Skip to main content
Log in

Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Flavonol synthase (FLS) (EC-number 1.14.11.23), the enzyme that catalyses the conversion of flavonols into dihydroflavonols, is part of the flavonoid biosynthesis pathway. In Arabidopsis thaliana, this activity is thought to be encoded by several loci. In addition to the FLAVONOL SYNTHASE1 (FLS1) locus that has been confirmed by enzyme activity assays, loci displaying similarity of the deduced amino acid sequences to FLS1 have been identified. We studied the putative A. thaliana FLS gene family using a combination of genetic and metabolite analysis approaches. Although several of the FLS gene family members are expressed, only FLS1 appeared to influence flavonoid biosynthesis. Seedlings of an A. thaliana fls1 null mutant (fls1-2) show enhanced anthocyanin levels, drastic reduction in flavonol glycoside content and concomitant accumulation of glycosylated forms of dihydroflavonols, the substrate of the FLS reaction. By using a leucoanthocyanidin dioxygenase (ldox) fls1-2 double mutant, we present evidence that the remaining flavonol glycosides found in the fls1-2 mutant are synthesized in planta by the FLS-like side activity of the LDOX enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANR:

Anthocyanidin reductase

CHS:

Chalcone synthase

CHI:

Chalcone isomerase

DFR:

Dihydroflavonol 4-reductase

DHF:

Dihydroflavonol

DPBA:

Diphenylboric acid 2-aminoethylester

EBG:

Early biosynthetic gene

ESI:

Electro spray ionization

F3H:

Flavanone 3β-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

FLS:

Flavonol synthase

GT:

Glycosyltransferase

GUS:

β-Glucuronidase

GUS′:

Standardized specific β-glucuronidase activity

HPLC:

High performance liquid chromatography

HPTLC:

High performance thin layer chromatography

LBG:

Late biosynthetic gene

LC:

Liquid chromatography

LUC:

Luciferase

LDOX:

Leucoanthocyanidin dioxygenase

MS:

Mass spectrometry

MU:

4-Methylumbelliferone

PDA:

Photo-diode array

QTOF:

Quadrupole-time-of-flight

3GT:

Anthocyanidin 3-O-glycosyltransferase

References

  • Albert S, Delseny M, Devic M (1997) BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J 11:289–299

    Article  PubMed  CAS  Google Scholar 

  • Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122:107–116

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Cramer CL, Lamb CJ, Schuch W, Dixon RA (1986) l-Phenylalanine ammonia-lyase from Phaseolus vulgaris: modulation of the levels of active enzyme by trans-cinnamic acid. Planta 169:97–107

    Article  CAS  Google Scholar 

  • Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–2526

    Article  PubMed  CAS  Google Scholar 

  • Britsch L, Heller W, Grisebach H (1981) Conversion of flavanone to flavone, dihydroflavonol to flavonol with enzyme systems from cell cultures of parsley. Z Naturforsch C 36:742–750

    Google Scholar 

  • Britsch L, Dedio J, Saedler H, Forkmann G (1993) Molecular characterization of flavanone 3 beta-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem 217:745–754

    Article  PubMed  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Chua CS, Biermann D, Goo KS, Sim TS (2008) Elucidation of active site residues of Arabidopsis thaliana flavonol synthase provides a molecular platform for engineering flavonols. Phytochemistry 69:66–75

    Article  PubMed  CAS  Google Scholar 

  • Clifton IJ, McDonough MA, Ehrismann MD, Kershaw NJ, Granatino N, Schofield CJ (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded β-helix fold proteins. J Inorg Biochem 100:644–669

    Article  PubMed  CAS  Google Scholar 

  • De Vos RCH, Moco S, Lommen A, Keurentjes JJB, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2:778–791

    Article  PubMed  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Forkmann G (1991) Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed 106:1–26

    Article  CAS  Google Scholar 

  • Forkmann G, De Vlaming P, Spribille R, Wiering H, Schram AW (1986) Genetic and biochemical studies on the conversion of dihydroflavonols to flavonols in flowers of Petunia hybrida. Z Naturforsch C 41:179–186

    CAS  Google Scholar 

  • Hahlbrock K, Knobloch KH, Kreuzaler F, Potts JR, Wellmann E (1976) Coordinated induction and subsequent activity changes of two groups of metabolically interrelated enzymes. Light-induced synthesis of flavonoid glycosides in cell suspension cultures of Petroselinum hortense. Eur J Biochem 61:199–206

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  PubMed  CAS  Google Scholar 

  • Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171

    Article  PubMed  CAS  Google Scholar 

  • Heller W, Forkmann G (1994) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids. Chapman & Hall, London, pp 499–535

    Google Scholar 

  • Holton TA, Brugliera F, Tanaka Y (1993) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J 4:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Iwashina T (2003) Flavonoid function and activity to plants and other organisms. Biol Sci Space 17:24–44

    Article  PubMed  Google Scholar 

  • Jones P, Messner B, Nakajima J, Schaffner AR, Saito K (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278:43910–43918

    Article  PubMed  CAS  Google Scholar 

  • Keurentjes JJ, Fu J, De Vos RCH, Lommen A, Hall RD, Bino RJ, van der Plas LH, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nat Genet 38:842–849

    Article  PubMed  CAS  Google Scholar 

  • Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Le Gall G, DuPont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ (2003) Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J Agric Food Chem 51:2438–2446

    Article  PubMed  CAS  Google Scholar 

  • Leonard E, Yan Y, Koffas MA (2006) Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab Eng 8:172–181

