Abstract
Idiopathic scoliosis (IS) affects approximately 2%–3% of the population and has a heritable component. The genetics of this disorder are complex. Here, we describe a family in which a pericentric inversion of chromosome 8 co-segregates with IS. We have used fluorescence in situ hybridization to identify cloned DNAs that span the breakpoints on the two arms of the chromosome. We have identified a bacterial artificial chromosome (BAC) of 150 kb that crosses the q-arm breakpoint and a BAC of 120 kb that crosses the p-arm breakpoint. The complete genomic DNA sequence of these BACs has been analyzed to identify candidate genes and to localize further the precise breakpoints. This has revealed that the p-arm break does not interrupt any known gene and occurs in a region of highly repetitive sequence elements. On the q-arm, the break occurs between exons 10 and 11 of the γ-1 syntrophin (SNTG1) gene. Syntrophins are a group of cytoplasmic peripheral membrane proteins that associate directly with dystrophin, the Duchenne muscular dystrophy gene; γ1-syntrophin has been shown to be a neuronal cell-specific protein. Mutational analysis of SNTG1 exons in 152 sporadic IS patients has revealed a 6-bp deletion in exon 10 of SNTG1 in one patient and a 2-bp insertion/deletion mutation occurring in a polypyrimidine tract of intronic sequence 20 bases upstream of the SNTG1 exon 5 splice site in two patients. These changes were not seen in a screen of 480 control chromosomes. Genomic DNAs from seven affected individuals within the family of a patient carrying the 6-bp deletion were typed to determine whether the alteration co-segregated with IS. The deletion was only observed in five out of these seven individuals. Thus, although genetic heterogeneity or multiple alleles cannot be ruled out, the 6-bp deletion does not consistently co-segregate with the disease in this family.
Similar content being viewed by others
References
Ahn AH, Freener CA, Gussoni E, Yoshida M, Ozawa E, Kunkel LM (1996) The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal locations, and each bind to dystrophin and its relatives. J Biol Chem 271:2724–2730
Beals RK (1973) Nosologic and genetic aspects of scoliosis. Clin Orthop 93:23–32
Berven S, Fairbank J, Carr A, Sadovoy M, Tregubova I, Zaidman A (1997) On the genetics of spinal asymmetry and adolescent idiopathic scoliosis patterns of deformity and heredity. J Bone Joint Surg Am 79:452
Boyd H, Kaste J, Hovie E, Ritanen-Mohammed UM, Kaariainen H, Chapelle A de la, Lehesjoki AE (1994) Familial pericentric inversion inv(8)(p23q11). J Med Genet 31:201–205
Brownstein BH, Silverman GA, Little RD, Burke DT, Korsmeyer SJ, Schlessinger D, Olson MV (1989) Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244:1348–1351
Bugge M, Bruun-Petersen G, Brondum-Nielsen K, Friedrich U, Hansen J, Jensen G, Jensen PKA, Kristoffersson U, Lundsteen C, Neibuhr E, Rasmussen KR, Rasmussen K, Tommerup N (2002) Disease associated balanced chromosome rearrangements: a resource for large scale genotype-phenotype delineation in man. J Med Genet 37:858–865
Burwell RG, Cole AA, Cook TA (1992) Pathogenesis of idiopathic scoliosis: the Nottingham concept. Acta Orthop Belg 58:33–58
Byl NN, Gray JM (1993) Complex balance reactions in different sensory conditions: adolescents with and without idiopathic scoliosis. J Orthop Res 11:215–227
Chan V, Gardian CYF, Luk KDK, Yip B, Lee M-K, Wong M-S, Lu DDS, Chan T-K (2002) Putative loci for idiopathic scoliosis on chromosome 19p. Am J Hum Genet 71:401–406
Chen PQ, Wang JL, Tsuang YH, Liao, TL, Huang PI, Hang YS (1998) The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clin Biochem 13:52–58
Cobb JR (1948) Outline for the study of scoliosis. In: American Academy of Orthopaedic Surgeons (eds) Instructional course lectures, vol 5. American Academy of Orthopaedic Surgeons, Ann Arbor, pp 261–275
Collins FS (1995) Positional cloning moves from perditional to traditional. Nat Genet 9:347–350
Coolidge CJ, Seely RJ, Patton JG (1997) Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res 25:888–896
Do T (2002) Orthopedic management of the muscular dystrophies. Curr Opin Pediatr 14:50–53
Dubousset J, Queneau P, Thillard M (1983) Experimental scoliosis induced by pineal and diencephalic lesions in young chickens: its relation with clinical findings. Orthop Trans 7:7
European Polycystic Kidney Disease Consortium (1994) The polycyctic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77:881–894
Fantes J, Redeker B, Breen M, Boyle S, Brown J, Fletcher J, Jones S, Bickmore W, Fukushima Y, Mannens M, et al (1995) Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum Mol Genet 4:415–422
Fountain JW, Wallace MR, Bruce MA, Seizinger BR, Menon AG, Gusella JF, Michels VV, Schmidt MA, Dewald GW, Collins FS (1989) Physical mapping of a translocation breakpoint in neurofibromatosis. Science 244:1085–1087
Frendewey D, Keller W (1985) Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42:355–367
Harrington PR (1977) The etiology of idiopathic scoliosis. Clin Orthop 126:17–25
