Skip to main content

Vesicular transfer of membrane components to bovine epididymal spermatozoa

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Epididymosomes (apocrine secreted epididymal vesicles) are assumed to play a crucial role in sperm maturation. Our aim has been to analyze the fusogenic properties of bovine epididymosomes and their involvement in the transfer of membrane components (lipids, proteins, plasma membrane Ca2+-ATPase 4 [PMCA4]) into bovine sperm. The fusogenic properties of epididymosomes with spermatozoa were investigated in vitro by using octadecyl rhodamine-B (R18)-labeled epididymosomes. Spermatozoa isolated from the epididymal caput showed a higher fusion rate than those taken from the cauda. The fusion rate was dependent on pH and time. Furthermore, the lipid and protein content in spermatozoa changed during epididymal transit and after in vitro fusion with epididymosomes. Following the in vitro fusion of caput spermatozoa with epididymosomes, the cholesterol/total phospholipid ratio of the sperm plasma membrane decreased. The effect was comparable with the cholesterol/total phospholipid ratio of native cauda spermatozoa. Co-incubation experiments of spermatozoa with biotinylated epididymosomes additionally revealed that proteins were transferred from epididymosomes to sperm. To examine the potential transfer of epididymis-derived PMCA4 to spermatozoa, immunofluorescence analysis and Ca2+-ATPase activity assays were performed. In caput spermatozoa, the PMCA4 fluorescence signal was slightly raised and Ca2+-ATPase activity increased after in vitro fusion. Thus, our experiments indicate significant changes in the lipid and protein composition of epididymal sperm following interaction with epididymosomes. Moreover, our results substantiate the presumption that PMCA4 is transferred to spermatozoa via epididymosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arienti G, Carlini E, Palmerini CA (1997) Fusion of human sperm to prostasomes at acidic pH. J Membr Biol 155:89–94

    Article  PubMed  CAS  Google Scholar 

  • Aumüller G, Wilhelm B, Seitz J (1999) Apocrine secretion—fact or artifact? Anat Anz 181:437–446

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brandenburger T, Strehler EE, Filoteo AG, Caride AJ, Aumuller G, Post H, Schwarz A, Wilhelm B (2011) Switch of PMCA4 splice variants in bovine epididymis results in altered isoform expression during functional sperm maturation. J Biol Chem 286:7938–7946

    Article  PubMed  CAS  Google Scholar 

  • Burke RW, Diamondstone BI, Velapoldi RA, Menis O (1974) Mechanisms of the Liebermann-Burchard and Zak color reactions for cholesterol. Clin Chem 20:794–801

    PubMed  CAS  Google Scholar 

  • Caballero J, Frenette G, Sullivan R (2011) Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Vet Med Int 2011:757194

    Google Scholar 

  • Carlini E, Palmerini CA, Cosmi EV, Arienti G (1997) Fusion of sperm with prostasomes: effects on membrane fluidity. Arch Biochem Biophys 343:6–12

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG (1998) Interactions between epididymal secretions and spermatozoa. J Reprod Fertil Suppl 53:119–136

    PubMed  CAS  Google Scholar 

  • Cooper TG (1999) Epididymis. Encycl Reprod 2:17

    Google Scholar 

  • Corazzi L, Pistolesi R, Arienti G (1991) The fusion of liposomes to rat brain microsomal membranes regulates phosphatidylserine synthesis. J Neurochem 56:207–212

    Article  PubMed  CAS  Google Scholar 

  • Deng X, He Y, Martin-Deleon PA (2000) Mouse Spam1 (PH-20): evidence for its expression in the epididymis and for a new category of spermatogenic-expressed genes. J Androl 21:822–832

    PubMed  CAS  Google Scholar 

  • Eickhoff R, Wilhelm B, Renneberg H, Wennemuth G, Bacher M, Linder D, Bucala R, Seitz J, Meinhardt A (2001) Purification and characterization of macrophage migration inhibitory factor as a secretory protein from rat epididymis: evidences for alternative release and transfer to spermatozoa. Mol Med 7:27–35

