Skip to main content
Log in

A novel quantitative PCR of proliferation markers (Ki-67, topoisomerase IIα, and TPX2): an immunohistochemical correlation, testing, and optimizing for mantle cell lymphoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

A clinical course of patients with mantle cell lymphoma (MCL) is aggressive, and the disease is rarely curable. Proliferation rate is the most important prognostic factor. We developed a novel, reliable, rapid, and routinely applicable approach allowing a precise quantitative assessment of three proliferation markers, Ki-67, topoisomerase IIα, and TPX2. A total of 95 lymphoma specimens were measured in the study by real-time reverse transcription PCR (RQ-RT-PCR). We tested the reproducibility and accuracy of the assay and correlated the results with the immunohistochemical staining of the corresponding proteins. The results obtained indicated individual variability of the mRNA expression levels, reflecting heterogeneity of the proliferation rate in individual patients. In general, we observed the highest mRNA expression in the group of Burkitt lymphomas and the lowest in patients with reactive lymphadenopathies. We found increased proliferation rate in MCLs with high cyclin D1 mRNA, indicating a quantitative control of the cell cycle. We observed a correlation between mRNA expression level and the immunohistochemical staining of corresponding proteins, which significantly argues for the prognostic significance of the mRNA expression measuring. We confirmed the accuracy of the current assay for a precise quantitative examination of the proliferation activity. Real-time RT-PCR provides a novel approach applicable for clinical trials, and it represents a potent approach allowing to stratify MCL patients for entry into clinical trials according to the expression of the proliferation signature genes in their tumors. This approach may contribute to improved and individualized therapeutic options respecting the individual progression risk of patients with MCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Swerdlow SH, Berger F, Isaacson PI et al (2001) Mantle cell lymphoma. In: Jaffe ES, Harris NC, Stein H, Vardiman JW (eds) Pathology and genetics of tumours of haematopoietic and lymphoid tissues, 1st edn. IARC, Lyon, pp 168–170

    Google Scholar 

  2. Weisenburger DD, Armitage JO (1996) Mantle cell lymphoma—an entity comes of age. Blood 87:4483–4494

    CAS  PubMed  Google Scholar 

  3. Bosch F, Lopez-Guillermo A, Campo E et al (1998) Mantle cell lymphoma: presenting features, response to therapy, and prognostic factors. Cancer 82:567–575

    Article  CAS  PubMed  Google Scholar 

  4. Campo E, Raffeld M, Jaffe ES (1999) Mantle-cell lymphoma. Semin Hematol 36:115–127

    CAS  PubMed  Google Scholar 

  5. Lenz G, Dreyling M, Hiddemann W (2004) Mantle cell lymphoma: established therapeutic options and future directions. Ann Hematol 83:71–77

    Article  CAS  PubMed  Google Scholar 

  6. Raty R, Franssila K, Joensuu H et al (2002) Ki-67 expression level, histological subtype, and the International Prognostic Index as outcome predictors in mantle cell lymphoma. Eur J Haematol 69:11–20

    Article  PubMed  Google Scholar 

  7. Tiemann M, Schrader C, Klapper W et al (2005) Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol 131:29–38

    Article  PubMed  Google Scholar 

  8. Ott G, Kalla J, Ott MM et al (1997) Blastoid variants of mantle cell lymphoma: frequent bcl-1 rearrangements at the major translocation cluster region and tetraploid chromosome clones. Blood 89:1421–1429

    CAS  PubMed  Google Scholar 

  9. Matutes E, Parry-Jones N, Brito-Babapulle V et al (2004) The leukemic presentation of mantle-cell lymphoma: disease features and prognostic factors in 58 patients. Leuk Lymphoma 45:2007–2015

    Article  CAS  PubMed  Google Scholar 

  10. Orchard J, Garand R, Davis Z et al (2003) A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood 101:4975–4981

    Article  CAS  PubMed  Google Scholar 

  11. Yatabe Y, Suzuki R, Tobinai K et al (2000) Significance of cyclin D1 overexpression for the diagnosis of mantle cell lymphoma: a clinicopathologic comparison of cyclin D1-positive MCL and cyclin D1-negative MCL-like B-cell lymphoma. Blood 95:2253–2261

    CAS  PubMed  Google Scholar 

  12. Levy V, Ugo V, Delmer A et al (1999) Cyclin D1 overexpression allows identification of an aggressive subset of leukemic lymphoproliferative disorder. Leukemia 13:1343–1351

    Article  CAS  PubMed  Google Scholar 

  13. Fu K, Weisenburger DD, Greiner TC et al (2005) Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood 106:4315–4321

    Article  CAS  PubMed  Google Scholar 

  14. Schrader C, Janssen D, Meusers P et al (2005) Repp 86: a new prognostic marker in mantle cell lymphoma. Eur J Haematol 75:498–504

    Article  CAS  PubMed  Google Scholar 

  15. Schrader C, Meusers P, Brittinger G et al (2004) Topoisomerase IIalpha expression in mantle cell lymphoma: a marker of cell proliferation and a prognostic factor for clinical outcome. Leukemia 18:1200–1206

    Article  CAS  PubMed  Google Scholar 

  16. Determann O, Hoster E, Ott G et al (2008) Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL Network and the German Low Grade Lymphoma Study Group. Blood 111:2385–2387

