Skip to main content

Advertisement

Log in

Association of NFκB and related-cytokines with the viral load and development of antibodies against HHV-8 in people living with HIV/AIDS

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Human gammaherpesvirus 8 (HHV-8) replication is influenced by a complex interaction between viral and host elements. Here, we evaluated the expression of NFκB and TNF-α in B (CD19 +) and T (CD3 +) lymphocytes, and the serum concentration of IL-1β and IL-12 cytokines in people living with HIV/AIDS (PLHA), negative for HHV-8-related diseases, and who presented antibodies to latent or lytic antigens from HHV-8. In addition, we also evaluated the correlation of HHV-8 viral load with NFκB, TNF-α, IL-1β and IL-12 levels. The expression of NFκB (p < 0.0001) or TNF-α (p < 0.0001) in B lymphocytes (CD19 +) and the IL-1β (p < 0.0266) and IL-12 (p < 0.0001) concentrations were associated with the presence of antibodies to HHV-8 lytic antigens. The CD19 + NFκB + TNF-α + and CD3 + NFκB + TNF-α + cells were also associated with the presence of antibodies to lytic infection (p < 0.0001). Among all PLHA evaluated, only individuals with the highest titers of lytic antibodies, i.e., 1:320, had detectable HHV-8 viral load. In these, HHV-8 viral load was correlated to NFκB (r = 0.6, p = 0.003) and TNF-α (r = 0.5, p = 0.01) (both in CD19 + lymphocytes) and with IL-1β (r = 0.5, p = 0.01) and IL-12 (r = 0.6, p = 0.006) levels. We believe that viral replication and/or reactivation, in addition to being associated with the development of lytic antibodies against HHV-8, may be associated with inflammatory response via NFκB. Finally, although immune response imbalance has been previously related to HHV-8-associated diseases, our results indicate that important changes in immunity, mainly in the inflammatory response, may be clearly observed in individuals with HHV-8, but who have not yet presented clinical manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ICTV (2018) International Committee on Taxonomy of Viruses (ICTV). https://talk.ictvonline.org/taxonomy/. Accessed 11 Jan 2019

  2. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  3. Sullivan RJ, Pantanowitz L, Casper C et al (2008) HIV/AIDS: epidemiology, pathophysiology, and treatment of Kaposi sarcoma-associated herpesvirus disease: Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Clin Infect Dis 47:1209–1215. https://doi.org/10.1086/592298

    Article  PubMed  Google Scholar 

  4. Carbone A, De Paoli P, Gloghini A, Vaccher E (2015) KSHV-associated multicentric Castleman disease: a tangle of different entities requiring multitarget treatment strategies. Int J Cancer 137:251–261. https://doi.org/10.1002/ijc.28923

    Article  CAS  PubMed  Google Scholar 

  5. Uldrick TS, Whitby D (2011) Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Lett 305:150–162. https://doi.org/10.1016/j.canlet.2011.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uldrick TS, Wang V, O’Mahony D et al (2010) An Interleukin-6–related systemic inflammatory syndrome in patients co-infected with Kaposi sarcoma-associated herpesvirus and HIV but without multicentric Castleman disease. Clin Infect Dis 51:350–358. https://doi.org/10.1086/654798

    Article  CAS  PubMed  Google Scholar 

  7. Purushothaman P, Dabral P, Gupta N et al (2016) KSHV genome replication and maintenance. Front Microbiol 7:54. https://doi.org/10.3389/fmicb.2016.00054

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ganem D (2010) KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest 120:939–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aneja KK, Yuan Y (2017) Reactivation and lytic replication of Kaposi’s Sarcoma-associated herpesvirus: an update. Front Microbiol 8:613. https://doi.org/10.3389/fmicb.2017.00613

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stebbing J, Gazzard B, Bower M (2006) The host control of lytic and latent infection with human herpesvirus–8. J Infect Dis 193:1051–1053. https://doi.org/10.1086/501475

    Article  CAS  PubMed  Google Scholar 

  11. Uldrick TS, Bhutani M, Polizzotto MN et al (2014) Inflammatory cytokines, hyperferritinemia and IgE are prognostic in patients with KSHV-associated lymphomas treated with curative intent therpay. ASH 124:3001a

