Skip to main content

Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Continuous renewal of the intestinal epithelium requires coordinated regulation to maintain the balance between proliferation and differentiation of the epithelial stem cells and immature progenitor cells. Canonical Wnt signaling has long been regarded as the signaling pathway playing a central role in this epithelial cell fate determination; however, recent studies have shown that Notch signaling is also indispensable for this process. Here, we review the current concepts of how the Wnt and Notch pathways control intestinal epithelial cell fate decisions, particularly focusing on their crosstalk at both tissue and cellular levels. As several features are shared between stem cell renewal and cancer cell renewal, comprehensive understanding of how the Wnt and Notch signaling pathways cooperate and integrate in the gut epithelium has significant implications for the development of novel therapeutic modalities for intestinal neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Cheng CP Leblond (1974) ArticleTitleOrigin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types Am J Anat 141 537–61 Occurrence Handle4440635 Occurrence Handle10.1002/aja.1001410407 Occurrence Handle1:STN:280:CSqD2s%2FosVE%3D

    Article  PubMed  CAS  Google Scholar 

  2. M Bjerknes H Cheng (1999) ArticleTitleClonal analysis of mouse intestinal epithelial progenitors Gastroenterology 116 7–14 Occurrence Handle9869596 Occurrence Handle10.1016/S0016-5085(99)70222-2 Occurrence Handle1:STN:280:DyaK1M%2Fosl2mtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  3. MH Wong JR Saam TS Stappenbeck CH Rexer JI Gordon (2000) ArticleTitleGenetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection Proc Natl Acad Sci USA 97 12601–6 Occurrence Handle11050178 Occurrence Handle10.1073/pnas.230237997 Occurrence Handle1:CAS:528:DC%2BD3cXotFygtLo%3D

    Article  PubMed  CAS  Google Scholar 

  4. E Marshman C Booth CS Potten (2002) ArticleTitleThe intestinal epithelial stem cell Bioessays 24 91–8 Occurrence Handle11782954 Occurrence Handle10.1002/bies.10028

    Article  PubMed  Google Scholar 

  5. Booth D, Potten CS. Protection against mucosal injury by growth factors and cytokines. J Natl Cancer Inst Monogr 2001:16–20

  6. DK Podolsky (1999) ArticleTitleMucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense Am J Physiol 277 IssueID3 Pt 1 G495–9 Occurrence Handle10484372 Occurrence Handle1:CAS:528:DyaK1MXmt1alsbw%3D

    PubMed  CAS  Google Scholar 

  7. KW Kinzler B Vogelstein (1996) ArticleTitleLessons from hereditary colorectal cancer Cell 87 159–70 Occurrence Handle8861899 Occurrence Handle10.1016/S0092-8674(00)81333-1 Occurrence Handle1:CAS:528:DyaK28XmsVGhs7g%3D

    Article  PubMed  CAS  Google Scholar 

  8. CY Logan R Nusse (2004) ArticleTitleThe Wnt signaling pathway in development and disease Annu Rev Cell Dev Biol 20 781–810 Occurrence Handle15473860 Occurrence Handle10.1146/annurev.cellbio.20.010403.113126 Occurrence Handle1:CAS:528:DC%2BD2cXhtVejsr7I

    Article  PubMed  CAS  Google Scholar 

  9. M van de Wetering E Sancho C Verweij W de Lau I Oving A Hurlstone et al. (2002) ArticleTitleThe beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells Cell 111 241–50 Occurrence Handle12408868 Occurrence Handle10.1016/S0092-8674(02)01014-0 Occurrence Handle1:CAS:528:DC%2BD38Xotlahsrg%3D

    Article  PubMed  CAS  Google Scholar 

  10. V Korinek N Barker P Moerer E van Donselaar G Huls PJ Peters et al. (1998) ArticleTitleDepletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 Nat Genet 19 379–83 Occurrence Handle9697701 Occurrence Handle10.1038/1270 Occurrence Handle1:CAS:528:DyaK1cXlt1Cisrg%3D