    Article  CAS  PubMed  Google Scholar 

  17. Hoster E, Dreyling M, Klapper W et al (2008) A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood 111:558–565

    Article  CAS  PubMed  Google Scholar 

  18. Rosenwald A, Wright G, Wiestner A et al (2003) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3:185–197

    Article  CAS  PubMed  Google Scholar 

  19. Friche E, Danks MK, Schmidt CA et al (1991) Decreased DNA topoisomerase II in daunorubicin-resistant Ehrlich ascites tumor cells. Cancer Res 51:4213–4218

    CAS  PubMed  Google Scholar 

  20. Deffie AM, Batra JK, Goldenberg GJ (1989) Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and -resistant P388 leukemia cell lines. Cancer Res 49:58–62

    CAS  PubMed  Google Scholar 

  21. Davies SM, Robson CN, Davies SL et al (1988) Nuclear topoisomerase II levels correlate with the sensitivity of mammalian cells to intercalating agents and epipodophyllotoxins. J Biol Chem 263:17724–17729

    CAS  PubMed  Google Scholar 

  22. Asano T, An T, Mayes J et al (1996) Transfection of human topoisomerase II alpha into etoposide-resistant cells: transient increase in sensitivity followed by down-regulation of the endogenous gene. Biochem J 319(Pt 1):307–313

    CAS  PubMed  Google Scholar 

  23. Korkolopoulou P, Vassilakopoulos TP (2004) Topoisomerase IIalpha as a prognostic factor in mantle cell lymphoma. Leukemia 18:1347–1349

    Article  CAS  PubMed  Google Scholar 

  24. Kodet R, Mrhalova M, Krskova L et al (2003) Mantle cell lymphoma: improved diagnostics using a combined approach of immunohistochemistry and identification of t(11;14)(q13;q32) by polymerase chain reaction and fluorescence in situ hybridization. Virchows Arch 442:538–547

    CAS  PubMed  Google Scholar 

  25. van Dongen JJ, Langerak AW, Bruggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317

    Article  PubMed  Google Scholar 

  26. Brizova H, Kalinova M, Krskova L et al (2008) Quantitative measurement of cyclin D1 mRNA, a potent diagnostic tool to separate mantle cell lymphoma from other B-cell lymphoproliferative disorders. Diagn Mol Pathol 17:39–50

    CAS  PubMed  Google Scholar 

  27. Lupberger J, Kreuzer KA, Baskaynak G et al (2002) Quantitative analysis of beta-actin, beta-2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR. Mol Cell Probes 16:25–30

    Article  CAS  PubMed  Google Scholar 

  28. Gerdes J, Lemke H, Baisch H et al (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715

    CAS  PubMed  Google Scholar 

  29. Woessner RD, Mattern MR, Mirabelli CK et al (1991) Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ 2:209–214

    CAS  PubMed  Google Scholar 

  30. Heidebrecht HJ, Adam-Klages S, Szczepanowski M et al (2003) repp 86: a human protein associated in the progression of mitosis. Mol Cancer Res 1:271–279

    CAS  PubMed  Google Scholar 

  31. Argatoff LH, Connors JM, Klasa RJ et al (1997) Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood 89:2067–2078

    CAS  PubMed  Google Scholar 

  32. Klapper W, Hoster E, Determann O et al (2009) Ki-67 as a prognostic marker in mantle cell lymphoma—consensus guidelines of the pathology panel of the European MCL Network. J Hematop 2:103–111

    Article  Google Scholar 

  33. Heidebrecht HJ, Buck F, Steinmann J et al (1997) p100: a novel proliferation-associated nuclear protein specifically restricted to cell cycle phases S, G2, and M. Blood 90:226–233

    CAS  PubMed  Google Scholar 

  34. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  CAS  PubMed  Google Scholar 

  35. Hartmann E, Fernandez V, Moreno V et al (2008) Five-gene model to predict survival in mantle-cell lymphoma using frozen or formalin-fixed, paraffin-embedded tissue. J Clin Oncol 26:4966–4972

    Article  PubMed  Google Scholar 

  36. Klier M, Anastasov N, Hermann A et al (2008) Specific lentiviral shRNA-mediated knockdown of cyclin D1 in mantle cell lymphoma has minimal effects on cell survival and reveals a regulatory circuit with cyclin D2. Leukemia 22:2097–2105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Internal grant of faculty hospital in Motol no. 9756, Grant GAUK 46/2006/C/2.LF, and the Research project of the Ministry of Health no. 00064203/6704. We thank Dr. W. Klapper and the late Prof. Dr. R. Parwaresh (Department of Hematopathology and Lymph Node Registry, University Hospitals of Schleswig-Holstein, Kiel, Germany) who kindly provided us a sample of the antibody Ki-S2 against TPX2.

Conflict of interests

The authors declare that they have no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Brizova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brizova, H., Kalinova, M., Krskova, L. et al. A novel quantitative PCR of proliferation markers (Ki-67, topoisomerase IIα, and TPX2): an immunohistochemical correlation, testing, and optimizing for mantle cell lymphoma. Virchows Arch 456, 671–679 (2010). https://doi.org/10.1007/s00428-010-0922-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-010-0922-8

Keywords