    PubMed  CAS  Google Scholar 

  • Eickhoff R, Jennemann G, Hoffbauer G, Schuring MP, Kaltner H, Sinowatz F, Gabius HJ, Seitz J (2006) Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: release by the apocrine secretion mode? Cells Tissues Organs 182:22–31

    Article  PubMed  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colormetric determination of phosphorus. J Biol Chem 66:26

    Google Scholar 

  • Fornes MW, Barbieri A, Cavicchia JC (1995) Morphological and enzymatic study of membrane-bound vesicles from the lumen of the rat epididymis. Andrologia 27:1–5

    Article  PubMed  CAS  Google Scholar 

  • Frenette G, Sullivan R (2001) Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol Reprod Dev 59:115–121

    Article  PubMed  CAS  Google Scholar 

  • Frenette G, Lessard C, Sullivan R (2002) Selected proteins of “prostasome-like particles” from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol Reprod 67:308–313

    Article  PubMed  CAS  Google Scholar 

  • Frenette G, Girouard J, Sullivan R (2006) Comparison between epididymosomes collected in the intraluminal compartment of the bovine caput and cauda epididymidis. Biol Reprod 75:885–890

    Article  PubMed  CAS  Google Scholar 

  • Frenette G, Girouard J, D’Amours O, Allard N, Tessier L, Sullivan R (2010) Characterization of two distinct populations of epididymosomes collected in the intraluminal compartment of the bovine cauda epididymis. Biol Reprod 83:473–480

    Article  PubMed  CAS  Google Scholar 

  • Gatti JL, Metayer S, Belghazi M, Dacheux F, Dacheux JL (2005) Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol Reprod 72:1452–1465

    Article  PubMed  CAS  Google Scholar 

  • Girouard J, Frenette G, Sullivan R (2011) Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. Int J Androl 34:e475–e486

    Article  PubMed  CAS  Google Scholar 

  • Groos S, Wilhelm B, Renneberg H, Riva A, Reichelt R, Seitz J, Aumuller G (1999) Simultaneous apocrine and merocrine secretion in the rat coagulating gland. Cell Tissue Res 295:495–504

    Article  PubMed  CAS  Google Scholar 

  • Hall JC, Hadley J, Doman T (1991) Correlation between changes in rat sperm membrane lipids, protein, and the membrane physical state during epididymal maturation. J Androl 12:76–87

    PubMed  CAS  Google Scholar 

  • Hermo L, Jacks D (2002) Nature’s ingenuity: bypassing the classical secretory route via apocrine secretion. Mol Reprod Dev 63:394–410

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D, Boer T de, Klappe K, Wilschut J (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681

    Google Scholar 

  • Kirchhoff C, Hale G (1996) Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation. Mol Hum Reprod 2:177–184

    Article  PubMed  CAS  Google Scholar 

  • Legare C, Berube B, Boue F, Lefievre L, Morales CR, El-Alfy M, Sullivan R (1999) Hamster sperm antigen P26h is a phosphatidylinositol-anchored protein. Mol Reprod Dev 52:225–233

    Article  PubMed  CAS  Google Scholar 

  • Levine N, Marsh DJ (1971) Micropuncture studies of the electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules, the epididymis and the vas deferens in rats. J Physiol (Lond) 213:557–570

    CAS  Google Scholar 

  • Nikolopoulou M, Soucek DA, Vary JC (1985) Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta 815:486–498

    Article  PubMed  CAS  Google Scholar 

  • Oh JS, Han C, Cho C (2009) ADAM7 is associated with epididymosomes and integrated into sperm plasma membrane. Mol Cells 28:441–446

    Article  PubMed  CAS  Google Scholar 

  • Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O’Connor KT, Neumann JC, Andringa A, Miller DA, Prasad V, Doetschman T, Paul RJ, Shull GE (2004) Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279:33742–33750

    Article  PubMed  CAS  Google Scholar 

  • Palmerini CA, Carlini E, Nicolucci A, Arienti G (1999) Increase of human spermatozoa intracellular Ca2+ concentration after fusion with prostasomes. Cell Calcium 25:291–296

    Article  PubMed  CAS  Google Scholar 

  • Parks JE, Hammerstedt RH (1985) Development changes occurring in the lipids of ram epididymal spermatozoa plasma membrane. Biol Reprod 32:653–668

