Skip to main content
Log in

Identification of a novel member of the genus Laulavirus (family Phenuiviridae) from the entomopathogenic ascomycete fungus Cordyceps javanica

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1–3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3′- and 5′-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57–80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47–63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The complete nucleotide sequences of CjNRSV1 been deposited in the NCBI GenBank database under the accession numbers PP544309, PP544310, and PP544311.

References

  1. Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479:356–368

    Article  PubMed  Google Scholar 

  2. Kondo H, Botella L, Suzuki N (2022) Mycovirus diversity and evolution revealed/inferred from recent studies. Annual Review of Phytopathology 60:307–336

    Article  CAS  PubMed  Google Scholar 

  3. Ghabrial SA, Suzuki N (2009) Viruses of plant pathogenic fungi. Annual review of phytopathology 47:353–384

    Article  CAS  PubMed  Google Scholar 

  4. Kotta-Loizou I (2021) Mycoviruses and their role in fungal pathogenesis. Current Opinion in Microbiology 63:10–18

    Article  CAS  PubMed  Google Scholar 

  5. Andika IB, Cao X, Kondo H, Sun L (2023) The intriguing phenomenon of cross-kingdom infections of plant and insect viruses to fungi: Can other animal viruses also cross-infect fungi? PLoS Pathogens 19:e1011726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Araújo JP, Hughes DP (2016) Diversity of entomopathogenic fungi: which groups conquered the insect body? Advances in genetics 94:1–39

    Article  PubMed  Google Scholar 

  7. Boomsma JJ, Jensen AB, Meyling NV, Eilenberg J (2014) Evolutionary interaction networks of insect pathogenic fungi. Annual Review of Entomology 59:467–485

    Article  CAS  PubMed  Google Scholar 

  8. Wang C, Wang S (2017) Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annual review of entomology 62:73–90

    Article  CAS  PubMed  Google Scholar 

  9. Filippou C, Garrido-Jurado I, Meyling NV, Quesada-Moraga E, Coutts RH, Kotta-Loizou I (2018) Mycoviral population dynamics in Spanish isolates of the entomopathogenic fungus Beauveria bassiana. Viruses 10:665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herrero N, Dueñas E, Quesada-Moraga E, Zabalgogeazcoa I (2012) Prevalence and diversity of viruses in the entomopathogenic fungus Beauveria bassiana. Applied and environmental microbiology 78:8523–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotta-Loizou I, Coutts RH (2017) Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence. PLoS Pathog 13:e1006183

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yie SW, Khalifa ME, Hahn T, Pearson MN (2014) Molecular characterization of a novel victorivirus from the entomopathogenic fungus Beauveria bassiana. Archives of virology 159:1321–1327

    Article  CAS  PubMed  Google Scholar 

  13. Herrero N, Zabalgogeazcoa I (2011) Mycoviruses infecting the endophytic and entomopathogenic fungus Tolypocladium cylindrosporum. Virus Research 160:409–413

    Article  CAS  PubMed  Google Scholar 

  14. Leal SC, Bertioli DJ, Ball BV, Butt TM (1994) Presence of double-stranded RNAs and virus‐like particles in the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 4:89–94

    Article  Google Scholar 

  15. Wang P, Yang G, Shi N, Huang B (2020) Molecular characterization of a new partitivirus, MbPV1, isolated from the entomopathogenic fungus Metarhizium brunneum in China. Archives of Virology 165:765–769

    Article  CAS  PubMed  Google Scholar 

  16. Wang P, Yang G, Shi N, Zhao C, Hu F, Coutts RH, Kotta-Loizou I, Huang B (2023) A novel partitivirus orchestrates conidiation, stress response, pathogenicity, and secondary metabolism of the entomopathogenic fungus Metarhizium majus. PLoS Pathogens 19:e1011397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Shi N, Wang P, Zhu Q, Yang G, Huang B (2022) Molecular characterization of a novel alternavirus infecting the entomopathogenic fungus Cordyceps chanhua. Archives of Virology 167:1467–1470

    Article  CAS  PubMed  Google Scholar 

  18. Herrero N (2016) A novel monopartite dsRNA virus isolated from the entomopathogenic and nematophagous fungus Purpureocillium lilacinum. Archives of virology 161:3375–3384

    Article  CAS  PubMed  Google Scholar 

  19. Herrero N (2017) Identification and sequence determination of a new chrysovirus infecting the entomopathogenic fungus Isaria javanica. Archives of virology 162:1113–1117

