Abstract
Because of its control of spike-timing and oscillatory network activity, γ-aminobutyric acid (GABA)-ergic inhibition is a key element in the central regulation of somatic and mental functions. The recognition of GABAA receptor diversity has provided molecular tags for the analysis of distinct neuronal networks in the control of specific pharmacological and physiological brain functions. Neurons expressing α1GABAA receptors have been found to mediate sedation, whereas those expressing α2GABAA receptors mediate anxiolysis. Furthermore, associative temporal and spatial memory can be regulated by modulating the activity of hippocampal pyramidal cells via extrasynaptic α5GABAA receptors. In addition, neurons expressing α3GABAA receptors are instrumental in the processing of sensory motor information related to a schizophrenia endophenotype. Finally, during the postnatal development of the brain, the maturation of GABAergic interneurons seems to provide the trigger for the experience-dependent plasticity of neurons in the visual cortex, with α1GABAA receptors setting the time of onset of a critical period of plasticity. Thus, particular neuronal networks defined by respective GABAA receptor subtypes can now be linked to the regulation of various clearly defined behavioural patterns. These achievements are of obvious relevance for the pharmacotherapy of certain brain disorders, in particular sleep dysfunctions, anxiety disorders, schizophrenia and diseases associated with memory deficits.
Similar content being viewed by others
References
Alger BE, Pitler TA (1995) Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci 18:333–340
Atack JR, Hutson PH, Collinson N, Marchall G, Bentley G, Moyes C, Cook SM, Collins I, Wafford K, McKernan RM, Dawson GR (2005) Anxiogenic properties of an inverse agonist selective for α3 subunit-containing GABAA receptors. Br J Pharmacol 144:357–366
Atack JR, Wafford K, Tye SJ, Cook S, Sohal B, Pike A, Sur C, Melillo D, Bristow L, Bromidge F, et al (2006a) TPA023 an agonist selective for α2- and α3-containing GABAA receptors, is a non-sedating anxiolytic in rodents and primates. J Pharm Exp Ther 316:410–422
Atack JR, Wafford K, Tye SJ, Cook S, Sohal B, Pike A, Sur C, Melillo D, Bristow L, Bromidge F, et al (2006b) The in vivo properties of pagoclone in rat are most likely mediated by 5′-hydroxy pagoclone. Neuropharmacology (in press)
Barnard EA, Skolnick P, Olsen RW, Möhler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) Subtypes of γ-aminobutyric acidA receptors: classification on the bases of subunit structure and receptor function. Pharmacol Rev 50:291–313
Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575
Benson J, Löw K, Keist R, Möhler H, Rudolph U (1998) Pharmacology of recombinant GABAA receptors rendered diazepam-insensitive by point-mutated α-subunits. FEBS Lett 431:400–404
Bianchi MT, McDonald RL (2003) Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci 23:10934–10943
Bormann J (2000) The “ABC” of GABA receptors. Trends Pharmacol Sci 21:16–19
Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol (Lond) 497:753–759
Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage independent potassium conductance. Nature 409:88–92
Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (2002) Pharmacological characterization of a novel cell line expressing human α4β3δ GABAA receptors. Br J Pharmacol 136:965–974
Brussaard AB, Herbison AE (2000) Long-term plasticity of postsynaptic GABAA-receptor function in the adult brain: insights from the oxytocin neurone. Trends Neurosci 23:190–195
Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124
Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 106:231–232
Chambers MS, Attack JR, Broughton HB, Collinson N, Cook S, Dawson GR, Hobbs SC, Marshall G, Maubach KA, Pillai GV, Reeve AJ, MacLeod AM (2003) Identification of a novel, selective GABAA α5 receptor inverse agonist which enhances cognition. J Med Chem 46:2227–2240
Chambers MS, Atack JR, Carling RW, Collinson N, Cook SM, Dawson GR, Ferris P, Hobbs SC, O’Connor D, Marshall G et al (2004) An orally bioavailable, functionally selective inverse agonist at the benzodiazepine site of GABAA alpha5 receptors with cognition enhancing properties. J Med Chem 47:5829–5832
Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38:461–472
Cirone J, Rosahl TW, Reynolds DS, Newman RJ, O’Meara GF, Hutson PH, Wafford KA (2004) Gamma-aminobutyric acid type A receptor beta 2 subunit mediates the hypothermic effect of etomidate in mice. Anesthesiology 100:1438–1445
Collins I, Moyes C, Davey WB, Rowley M, Bromidge FA, Quirk K, et al (2002) 3-Heteroaryl-2-pyridones: benzodiazepine site ligands with functional delectivity for alpha 2/alpha 3-subtypes of human GABA(A) receptor-ion channels. J Med Chem 45:1887–1900
Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, et al (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J Neurosci 22:5572–5580
Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Bluethmann H, Möhler H, Rudolph U (2002) Trace fear conditioning involves hippocampal a5 GABAA receptors. Proc Natl Acad Sci USA 99:8980–8985
Dämgen K, Lüddens H (1999) Zaleplon diaplays a selecitvity to recombinant GABAA receptors different from zolpidem, zopiclone and benzodiazepines. Neurosci Res Comm 25:139–148
Dellini-Stula A, Berdah-Tordjman D (1996) Antipsychotic effects of bretazenil, a partial benzodiazepine agonist in acute schizophrenia—a study group report. J Psychiatr Res 30:239–250
Devor A, Fritschy JM, Yarom Y (2001) Spatial distribution and subunit composition of GABAA receptors in the inferior olivary nucleus. J Neurophysiol 85:1686–1696
Dias R, et al (2005) Evidence for a significant role of alpha3–containing GABAA receptors in mediating the anxiolytic effects of benzodiazepines. J Neurosci 25:10682–10688
Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716
Ernst M, Brauchart D, Boresch S, Sieghart W (2003) Comparative modeling of GABAA receptors: limits, insights, future developments. J Neuroscience 4:933–943
Fagiolini M, Hensch T (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404:183–186
Fagiolini M, Fritschy JM, Löw K, Möhler H, Rudolph U, Hensch T (2004) Specific GABAA circuits for visual cortical plasticity. Science 303:1681–1683
Ferster D (2004) Blocking plasticity in the visual cortex. Science 303:1619–1621
Foeller E, Feldmann DE (2004) Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol 14:89–95
Foster AC, Pelleymounter MA, Cullen MJ, Lewis D, Joppa M, Chen TK, Bozigian HP, Gross RS, Gogas KR (2004) In vivo pharmacological characterization of indiplon, a novel pyrazolopyrimidine sedative-hypnotic. J Pharmacol Exp Ther 311:547–559
Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:345–470
Fritschy JM, Brünig I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98:299–323
Fritschy JM, Möhler H (1995) GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194
Fritschy JM, Crestani F, Rudolph U, Möhler H (2004) GABAA receptor subtypes with special reference to memory function and neurological disorders. In: Hensch TK, Fagiolini M (eds) Excitatory inhibitory balance: synapses, circuits and systems plasticity. Kluwer Academic/Plenum, New York, pp 215–228
Gao B, Fritschy JM, Benke D, Möhler H (1993) Neuron-specific expression of GABAA receptor subtypes: differential associations of the α1- and α3-subunits with serotonergic and GABAergic neurons. Neuroscience 54:881–892
Geiger JR, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signalling at a principal neuron-interneuron synapse. Neuron 18:1009–1023
Griebel G, Perrault G, Simiand J, Cohen C, Granger P, Depoortere H, Francon D, Avenet P, Schoemaker H, Evanno Y, et al (2003) SL651498, a GABAA receptor agonist with subtype-selective efficacy, as a potential treatment for generalized anxiety disorder and muscle spasms. CNS Drug Rev 9:3–20
Gupta A, Wang Y, Markam H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278
Haefeli W, Martin JR, Schoch P (1990) Novel anxiolytics that act as partial agonists at benzodiazepine receptors. Trends Pharmacol Sci 11:452–456
Harris KD, Henze DA, Hirase H, Leinekugel X, Dragoi G, Czurko A, Buzsaki G (2002) Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417:738–741
Hauser J, Rudolph U, Keist R, Möhler H, Feldon J, Yee B (2005) Hippocampal α5 subunit containing GABAA receptors modulate expression of prepulse inhibition. Mol Psychiatry 10:201–207
Hensch TK (2005) Critical period plasticity in local cortical circuits. Nature Rev Neurosci 6:877–888
Hensch TK, Stryker MP (2004) Columnar architecture sculped by GABA circuits in developing cat visual cortex. Science 303:1678–1681
Huckle R (2004) Gaboxadol Lundbeck/Merck. Curr Opin Investig Drugs 5:766–773
Huntsmann MM, Porcello DM, Homanics GE, DeLorey TM, Huguenard JR (1999) Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 283:541–543
Hutcheon B, Morley P, Poulter MO (2000) Developmental change in GABAA receptor desensitization kinetics and its role in synapse function in rat cortical neurons. J Pysiol (Lond) 522:3–17
Jüttner R, Meier J, Grantyn R (2001) Slow IPSC kinetics, low levels of α1 subunit expression and paired-pulse depression are distinct properties of neonatal inhibitory GABAergic synaptic connections in the mouse superior colliculus. Eur J Neurosci 13:2088–2098
Jurd R, Arras M, Lambert S, Drexler B, Siegwart R, Crestani F, Zaugg M, Vogt KE, Ledermann B, Antkowiak B, et al (2003) General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J 17:250–252
Kandler K (2004) Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Curr Opin Neurobiol 14:96–104
Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81
Katona I, Sperlagh B, Sik A, Käfalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558
Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21:9506–9518