    Article  PubMed  CAS  Google Scholar 

  11. D Pinto A Gregorieff H Begthel H Clevers (2003) ArticleTitleCanonical Wnt signals are essential for homeostasis of the intestinal epithelium Genes Dev 17 1709–13 Occurrence Handle12865297 Occurrence Handle10.1101/gad.267103 Occurrence Handle1:CAS:528:DC%2BD3sXlslWqur8%3D

    Article  PubMed  CAS  Google Scholar 

  12. H Ireland R Kemp C Houghton L Howard AR Clarke OJ Sansom et al. (2004) ArticleTitleInducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin Gastroenterology 126 1236–46 Occurrence Handle15131783 Occurrence Handle10.1053/j.gastro.2004.03.020 Occurrence Handle1:CAS:528:DC%2BD2cXksF2qtL4%3D

    Article  PubMed  CAS  Google Scholar 

  13. F Kuhnert CR Davis HT Wang P Chu M Lee J Yuan et al. (2004) ArticleTitleEssential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1 Proc Natl Acad Sci USA 101 266–71 Occurrence Handle14695885 Occurrence Handle10.1073/pnas.2536800100 Occurrence Handle1:CAS:528:DC%2BD2cXjvFamsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  14. LK Su KW Kinzler B Vogelstein AC Preisinger AR Moser C Luongo et al. (1992) ArticleTitleMultiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene Science 256 668–70 Occurrence Handle1350108 Occurrence Handle10.1126/science.1350108 Occurrence Handle1:CAS:528:DyaK38XisFehsrk%3D

    Article  PubMed  CAS  Google Scholar 

  15. OJ Sansom KR Reed AJ Hayes H Ireland H Brinkmann IP Newton et al. (2004) ArticleTitleLoss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration Genes Dev 18 1385–90 Occurrence Handle15198980 Occurrence Handle10.1101/gad.287404 Occurrence Handle1:CAS:528:DC%2BD2cXltFKrtLo%3D

    Article  PubMed  CAS  Google Scholar 

  16. P Andreu S Colnot C Godard S Gad P Chafey M Niwa-Kawakita et al. (2005) ArticleTitleCrypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine Development 132 1443–51 Occurrence Handle15716339 Occurrence Handle10.1242/dev.01700 Occurrence Handle1:CAS:528:DC%2BD2MXjsFentbc%3D

    Article  PubMed  CAS  Google Scholar 

  17. TC He AB Sparks C Rago H Hermeking L Zawel LT da Costa et al. (1998) ArticleTitleIdentification of c-MYC as a target of the APC pathway Science 281 1509–12 Occurrence Handle9727977 Occurrence Handle10.1126/science.281.5382.1509 Occurrence Handle1:CAS:528:DyaK1cXlvFGntr0%3D

    Article  PubMed  CAS  Google Scholar 

  18. OJ Sansom VS Meniel V Muncan TJ Phesse JA Wilkins KR Reed et al. (2007) ArticleTitleMyc deletion rescues Apc deficiency in the small intestine Nature 446 676–9 Occurrence Handle17377531 Occurrence Handle10.1038/nature05674 Occurrence Handle1:CAS:528:DC%2BD2sXjslOlsbw%3D

    Article  PubMed  CAS  Google Scholar 

  19. MD Bettess N Dubois MJ Murphy C Dubey C Roger S Robine et al. (2005) ArticleTitlec-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium Mol Cell Biol 25 7868–78 Occurrence Handle16107730 Occurrence Handle10.1128/MCB.25.17.7868-7878.2005 Occurrence Handle1:CAS:528:DC%2BD2MXpsFKht78%3D

    Article  PubMed  CAS  Google Scholar 

  20. V Muncan OJ Sansom L Tertoolen TJ Phesse H Begthel E Sancho et al. (2006) ArticleTitleRapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc Mol Cell Biol 26 8418–26 Occurrence Handle16954380 Occurrence Handle10.1128/MCB.00821-06 Occurrence Handle1:CAS:528:DC%2BD28Xht1aktr%2FN