    Article  CAS  PubMed  Google Scholar 

  20. Kuhn JH, Adkins S, Alkhovsky SV, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bandte M, Beer M (2022) 2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of virology:1–50

  21. Sun MH, Ji YF, Li GH, Shao JW, Chen RX, Gong HY, Chen SY, Chen JM (2022) Highly adaptive Phenuiviridae with biomedical importance in multiple fields. Journal of medical virology 94:2388–2401

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y-M, Sadiq S, Tian J-H, Chen X, Lin X-D, Shen J-J, Chen H, Hao Z-Y, Wille M, Zhou Z-C (2022) RNA viromes from terrestrial sites across China expand environmental viral diversity. Nature Microbiology 7:1312–1323

    Article  CAS  PubMed  Google Scholar 

  23. Sasaya T, Palacios G, Briese T, Di Serio F, Groschup MH, Neriya Y, Song J-W, Tomitaka Y (2023) ICTV virus taxonomy profile: Phenuiviridae 2023. J Gen Virol 104:001893

    Article  CAS  Google Scholar 

  24. Koch J, Xin Q, Tischler ND, Lozach P-Y (2021) Entry of phenuiviruses into mammalian host cells. Viruses 13:299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hibino H, Usugi T, Omura T, Tsuchizaki T, Shohara K, Iwasaki M (1985) Rice grassy stunt virus: a planthopper-borne circular filament. Phytopathology 75:894–899

    Article  Google Scholar 

  26. Navarro B, Minutolo M, De Stradis A, Palmisano F, Alioto D, Di Serio F (2018) The first phlebo-like virus infecting plants: a case study on the adaptation of negative‐stranded RNA viruses to new hosts. Molecular plant pathology 19:1075–1089

    Article  CAS  PubMed  Google Scholar 

  27. Toriyama S (1982) Characterization of rice stripe virus: a heavy component carrying infectivity. J Gen Virol 61:187–195

    Article  CAS  Google Scholar 

  28. Yu X-J, Liang M-F, Zhang S-Y, Liu Y, Li J-D, Sun Y-L, Zhang L, Zhang Q-F, Popov VL, Li C (2011) Fever with thrombocytopenia associated with a novel bunyavirus in China. New England Journal of Medicine 364:1523–1532

    Article  CAS  PubMed  Google Scholar 

  29. Baba M, Masiga DK, Sang R, Villinger J (2016) Has Rift Valley fever virus evolved with increasing severity in human populations in East Africa? Emerging microbes & infections 5:1–10

    Article  Google Scholar 

  30. Baudin M, Jumaa AM, Jomma HJ, Karsany MS, Bucht G, Näslund J, Ahlm C, Evander M, Mohamed N (2016) Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study. The Lancet Global Health 4:e864-e871

  31. Lancelot R, Béral M, Rakotoharinome VM, Andriamandimby S-F, Héraud J-M, Coste C, Apolloni A, Squarzoni-Diaw C, de La Rocque S, Formenty PB (2017) Drivers of Rift Valley fever epidemics in Madagascar. Proceedings of the National Academy of Sciences 114:938–943

  32. Xu Y, Fu S, Tao X, Zhou X (2021) Rice stripe virus: Exploring molecular weapons in the arsenal of a negative-sense RNA virus. Annual Review of Phytopathology 59:351–371

    Article  CAS  PubMed  Google Scholar 

  33. Otuka A, Matsumura M, Sanada-Morimura S, Takeuchi H, Watanabe T, Ohtsu R, Inoue H (2010) The 2008 overseas mass migration of the small brown planthopper, Laodelphax striatellus, and subsequent outbreak of rice stripe disease in western Japan. Applied Entomology and Zoology 45:259–266

    Article  Google Scholar 

  34. Zhu J, Jiang F, Wang X, Yang P, Bao Y, Zhao W, Wang W, Lu H, Wang Q, Cui N (2017) Genome sequence of the small brown planthopper, Laodelphax striatellus. Gigascience 6:gix109

    Article  Google Scholar 

  35. Kepler RM, Luangsa-Ard JJ, Hywel-Jones NL, Quandt CA, Sung G-H, Rehner SA, Aime MC, Henkel TW, Sanjuan T, Zare R (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA fungus 8:335–353

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gallou A, Serna-Domínguez MG, Berlanga-Padilla AM, Ayala-Zermeño MA, Mellín-Rosas MA, Montesinos-Matías R, Arredondo-Bernal HC (2016) Species clarification of Isaria isolates used as biocontrol agents against Diaphorina citri (Hemiptera: Liviidae) in Mexico. Fungal biology 120:414–423