Klausberger T, Roberts JD, Somogyi P (2002) Cell type- and input-specific differences in the number and subtypes of synaptic GABAA receptors in the hippocampus. J Neurosci 22:2513–2521
Klausberger T, Magill PJ, Marton LF, Roberts JDB, Cobden PM, Buzsaki G, Somogyi P (2003) Brain state- and cell type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848
Kopp C, Rudolph U, Tobler I (2004a) Sleep EEG changes after zolpidem in mice. Neuroreport 15:2299–2302
Kopp C, Rudolph U, Löw K, Tobler I (2004b) Modulation of rhythmic brain activity by diazepam: GABA(A) receptor subtype and state specificity. Proc Natl Acad Sci USA 101:3674–3679
Krasowski MD, Koltchine VV, Rick CE, Ye Q, Finn SE, Harrison NL (1998) Propofol and other intravenous anesthetics have sites of action on the gamma-aminobutyric acid type A receptor distinct from that for isoflurane. Mol Pharmacol 53:530–538
Kreitzer AC, Regehr WG (2001a) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717–727
Kreitzer AC, Regehr WG (2001b) Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci 21:RC174
Lambert S, Arras M, Vogt KE, Rudolph U (2005) Isoflurane-induced surgical tolerance mediated only in part by beta3-containing GABA(A) receptors. Eur J Pharmacol 516:23–27
Lancel M, Steiger A (1999) Sleep and its modulation by drugs that affect GABAA receptor function. Angew Chem Int Ed 111:2852–2864
Langen B, Egerland U, Bernoster K, Dost R, Unverferth K, Rundfeldt C (2005) Characterization in rats of the anxiolytic potential of ELB139 [1-(4-chlorophenyl)-4-piperidin-1-yl-1,5-dihydro-imidazol-2-on], a new agonist at the benzodiazepine binding site of the GABAA receptor. J Pharmacol Exp Ther 314:717–724
Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324
Liao M, Sonner JM, Jurd R, Rudolph U, Borghese CM, Harris RA, Laster MJ, Eger EI 2nd (2005) Beta3-containing gamma-aminobutyric acidA receptors are not major targets for the amnesic and immobilizing actions of isoflurane. Anesth Analg 101:412–418
Lippa A, Czobor P, Stark J, Beer B, Kostakis E, Gravielle M, Bandyopadhyay S, Russek SJ, Gibbs TT, Farb DH, Skolnick P (2005) Selective anxiolysis produced by ocinaplon, a GABA(A) receptor modulator. Proc Natl Acad Sci USA 102:7380–7385
Llano I, Leresche N, Marty A (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6:565–574
Löw K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Rulicke T, Bluethmann H, Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134
Maejima T, Ohno-Shosaku T, Kano M (2001) Endogenous cannabinoid mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29:729–738
Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silbergerb G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 10:793–807
Marowsky A, Fritschy JM, Vogt KE (2004) Functional mapping of GABAA receptor subtypes in the amygdala. Eur J Neurosci 20:1281–1289
Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534
Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:1811–1825
McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 3:587–592
Metha MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–746
Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, et al (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389:385–389
Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569–575
Möhler H (2001) Functions of GABA receptors: pharmacology and pathophysiology. In: Möhler H (ed) Pharmacology of GABA and glycine neurotransmission. Springer, Berlin Heidelberg New York, pp 101–116
Möhler H (2002) Pathophysiological aspects of diversity in neuronal inhibition: a new benzodiazepine pharmacology. Dialogues Clin Neurosci 4:261–269
Möhler H, Benke D, Fritschy JM, Benson J (2000) The benzodiazepine site of GABAA receptors, In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott, Philadelphia, pp 97–112
Möhler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharm Exptl Ther 300:2–8
Möhler H, Fritschy JM, Vogt K, Crestani F, Rudolph U (2005) Pathophysiology and pharmacology of GABAA receptors. In: Holsboer F, Ströhle A (eds) Anxiety and anxiolytic drugs. Handbook of experimental pharmacology, vol 169. Springer, Berlin Heidelberg New York, pp 225–247
Monyer H, Markram H (2004) Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci 27:90–97
Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2:240–250
Navarro JF, Buron E, Martin-Lopez M (2002) Anxiogenic-like activity of L-655,708, a selective ligand for the benzodiazepine site of GABA(A) receptors which contain the alpha-5 subunit, in the elevated plus-maze test. Prog Neuropsychopharmacol Biol Psychiatry 26:1389–1392
Navarro JF, Buron E and Martin-Lopez M (2004) Behavioral profile of L-655 708, a selective ligand for the benzodiazepine site of GABAA receptors which contain the α5 subunit in social encounters between male mice. Aggress Behav 30:319–325
Nusser Z, Sieghart W, Stephenson FA, Somogyi P (1996) The α6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J Neurosci 16:103–114