    Article  PubMed  CAS  Google Scholar 

  21. BM Evers TC Ko J Li EA Thompson (1996) ArticleTitleCell cycle protein suppression and p21 induction in differentiating Caco-2 cells Am J Physiol 271 IssueID4 Pt 1 G722–7 Occurrence Handle8897894 Occurrence Handle1:CAS:528:DyaK28XmsF2ks70%3D

    PubMed  CAS  Google Scholar 

  22. S Artavanis-Tsakonas MD Rand RJ Lake (1999) ArticleTitleNotch signaling: cell fate control and signal integration in development Science 284 770–6 Occurrence Handle10221902 Occurrence Handle10.1126/science.284.5415.770 Occurrence Handle1:CAS:528:DyaK1MXivVKrs7Y%3D

    Article  PubMed  CAS  Google Scholar 

  23. B De Strooper W Annaert P Cupers P Saftig K Craessaerts JS Mumm et al. (1999) ArticleTitleA presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain Nature 398 518–22 Occurrence Handle10206645 Occurrence Handle10.1038/19083 Occurrence Handle1:CAS:528:DyaK1MXisFGqt7k%3D

    Article  PubMed  CAS  Google Scholar 

  24. N Schroder A Gossler (2002) ArticleTitleExpression of Notch pathway components in fetal and adult mouse small intestine Gene Expr Patterns 2 IssueID3–4 247–50 Occurrence Handle12617809 Occurrence Handle10.1016/S1567-133X(02)00060-1 Occurrence Handle1:CAS:528:DC%2BD3sXpvFSrsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  25. GR Sander BC Powell (2004) ArticleTitleExpression of notch receptors and ligands in the adult gut J Histochem Cytochem 52 509–16 Occurrence Handle15034002 Occurrence Handle1:CAS:528:DC%2BD2cXjtVaqt7s%3D

    PubMed  CAS  Google Scholar 

  26. J Jensen EE Pedersen P Galante J Hald RS Heller M Ishibashi et al. (2000) ArticleTitleControl of endodermal endocrine development by Hes-1 Nat Genet 24 36–44 Occurrence Handle10615124 Occurrence Handle10.1038/72814 Occurrence Handle1:CAS:528:DC%2BD3cXks1emsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  27. Y Sasai R Kageyama Y Tagawa R Shigemoto S Nakanishi (1992) ArticleTitleTwo mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split Genes Dev 6 2620–34 Occurrence Handle1340473 Occurrence Handle10.1101/gad.6.12b.2620 Occurrence Handle1:CAS:528:DyaK3sXkvV2htbw%3D

    Article  PubMed  CAS  Google Scholar 

  28. S Jarriault C Brou F Logeat EH Schroeter R Kopan A Israel (1995) ArticleTitleSignalling downstream of activated mammalian Notch Nature 377 355–8 Occurrence Handle7566092 Occurrence Handle10.1038/377355a0 Occurrence Handle1:CAS:528:DyaK2MXosVWhsLs%3D

    Article  PubMed  CAS  Google Scholar 

  29. Q Yang NA Bermingham MJ Finegold HY Zoghbi (2001) ArticleTitleRequirement of Math1 for secretory cell lineage commitment in the mouse intestine Science 294 2155–8 Occurrence Handle11739954 Occurrence Handle10.1126/science.1065718 Occurrence Handle1:CAS:528:DC%2BD3MXptVOmsLk%3D

    Article  PubMed  CAS  Google Scholar 

  30. M Jenny C Uhl C Roche I Duluc V Guillermin F Guillemot et al. (2002) ArticleTitleNeurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium EMBO J 21 6338–47 Occurrence Handle12456641 Occurrence Handle10.1093/emboj/cdf649 Occurrence Handle1:CAS:528:DC%2BD38XpsFChtbs%3D

    Article  PubMed  CAS  Google Scholar 

  31. FJ Naya HP Huang Y Qiu H Mutoh FJ DeMayo AB Leiter et al. (1997) ArticleTitleDiabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice Genes Dev 11 2323–34 Occurrence Handle9308961 Occurrence Handle1:CAS:528:DyaK2sXmtl2hu7k%3D