    Article  PubMed  Google Scholar 

  37. Shimazu M, Takatsuka J (2010) Isaria javanica (anamorphic Cordycipitaceae) isolated from gypsy moth larvae, Lymantria dispar (Lepidoptera: Lymantriidae), in Japan. Applied Entomology and Zoology 45:497–504

    Article  Google Scholar 

  38. Wang D, Xing P-X, Diao H-L, Zhou W-W, Li X-W, Zhang L-J, Ma R-Y (2023) Pathogenicity characteristics of the entomopathogenic fungus Cordyceps javanica IJ-tg19 to Acyrthosiphon pisum. Biocontrol 68:447–458

    Article  CAS  Google Scholar 

  39. Wang W, Wang Y, Dong G, Chen F (2022) Development of Cordyceps javanica BE01 with enhanced virulence against Hyphantria cunea using polyethylene glycol-mediated protoplast transformation. Frontiers in Microbiology 13:972425

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu S, Toews MD, Oliveira-Hofman C, Behle RW, Simmons AM, Shapiro-Ilan DI (2020) Environmental tolerance of entomopathogenic fungi: A new strain of Cordyceps javanica isolated from a whitefly epizootic versus commercial fungal strains. Insects 11:711

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun L, Nuss DL, Suzuki N (2006) Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. J Gen Virol 87:3703–3714

    Article  CAS  PubMed  Google Scholar 

  42. Cao X, Liu J, Pang J, Kondo H, Chi S, Zhang J, Sun L, Andika IB (2022) Common but nonpersistent acquisitions of plant viruses by plant-associated fungi. Viruses 14:2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao X, Wang Z, Pang J, Sun L, Kondo H, Andika IB (2023) Identification of a novel dicistro-like virus associated with the roots of tomato plants. Archives of Virology 168:214

    Article  CAS  PubMed  Google Scholar 

  44. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nature methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  45. Potgieter A, Page N, Liebenberg J, Wright I, Landt O, Van Dijk A (2009) Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. J Gen Virol 90:1423–1432

    Article  CAS  PubMed  Google Scholar 

  46. Ferron F, Weber F, de la Torre JC, Reguera J (2017) Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus research 234:118–134

    Article  CAS  PubMed  Google Scholar 

  47. Chiapello M, Rodríguez-Romero J, Nerva L, Forgia M, Chitarra W, Ayllón MA, Turina M (2020) Putative new plant viruses associated with Plasmopara viticola‐infected grapevine samples. Annals of Applied Biology 176:180–191

    Article  CAS  Google Scholar 

  48. Hamim I, Urayama S-i, Netsu O, Tanaka A, Arie T, Moriyama H, Komatsu K (2022) Discovery, genomic sequence characterization and phylogenetic analysis of novel RNA viruses in the Turfgrass pathogenic Colletotrichum spp. in Japan. Viruses 14:2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dai R, Yang S, Pang T, Tian M, Wang H, Zhang D, Wu Y, Kondo H, Andika IB, Kang Z (2024) Identification of a negative-strand RNA virus with natural plant and fungal hosts. Proceedings of the National Academy of Sciences 121:e2319582121

  50. Melcher U (2000) The ‘30K’superfamily of viral movement proteins. J Gen Virol 81:257–266

    CAS  PubMed  Google Scholar 

  51. Chandra S, Harvey E, Emery D, Holmes EC, Šlapeta J (2021) Unbiased characterization of the microbiome and virome of questing ticks. Frontiers in Microbiology 12:627327

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution 38:3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kobayashi D, Murota K, Itokawa K, Ejiri H, Amoa-Bosompem M, Faizah AN, Watanabe M, Maekawa Y, Hayashi T, Noda S (2020) RNA virome analysis of questing ticks from Hokuriku District, Japan, and the evolutionary dynamics of tick-borne phleboviruses. Ticks and tick-borne diseases 11:101364

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Zhang Yan and Qi Yuhua for assistance with collection of insect samples.

Funding

This research was supported by National Natural Science Foundation of China (31970159, 32001867) and the Natural Science Foundation of Shandong Province of China (ZR2020QC129).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ida Bagus Andika or Shengqi Chi.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Handling Editor: Massimo Turina

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Liu, B., Wang, Z. et al. Identification of a novel member of the genus Laulavirus (family Phenuiviridae) from the entomopathogenic ascomycete fungus Cordyceps javanica. Arch Virol 169, 166 (2024). https://doi.org/10.1007/s00705-024-06069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-06069-5

Navigation