    Google Scholar 

  12. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oeckinghaus A, Ghosh S (2009) The NF-B family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034. https://doi.org/10.1101/cshperspect.a000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bassères DS, Baldwin AS (2006) Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830. https://doi.org/10.1038/sj.onc.1209942

    Article  CAS  PubMed  Google Scholar 

  15. Napetschnig J, Wu H (2013) Molecular basis of NF-κB signaling. Annu Rev Biophys 42:443–468. https://doi.org/10.1146/annurev-biophys-083012-130338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Courtois G, Gilmore TD (2006) Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 25:6831–6843. https://doi.org/10.1038/sj.onc.1209939

    Article  CAS  PubMed  Google Scholar 

  17. Hayden MS, Ghosh S (2012) NF-B, the first quarter-century: remarkable progress and outstanding questions. Gene Dev 26:203–234. https://doi.org/10.1101/gad.183434.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–362. https://doi.org/10.1016/j.cell.2008.01.020

    Article  CAS  PubMed  Google Scholar 

  19. Hayden MS, West AP, Ghosh S (2006) NF-κB and the immune response. Oncogene 25:6758–6780. https://doi.org/10.1038/sj.onc.1209943

    Article  CAS  PubMed  Google Scholar 

  20. Smale ST (2012) Dimer-specific regulatory mechanisms within the NF-κB family of transcription factors. Immunol Rev 246:193–204. https://doi.org/10.1111/j.1600-065X.2011.01091.x

    Article  CAS  PubMed  Google Scholar 

  21. Trask OJ (2004) Nuclear factor kappa B (NF-κB) translocation assay development and validation for high content screening. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Maryland

  22. Azzi S, Smith SS, Dwyer J et al (2014) YGLF motif in the Kaposi sarcoma herpes virus G-protein-coupled receptor adjusts NF-κB activation and paracrine actions. Oncogene 33:5609–5618. https://doi.org/10.1038/onc.2013.503

    Article  CAS  PubMed  Google Scholar 

  23. Blattman NN, Lagunoff M, Blattman JN, Corey L (2014) Nuclear factor kappa B is required for the production of infectious human herpesvirus 8 virions. Front Microbiol 5:129. https://doi.org/10.3389/fmicb.2014.00129

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brinkmann MM, Pietrek M, Dittrich-Breiholz O et al (2007) Modulation of host gene expression by the K15 protein of Kaposi’s sarcoma-associated herpesvirus. J Virol 81:42–58. https://doi.org/10.1128/JVI.00648-06

    Article  CAS  PubMed  Google Scholar 

  25. Brinkmann MM, Glenn M, Rainbow L et al (2003) Activation of mitogen-activated protein kinase and NF-kappaB pathways by a Kaposi’s sarcoma-associated herpesvirus K15 membrane protein. J Virol 77:9346–9358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brown HJ, Song MJ, Deng H et al (2003) NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol 77:8532–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grossmann C, Ganem D (2008) Effects of NFκB activation on KSHV latency and lytic reactivation are complex and context-dependent. Virology 375:94–102. https://doi.org/10.1016/j.virol.2007.12.044

    Article  CAS  PubMed  Google Scholar 

  28. Guasparri I, Hassane DC, Roshal M, Cesarman E (2012) The viral oncoprotein vFLIP encoded by KSHV/HHV-8 is responsible for the unique transcriptional signature and phenotypic features of primary effusion lymphoma. Blood 120:900

    Article  Google Scholar 

  29. Järviluoma A, Ojala PM (2006) Cell signaling pathways engaged by KSHV. Biochim Biophys Acta Rev Cancer 1766:140–158. https://doi.org/10.1016/j.bbcan.2006.05.001

