosla S (2004) Relationship of serum leptin levels with body composition, sex steroid, and insulin levels in women and men. Metabolism 9:1278–1284
Burguera B, Hofbau L, Thomas L, Gori F, Lamsam J et al (2001) Leptin reduces ovariectomy-induced bone loss. Endocrinology 142:3546–3553
Ducy P, Amling M, Takeda S, Priemel M, Schilling AF et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207
Jürimäe J, Jürimäe T, Leppik A, Kums T (2008) The influence of ghrelin, adiponectin, and leptin on bone mineral density in healthy postmenopausal women. J Bone Miner Metab 26:618–623
OdabaI E, Ozata M, Turan M, Bingo N, Yonem A, Cakir B, Kutlu M, Ozdemir IC (2000) Plasma leptin concentrations in postmenopausal women with osteoporosis. Eur J Endocrinol 142:170–173
Gonnelli S, Caffarelli C, Del Santo K, Cadirni A, Guerriero C, Lucani B, Franci B, Nuti R (2008) The relationship of ghrelin and adiponectin with bone mineral density and bone turnover markers in elderly men. Calcif Tissue Int 83:55–60
Ozkurt B, Ozkurt ZN, Altay M, Aktekin CN, Caðlayan O, Tabak Y (2009) The relationship between serum adiponectin level and anthropometry bone mass osteoporotic fracture skin postmeno-pausal women. Eklem Hastalik Cerrahisi 20:78–84
Canhao H, Fonseca JE, Caetano-Lopes J, Saldanha C, Queiroz MV (2008) Assessment of laboratory measurements and -308 TNF gene promoter polymorphisms in normal bone mineral density. Clin Rheumatol 27:301–307
Kontogianni MD, Dafni UG, Routsias G, Skopouli FN (2004) Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res 19:546–551
Pang XD, Xian H, Zhao Q, Wu XP, Sun ZQ, Liao EY (2008) Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin Chim Acta 387:31–35
Jürimäe J, Jürimäe T (2007) Adiponectin is a predictor of bone mineral density in middle-aged premenopausal women. Osteoporos Int 18:1253–1259
Jurima J, Rembel K, Jurimae T, Rehand M (2005) Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res 37:297–302
Ealey KN, Kaludjerovic J, Archer MC, Ward WE (2008) Adiponectin is a negative regulator of bone mineral and bone strength in growing mice. Exp Biol Med (Maywood) 233:1546–1553
Richards JB, Valdes AM, Burling K, Perks UC, Spector TD (2007) Serum adiponectin and bone mineral density in women. ICEM 92:1517–1523
Sato M, Takeda N, Sarui H, Takami R, Takami K, Hayashi M et al (2001) Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. JCEM 86:5273–5276
Zhong N, Wu XP, Xu ZR, Wang AH, Luo XH, Cao XZ, Xie H, Shan PF, Liao EY (2005) Relationship of serum leptin with age, body weight, body mass index, and bone mineral density in healthy mainland Chinese women. Clin Chim Acta 351:161–168
Parm AL, Jürimäe J, Saar M, Pärna K, Tillmann V, Maasalu K, Neissaar I, Jürimäe T (2011) Plasma adipocytokine and ghrelin levels in relation to bone mineral density in prepubertal rhythmic gymnasts. J Bone Miner Metab 9:717–724
Tamura T, Yoneda M, Yamane K, Nakanishi S, Nakashima R, Okubo M, Kohno N (2007) Serum leptin and adiponectin are positively associated with bone mineral density at the distal radius in patients with type 2 diabetes mellitus. Metabolism 56:623–628
Oshima K, Nampei AM, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H, Shimomura I (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331:520–526
Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY (2006) Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res 21:1648–1656
Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, Clarke CJ, Hannun YA, Depinho RA, Guo EX, Mann JJ, Karsenty G (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanism through FoxO1. Cell Metab 17:901–915
Shinoda Y, Yamaguchi M, Ogata N (2006) Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 99:196–208
Atalay A, Elic H, Kayadibi N, Nurettin A (2012) Diagnostic utility of osteocalcin, under carboxylated osteocalcin and alkaline phosphatase for osteoporosis in premenopausal and postmenopausal women. Ann Lab Med 32:23–30
Ochoa S, Arantazu F, Diego R, Rebeca M, Raya M, Manuel M (2012) Adiponectin and leptin serum levels in osteoporotic postmenopausal women treated with reloxifene or alendronate. Menopause 19:172–177
Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, Cortet B (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 21:56–61
Chanprasertyothin S, Piaseu N, Chailurkit L, Rajatanavin R, Ongphiphadhanakul B (2005) Association of circulating leptin with bone mineral density in males and females. J Med Assoc Thai 88:655–659
Martini G, Valenti R, Giovani S, Franci B, Campagna S, Nuti R (2001) Influence of insulin- like growth factor-1 and leptin on bone mass in healthy postmenopausal women. Bone 28:113–117
Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, Yamauchi T et al (2002) Genetic variation in the gene encoding adiponectin in associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 51:536–540
Acknowledgments
This study was supported by Shahid Sadoughi University of Medical Sciences. We greatly acknowledge Research Deputy of Shahid Sadoughi University of Medical Sciences for supporting the present project.
Conflict of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Mohiti-Ardekani, J., Soleymani-Salehabadi, H., Owlia, M.B. et al. Relationships between serum adipocyte hormones (adiponectin, leptin, resistin), bone mineral density and bone metabolic markers in osteoporosis patients. J Bone Miner Metab 32, 400–404 (2014). https://doi.org/10.1007/s00774-013-0511-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00774-013-0511-4