    Article  PubMed  CAS  Google Scholar 

  • Post H, Schwarz A, Brandenburger T, Aumuller G, Wilhelm B (2010) Arrangement of PMCA4 in bovine sperm membrane fractions. Int J Androl 33:775–783

    Article  PubMed  CAS  Google Scholar 

  • Rana AP, Majumder GC, Misra S, Ghosh A (1991) Lipid changes of goat sperm plasma membrane during epididymal maturation. Biochim Biophys Acta 1061:185–196

    Article  PubMed  CAS  Google Scholar 

  • Rejraji H, Vernet P, Drevet JR (2002) GPX5 is present in the mouse caput and cauda epididymidis lumen at three different locations. Mol Reprod Dev 63:96–103

    Article  PubMed  CAS  Google Scholar 

  • Rejraji H, Sion B, Prensier G, Carreras M, Motta C, Frenoux JM, Vericel E, Grizard G, Vernet P, Drevet JR (2006) Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation. Biol Reprod 74:1104–1113

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Luengo S, Aumuller G, Albrecht M, Sen PC, Rohm K, Wilhelm B (2004) Interaction of PDC-109, the major secretory protein from bull seminal vesicles, with bovine sperm membrane Ca2+-ATPase. J Androl 25:234–244

    PubMed  CAS  Google Scholar 

  • Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC, Armesilla AL, Emerson M, Oceandy D, Knobeloch KP, Neyses L (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    Article  PubMed  CAS  Google Scholar 

  • Sikdar R, Ganguly U, Pal P, Mazumder B, Sen PC (1991) Biochemical characterization of a calcium ion stimulated-ATPase from goat spermatozoa. Mol Cell Biochem 103:121–130

    Article  PubMed  CAS  Google Scholar 

  • Sullivan R, Saez F, Girouard J, Frenette G (2005) Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis 35:1–10

    Article  PubMed  CAS  Google Scholar 

  • Triphan J, Aumuller G, Brandenburger T, Wilhelm B (2007) Localization and regulation of plasma membrane Ca(2+)-ATPase in bovine spermatozoa. Eur J Cell Biol 86:265–273

    Article  PubMed  CAS  Google Scholar 

  • Wandernoth PM, Raubuch M, Mannowetz N, Becker HM, Deitmer JW, Sly WS, Wennemuth G (2010) Role of carbonic anhydrase IV in the bicarbonate-mediated activation of murine and human sperm. PLoS One 5:e15061

    Article  PubMed  Google Scholar 

  • Wennemuth G, Babcock DF, Hille B (2003) Calcium clearance mechanisms of mouse sperm. J Gen Physiol 122:115–128

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm B, Keppler C, Hoffbauer G, Lottspeich F, Linder D, Meinhardt A, Aumuller G, Seitz J (1998) Cytoplasmic carbonic anhydrase II of rat coagulating gland is secreted via the apocrine export mode. J Histochem Cytochem 46:505–511

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm B, Meinhardt A, Renneberg H, Linder D, Gabius HJ, Aumuller G, Seitz J (1999) Serum albumin as a potential carrier for the apocrine secretion of proteins in the rat coagulating gland. Eur J Cell Biol 78:256–264

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm B, Brandenburger T, Post H, Aumuller G (2008) Expression and localization of PMCA4 in rat testis and epididymis. Histochem Cell Biol 129:331–343

    Article  PubMed  CAS  Google Scholar 

  • Yanagimachi R, Kamiguchi Y, Mikamo K, Suzuki F, Yanagimachi H (1985) Maturation of spermatozoa in the epididymis of the Chinese hamster. Am J Anat 172:317–330

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xiao P, Zhang X (2009) Phosphatidylserine externalization in caveolae inhibits Ca2+ efflux through plasma membrane Ca2+-ATPase in ECV304. Cell Calcium 45:177–184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to Anne Henkeler, Gudrun Hoffbauer and Claudia Keppler for their expert technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, A., Wennemuth, G., Post, H. et al. Vesicular transfer of membrane components to bovine epididymal spermatozoa. Cell Tissue Res 353, 549–561 (2013). https://doi.org/10.1007/s00441-013-1633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1633-7

Keywords