    PubMed  CAS  Google Scholar 

  32. JP Katz N Perreault BG Goldstein CS Lee PA Labosky VW Yang et al. (2002) ArticleTitleThe zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon Development 129 2619–28 Occurrence Handle12015290 Occurrence Handle1:CAS:528:DC%2BD38XltVyhsb8%3D

    PubMed  CAS  Google Scholar 

  33. NF Shroyer D Wallis KJ Venken HJ Bellen HY Zoghbi (2005) ArticleTitleGfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation Genes Dev 19 2412–7 Occurrence Handle16230531 Occurrence Handle10.1101/gad.1353905 Occurrence Handle1:CAS:528:DC%2BD2MXhtFOntLrP

    Article  PubMed  CAS  Google Scholar 

  34. SE Schonhoff M Giel-Moloney AB Leiter (2004) ArticleTitleMinireview: development and differentiation of gut endocrine cells Endocrinology 145 2639–44 Occurrence Handle15044355 Occurrence Handle10.1210/en.2004-0051 Occurrence Handle1:CAS:528:DC%2BD2cXkt12gtLw%3D

    Article  PubMed  CAS  Google Scholar 

  35. JH van Es ME van Gijn O Riccio M van den Born M Vooijs H Begthel et al. (2005) ArticleTitleNotch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells Nature 435 959–63 Occurrence Handle15959515 Occurrence Handle10.1038/nature03659 Occurrence Handle1:CAS:528:DC%2BD2MXltFeltbw%3D

    Article  PubMed  CAS  Google Scholar 

  36. S Fre M Huyghe P Mourikis S Robine D Louvard S Artavanis-Tsakonas (2005) ArticleTitleNotch signals control the fate of immature progenitor cells in the intestine Nature 435 964–8 Occurrence Handle15959516 Occurrence Handle10.1038/nature03589 Occurrence Handle1:CAS:528:DC%2BD2MXltFeltLo%3D

    Article  PubMed  CAS  Google Scholar 

  37. C Crosnier D Stamataki J Lewis (2006) ArticleTitleOrganizing cell renewal in the intestine: stem cells, signals and combinatorial control Nat Rev Genet 7 349–59 Occurrence Handle16619050 Occurrence Handle10.1038/nrg1840 Occurrence Handle1:CAS:528:DC%2BD28XjsFSqt7k%3D

    Article  PubMed  CAS  Google Scholar 

  38. CC Leow MS Romero S Ross P Polakis WQ Gao (2004) ArticleTitleHath1, down-regulated in colon adenocarcinomas, inhibits proliferation and tumorigenesis of colon cancer cells Cancer Res 64 6050–7 Occurrence Handle15342386 Occurrence Handle10.1158/0008-5472.CAN-04-0290 Occurrence Handle1:CAS:528:DC%2BD2cXntFClsL4%3D

    Article  PubMed  CAS  Google Scholar 

  39. LM Sarmento H Huang A Limon W Gordon J Fernandes MJ Tavares et al. (2005) ArticleTitleNotch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation J Exp Med 202 157–68 Occurrence Handle15998794 Occurrence Handle10.1084/jem.20050559 Occurrence Handle1:CAS:528:DC%2BD2MXmtVaqtr8%3D

    Article  PubMed  CAS  Google Scholar 

  40. K Tsuchiya T Nakamura R Okamoto T Kanai M Watanabe (2007) ArticleTitleReciprocal targeting of Hath1 and beta-catenin by Wnt glycogen synthase kinase 3beta in human colon cancer Gastroenterology 132 208–20 Occurrence Handle17241872 Occurrence Handle10.1053/j.gastro.2006.10.031 Occurrence Handle1:CAS:528:DC%2BD2sXit1aqsbo%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, T., Tsuchiya, K. & Watanabe, M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J Gastroenterol 42, 705–710 (2007). https://doi.org/10.1007/s00535-007-2087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-007-2087-z

Key words