Nusser Z, Sieghart W and Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703
Nyíri G, Freund TF and Somogyi P (2001) Input-dependent synaptic targeting of a2 subunit containing GABAA receptors in hippocampal pyramidal cells of the rat. Eur J Neurosci 13:428–442
O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford, pp 477–543
O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330
Paulsen O, Moser EI (1998) A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 21:273–278
Pawelzik H, Hughes DI, Thomson AM (2002) Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurons in CA1 of the adult rat hippocampus. J Comp Neurol 443:346–367
Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850
Pitler TA, Alger BE (1992) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 12:4122–4132
Pitler TA, Alger BE (1994) Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron 13:1447–1455
Pöltl A, Hauer B, Fuchs K, Tretter V, Sieghart W (2003) Subunit composition and quantitative importance of GABAA receptors subtypes in the cerebellum of mouse and rat. J Neurochem 87:1444–1455
Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal develpment. Trends Neurosci 28:278–283
Reynolds DS, Rosahl TW, Cirone J, O’Meara GF, Haythornthwaite A, Newman RJ, Myers J, Sur C, Howell O, Rutter AR, et al (2003) Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 23:8608–8617
Rijnsoever C van, Tauber M, Choulli MK, Keist R, Rudolph U, Möhler H, Fritschy JM, Crestani F (2004) Requirement of α5 GABAA receptors for the development of tolerance to the sedative action of diazepam in mice. J Neurosci 24:6785–6790
Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720
Rudolph U, Möhler H (2004) Analysis of GABAA receptor function and dissection of pharmacology of benzodiazepines and general anaesthetics by mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498
Rudolph U, Möhler H (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6:18–23
Rudolph U, Crestani F, Benke D, Brünig I, Benson J, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401:796–800
Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABAA receptor subtypes. Curr Top Med Chem 2:795–816
Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172
Sternfeld F, Carling RW, Jelley RA, Ladduwahetty T, Merchant KJ, Moore KW, Reeve AJ, Street LJ, O’Connor D, Sohal B, et al (2004) Selective, orally active gamma-amonobutyric acidA alpha5 receptor inverse agonists as cognition enhancers. J Med Chem 47:2176–2179
Storustovu S, Ebert B (2003) Gaboxadol: in vitro interaction studies with benzodiazepines and ethanol suggest functional selectivity. Eur J Pharmacol 467:49–56
Tobler I, Kopp C, Deboer T, Rudolph U (2001) Diazepam-induced changes in sleep: role of the α1GABAA receptor subtype. Proc Natl Acad Sci USA 98:6464–6469
Traub RD, Draguhn A, Whittington MA, Baldeweg T, Bibbig A, Buhl EH, Schmitz D (2002) Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev Neurosci 13:1–30
Vicini S, Ferguson C, Prybylowski K, Kralic J, Morrow AL, Homanics GE (2001) GABAA receptor α1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J Neurosci 21:3009–3016
Vincent P, Marty A (1993) Neighboring cerebellar Purkinje cell communicate via retrograde inhibition of common presynaptic interneurons. Neuron 11:885–893
Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances alpha4 beta3 delta and alpha6 beta3 delta gamma-aminobutyric acid type A receptors at low concentration known to affect humans. Proc Natl Acad Sci USA 100:15218–15223
Whiting PJ (2003) The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Dev 6:648–655
Whiting P, Wafford KA, McKernan RM (2000) Pharmacologic subtypes of GABAA receptors based on subunit composition In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott, Philadelphia, pp 113–126
Wiesel TN, Hubel DH (1963) Single cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017
Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–92 [erratum appears in Nature 2001 411:974]
Yee BK, Hauser J, Dolgov VV, Keist R, Möhler H, Rudolph U, Feldon J (2004) GABA receptors containing the α5 subunit mediate the trance effect in aversive and appetitive conditioning and extinction of conditioned fear. Eur J Neurosci 20:1928–1936
Yee BK, et al (2005) A schizophrenia-related sensorimotor deficit links α3-containing GABAA receptors to a dopamine hyperfunction. Proc Natl Acad Sci USA 102:17154–17159
Zeller A, Arras M, Lazaris A, Jurd R, Rudolph U (2005) Distinct molecular targets for the central respiratory and cardiac actions of the general anesthetics etomidate and propofol. FASEB J 12:1677–1679
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Möhler, H. GABAA receptor diversity and pharmacology. Cell Tissue Res 326, 505–516 (2006). https://doi.org/10.1007/s00441-006-0284-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00441-006-0284-3