    Article  CAS  Google Scholar 

  30. Matta H, Chaudhary PM (2004) Activation of alternative NF-{kappa}B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1{beta}-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci 101:9399–9404. https://doi.org/10.1073/pnas.0308016101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Konrad A, Wies E, Thurau M et al (2009) A systems biology approach to identify the combination effects of human herpesvirus 8 genes on NF-kappa B activation. J Virol 83:2563–2574. https://doi.org/10.1128/JVI.01512-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ehrlich ES, Chmura JC, Smith JC et al (2014) KSHV RTA abolishes NFκB responsive gene expression during lytic reactivation by targeting vFLIP for degradation via the proteasome. PLoS One 9:e91359. https://doi.org/10.1371/journal.pone.0091359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matta H, Mazzacurati L, Schamus S et al (2007) Kaposi’s Sarcoma-associated herpesvirus (KSHV) oncoprotein K13 bypasses TRAFs and directly interacts with the IκB kinase complex to selectively activate NF-κB without JNK activation. J Biol Chem 282:24858–24865. https://doi.org/10.1074/jbc.M700118200

    Article  CAS  PubMed  Google Scholar 

  34. Lorena VMB, Verçosa AFA, Machado RCA et al (2008) Cellular immune response from chagasic patients to CRA or FRA recombinant antigens of Trypanosoma cruzi. J Clin Lab Anal 22:91–98. https://doi.org/10.1002/jcla.20209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krishnan HH, Naranatt PP, Smith MS et al (2004) Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi’s sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78:3601–3620. https://doi.org/10.1128/jvi.78.7.3601-3620.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guasparri I, Keller SA, Cesarman E (2004) KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 199:993–1003. https://doi.org/10.1084/jem.20031467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matta H, Chaudhary PM (2004) Activation of alternative NF-B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci 101:9399–9404. https://doi.org/10.1073/pnas.0308016101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708

    Article  CAS  PubMed  Google Scholar 

  39. Kumar A, Takada Y, Boriek A, Aggarwal B (2004) Nuclear factor-?B: its role in health and disease. J Mol Med 82:434–448. https://doi.org/10.1007/s00109-004-0555-y

    Article  CAS  PubMed  Google Scholar 

  40. Lukac DM, Yuan Y (2007) Reactivation and lytic replication of KSHV. In: Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, pp 434–460

  41. Chakraborty S, Veettil MV, Chandran B (2012) Kaposi’s sarcoma associated herpesvirus entry into target cells. Front Microbiol 3:6. https://doi.org/10.3389/fmicb.2012.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Newton R, Labo N, Wakeham K et al (2018) Kaposi sarcoma-associated herpesvirus in a rural ugandan cohort, 1992–2008. J Infect Dis 217:263–269. https://doi.org/10.1093/infdis/jix569

    Article  CAS  PubMed  Google Scholar 

  43. Dedicoat M, Newton R, Alkharsah KR et al (2004) Mother-to-child transmission of human herpesvirus–8 in South Africa. J Infect Dis 190:1068–1075. https://doi.org/10.1086/423326

    Article  PubMed  Google Scholar 

  44. Tedeschi R, Enbom M, Bidoli E et al (2001) Viral load of human herpesvirus 8 in peripheral blood of human immunodeficiency virus-infected patients with Kaposi’s sarcoma. J Clin Microbiol 39:4269–4273. https://doi.org/10.1128/JCM.39.12.4269-4273.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu H, Liu L, Xiao J et al (2015) Glycosylation of KSHV encoded vGPCR functions in its signaling and tumorigenicity. Viruses 7:1627–1641. https://doi.org/10.3390/v7041627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiou C-J, Poole LJ, Kim PS et al (2002) Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi’s sarcoma-associated herpesvirus. J Virol 76:3421–3439. https://doi.org/10.1128/JVI.76.7.3421-3439.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hävemeier A, Gramolelli S, Pietrek M et al (2014) Activation of NF-κB by the Kaposi’s sarcoma-associated herpesvirus K15 protein involves recruitment of the NF-κB-inducing kinase, IκB kinases, and phosphorylation of p65. J Virol 88:13161–13172. https://doi.org/10.1128/JVI.01766-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wakeham K, Webb EL, Sebina I et al (2011) Parasite infection is associated with Kaposi’s sarcoma associated herpesvirus (KSHV) in Ugandan women. Infect Agent Cancer 6:15. https://doi.org/10.1186/1750-9378-6-15