Hensinger RN, MacEwen GD (1976) Spinal deformity associated with heritable neurological conditions: spinal muscular atrophy, Friedreich’s ataxia, familial dysautonomia, and Charcot-Marie-Tooth disease. J Bone Joint Surg Am 58:13–24
Hogan A, Shepherd L, Chabot J, Quenneville S, Prescott SM, Topham MK, Gee SH (2001) Interaction of γ1-syntrophin with diacylglycerol kinase-ζ. J Biol Chem 276:26526–26533
Inoue M, Minami S, Kitahara H, Otsuka Y, Nakata Y, Takaso M, Moriya H (1998) Idiopathic scoliosis in twins studied by DNA fingerprinting: the incidence and type of scoliosis.J Bone Joint Surg Br 80:212–217
Jacobs PA, Buckton KE, Cunningham C, Newton M (1974) An analysis of the breakpoints of structural rearrangements in man. J Med Genet 11:50–64
Justice CM, Miller NH, Marosy B, Zhand J, Wilson AF (2002) Identification of loci involved in familial idiopathic scoliosis. Program No. 1577, 2002 ASHG Annual Meeting
Kesling K, Reinker KA (1997) Scoliosis in twins. Spine 22:2009–2015
Kleczkowska A, Fryn JP, Berghe H van den (1987) Pericentric inversions in man: personal experience and review of the literature. Hum Genet 75:333–338
Lee FJ (1992) Modified protocol for yeast DNA mini-preparation. Biotechniques 12:677
Lengauer C, Green ED, Cremer T (1992) Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification. Genomics 13:826–828
Lonstein JE (1994) Adolescent idiopathic scoliosis. Lancet 344:1407–1412
Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, Rivard CH (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am 82:1157–1168
Machida M, Murai I, Miyashita Y, Dubousset J, Yamada T, Kimura J (1999) Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine 24:1985–1989
Maguire J, Madigan R, Wallace S, Leppanen R, Draper V (1993) Intraoperative long-latency reflex activity in idiopathic scoliosis demonstrates abnormal central processing. A possible cause of idiopathic scoliosis. Spine 18:1621–1626
Manzoni D, Miele F (2002) Vestibular mechanisms involved in idiopathic scoliosis. Arch Ital Biol 140:67–80
Nault M-L, Allard P, Hinse S, Blanc RL, Caron O, Labelle H, Sadeghi H (2002) Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis. Spine 27:1911–1917
O’Kelly C, Wang X, Raso J, Moreau M, Mahood J, Zhao J, Bagnall K (1999) The production of scoliosis after pinealectomy in young chickens, rats, and hamsters. Spine 24:35–43
Piluso G, Mirabella M, Ricci E, Belsito A, Abbondanza C, Servidei S, Puca AA, Tonali P, Puca GA, Nigro V (2000) Gamma1- and gamma2-syntrophins, two novel dystrophin-binding proteins localized in neuronal cells. J Biol Chem 275:15851–15860
Pincott JR, Davies JS, Taffs LF (1984) Scoliosis caused by section of dorsal spinal nerve roots. J Bone Joint Surg Br 66:27–29
Riseboroug EJ, Wynne-Davies R (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am 55:974–982
Rogala EJ, Drummond DS, Gurr J (1978) Scoliosis: incidence and natural history: a prospective epidemiological study. J Bone Joint Surg Am 60:173–176
Ruskin B, Green MR (1985) Role of the 3’ splice site consensus sequence in mammalian pre-mRNA splicing. Nature 317:732–734
Salehi LB, Mangino M, De Serio S, De Cicco D, Capon F, Semprini S, Pizzuti A, Novelli G, Dallapiccola B (2002) Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum Genet 111:401–404
Sillence DO, Barlow KK, Cole WG, Dietrich S, Garber AP, Rimoin DL (1986) Osteogenesis imperfecta type III: delineation of the phenotype with reference to genetic heterogeneity. Am J Med Genet 23:821–832
Szappanos L, Balogh E, Szeszak F, Olah E, Nagy Z, Szepesi K (1997) Idiopathic scoliosis—new surgical methods or search for the reasons. Acta Chir Hung 36:343–345
Tierney I, Axworthy D, Smith L, Ratcliffe SG (1984) Balanced rearrangements of the autosomes: results of a longitudinal study of a newborn survey. J Med Genet 21:45–51
Thillard MJ (1959) Vertebral column deformities following epiphysectomy in the chick. C R Hebd Seances Acad Sci 248:1238–1240
Walker JL, Nelson KR, Stevens DB, Lubicky JP, Ogden JA, VandenBrink KD (1994) Spinal deformity in Charcot-Marie-Tooth disease. Spine 19:1044–1047
Warburton D (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet 49:995–1013
Weinstein SL (1991) Advances in the diagnosis and management of adolescent idiopathic scoliosis. J Pediatr Orthop 11:561–563
Wise CA, Barnes R, Gillum J, Herring JA, Bowcock AM, Lovett M (2000) Localization of susceptibility to familial idiopathic scoliosis. Spine 25:2372–2380
Womack M, Khodakhah K (2002) Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons. J Neurosci 22:10603–10612
Yamada K, Yamamoto H, Nakagawa Y, Tezuka A, Tamura T, Kawata S (1984) Etiology of idiopathic scoliosis. Clin Orthop 184:50–57
Yamashita T, Kanaya K, Kawaguchi S, Murakami T, Yokogushi K (2001) Prediction of progression of spinal deformity in Duchenne muscular dystrophy: a preliminary report. Spine 26:223–226
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Bashiardes, S., Veile, R., Allen, M. et al. SNTG1, the gene encoding γ1-syntrophin: a candidate gene for idiopathic scoliosis. Hum Genet 115, 81–89 (2004). https://doi.org/10.1007/s00439-004-1121-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00439-004-1121-y