Skip to main content

Linalool suppresses voltage-gated currents in sensory neurons and cerebellar Purkinje cells

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary.

Linalool is a major component of essential oils and possesses various biological effects in sensory or central nervous systems. To investigate the pharmacological and biophysical effects of linalool on voltage-gated currents in sensory neurons, we used the whole-cell patch clamp and the Ca2+ imaging techniques. Under the voltage clamp, membrane depolarization generated time- and voltage-dependent current responses in newt olfactory receptor cells (ORCs). Linalool significantly and reversibly suppressed the voltage-gated currents in ORCs. The dose-suppression relation of linalool for the voltage-gated Na+ current could be fitted by the Hill equation with a half-blocking concentration of 0.56 mM and a Hill coefficient of 1.2. To test whether linalool suppresses voltage-gated currents in ORCs specifically or suppresses currents in other neurons generally, we next examined the effects of linalool on voltage-gated currents in newt retinal neurons and rat cerebellar Purkinje cells. Linalool suppressed the voltage-gated currents not only in retinal horizontal cells and ganglion cells but also in Purkinje cells. Furthermore, bath application of linalool inhibited the KCl-induced [Ca2+]i response of ORCs, suggesting that linalool suppresses Ca2+ currents in ORCs. These results suggest that linalool non-selectively suppresses the voltage-gated currents in newt sensory neurons and rat cerebellar Purkinje cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narusuye, K., Kawai, F., Matsuzaki, K. et al. Linalool suppresses voltage-gated currents in sensory neurons and cerebellar Purkinje cells. J Neural Transm 112, 193–203 (2005). https://doi.org/10.1007/s00702-004-0187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-004-0187-y