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wakeham K, Webb EL, Sebina I et al (2013) Risk factors for seropositivity to Kaposi sarcoma-associated herpesvirus among children in Uganda. JAIDS J Acquir Immune Defic Syndr 63:228–233. https://doi.org/10.1097/QAI.0b013e31828a7056

    Article  PubMed  Google Scholar 

  50. Nalwoga A, Cose S, Wakeham K et al (2015) Association between malaria exposure and Kaposi’s sarcoma-associated herpes virus seropositivity in Uganda. Trop Med Int Heal 20:665–672. https://doi.org/10.1111/tmi.12464

    Article  CAS  Google Scholar 

  51. Nalwoga A, Cose S, Nash S et al (2018) Relationship between anemia, malaria coinfection, and kaposi sarcoma-associated herpesvirus seropositivity in a population-based study in Rural Uganda. J Infect Dis 218:1061–1065. https://doi.org/10.1093/infdis/jiy274

    Article  PubMed  PubMed Central  Google Scholar 

  52. Duprez R, Kassa-Kelembho E, Plancoulaine S et al (2005) Human herpesvirus 8 serological markers and viral load in patients with AIDS-associated Kaposi’s sarcoma in Central African Republic. J Clin Microbiol 43:4840–4843. https://doi.org/10.1128/JCM.43.9.4840-4843.2005

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zeng Y, Zhang X, Huang Z et al (2007) Intracellular tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus: role of JAK/STAT signaling. J Virol 81:2401–2417. https://doi.org/10.1128/JVI.02024-06

    Article  CAS  PubMed  Google Scholar 

  54. Varthakavi V, Smith RM, Deng H et al (2002) Human immunodeficiency virus type-1 activates lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus through induction of KSHV Rta. Virology 297:270–280. https://doi.org/10.1006/viro.2002.1434

    Article  CAS  PubMed  Google Scholar 

  55. Mercader M, Taddeo B, Panella JR et al (2000) Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am J Pathol 156:1961–1971. 10.1016/S0002-9440(10)65069-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cannon M, Cesarman E, Boshoff C (2006) KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood 107:277–284. https://doi.org/10.1182/blood-2005-06-2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grundhoff A, Ganem D (2004) Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 113:124–136. https://doi.org/10.1172/JCI17803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mesri EA, Cesarman E, Boshoff C (2010) Kaposi’s sarcoma herpesvirus/Human herpesvirus-8 (KSHV/HHV8), and the oncogenesis of Kaposi’s sarcoma. Nat Rev Cancer 10:707–719. https://doi.org/10.1038/nrc2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Montaner S, Sodhi A, Pece S et al (2001) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61:2641–2648

    CAS  PubMed  Google Scholar 

  60. Polizzotto MN, Uldrick TS, Hu D, Yarchoan R (2012) Clinical manifestations of Kaposi sarcoma herpesvirus lytic activation: multicentric Castleman disease (KSHV-MCD) and the KSHV inflammatory cytokine syndrome. Front Microbiol 3:73. https://doi.org/10.3389/fmicb.2012.00073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Lopes TRR and Gonçales JP are supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) fellowships. Silva Júnior J.V.J. is supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors thank all patients who accepted to participate of the study and the Program for Technological Development in Tools for HealthPDTIS-FIOCRUZ for use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosangela Cunha Duarte Coêlho.

Ethics declarations

Conflict of interest

There is no conflict of interest for this study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee. The study was approved by the Research Ethics Committee of the Health Sciences Center at the Federal University of Pernambuco (Protocol Number: 45156215.5.0000.5208). Informed consent was obtained from all participants included in the study.

Additional information

Edited by Matthias J. Reddehase.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçales, J.P., Lopes, T.R.R., de Lorena, V.M.B. et al. Association of NFκB and related-cytokines with the viral load and development of antibodies against HHV-8 in people living with HIV/AIDS. Med Microbiol Immunol 209, 41–49 (2020). https://doi.org/10.1007/s00430-019-00637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00637-2

Keywords

Navigation