    Article  PubMed  CAS  Google Scholar 

  • Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ 31:587–601

    Article  PubMed  CAS  Google Scholar 

  • Loake GJ, Choudhary AD, Harrison MJ, Mavandad M, Lamb CJ, Dixon RJ (1991) Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter. Plant Cell 3:829–840

    Article  PubMed  CAS  Google Scholar 

  • Lukacin R, Britsch L (1997) Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase. Eur J Biochem 249:748–757

    Article  PubMed  CAS  Google Scholar 

  • Lukacin R, Wellmann F, Britsch L, Martens S, Matern U (2003) Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Phytochemistry 62:287–292

    Article  PubMed  CAS  Google Scholar 

  • Markham KR (1989) Flavones, flavonols and their glycosides. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry. Academic Press, New York, pp 197–236

    Google Scholar 

  • Martens S, Forkmann G (1999) Cloning and expression of flavone synthase II from Gerbera hybrids. Plant J 20:611–618

    Article  PubMed  CAS  Google Scholar 

  • Martens S, Forkmann G, Matern U, Lukacin R (2001) Cloning of parsley flavone synthase I. Phytochemistry 58:43–46

    Article  PubMed  CAS  Google Scholar 

  • Martens S, Forkmann G, Britsch L, Wellmann F, Matern U, Lukacin R (2003) Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett 544:93–98

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  PubMed  CAS  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CHR (2006) A liquid chromatography–mass spectrometry-based metabolome database for tomato. J Plant Physiol 141:1205–1218

    Article  CAS  Google Scholar 

  • Myllylä R, Günzler V, Kivirikko KI, Kaska DD (1992) Modification of vertebrate and algal prolyl 4-hydroxylases and vertebrate lysyl hydroxylase by diethyl pyrocarbonate. Evidence for histidine residues in the catalytic site of 2-oxoglutarate-coupled dioxygenases. Biochem J 286:923–927

    PubMed  Google Scholar 

  • Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, Winkel BS (2008a) Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol 147:1046–1061

    Article  PubMed  CAS  Google Scholar 

  • Owens DK, Crosby KC, Runac J, Howard BA, Winkel BS (2008b) Biochemical and genetic characterization of Arabidopsis flavanone 3beta-hydroxylase. Plant Physiol Biochem 46:833–843

    Article  PubMed  CAS  Google Scholar 

  • Pelletier MK, Murrell JR, Shirley BW (1997) Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Plant Physiol 113:1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Pelletier MK, Burbulis IE, Shirley BW (1999) Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and endproducts in Arabidopsis seedlings. Plant Mol Biol 40:45–54

    Article  PubMed  CAS  Google Scholar 

  • Prescott AG, Stamford NPJ, Wheeler G, Firmin JL (2002) In vitro properties of a recombinant flavonol synthase from Arabidopsis thaliana. Phytochemistry 60:589–593

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchio F, Wing JF, Leppen HTC, Mol JNM, Koes RE (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchio F, Baudry A, Lepiniec L, Grotewold E (2006) The regulation of flavonoid biosynthesis. In: Grotewold E (ed) The science of flavonoids. Springer, Columbus, pp 97–122

    Chapter  Google Scholar 

  • Reddy AM, Reddy VS, Scheffler BE, Wienand U, Reddy AR (2007) Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab Eng 9:95–111

    Article  PubMed  CAS  Google Scholar 

  • Roach PL, Clifton IJ, Fulop V, Harlos K, Barton GJ, Hajdu J, Andersson I, Schofield CJ, Baldwin JE (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375:700–704

    Article  PubMed  CAS  Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    Article  PubMed  CAS  Google Scholar 

  • Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  PubMed  CAS  Google Scholar 

  • Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B (2000) Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem 381:749–753

    Article  PubMed  CAS  Google Scholar 

  • Sheahan JJ, Rechnitz GA (1992) Flavonoid-specific staining of Arabidopsis thaliana. Biotechniques 13:880–883

    PubMed  CAS  Google Scholar 

  • Sprenger-Haussels M, Weisshaar B (2000) Transactivation properties of parsley proline rich bZIP transcription factors. Plant J 22:1–8

    Article  PubMed  CAS  Google Scholar 

  • Spribille R, Forkmann G (1984) Conversion of dihydroflavonols to flavonols with enzyme extracts from flower buds of Matthiola incana R. Br Z Naturforsch C 39:714–719

    Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  PubMed  CAS  Google Scholar 

  • Tikunov Y, Lommen A, de Vos CH, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Turnbull JJ, Nagle MJ, Seibel JF, Welford RW, Grant GH, Schofield CJ (2003) The C-4 stereochemistry of leucocyanidin substrates for anthocyanidin synthase affects product selectivity. Bioorg Med Chem Lett 13:3853–3857

    Article  PubMed  CAS  Google Scholar 

  • Turnbull JJ, Nakajima J, Welford RW, Yamazaki M, Saito K, Schofield CJ (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3beta-hydroxylase. J Biol Chem 279:1206–1216

    Article  PubMed  CAS  Google Scholar 

  • van Eldik GJ, Reijnen WH, Ruiter RI, van Herpen MMA, Schrauwen JAM, Wullems GJ (1997) Regulation of flavonol biosynthesis during anther and pistil development, and during pollen tube growth in Solanum tuberosum. Plant J 11:105–113

    Article  PubMed  Google Scholar 

  • Welford RWD, Turnbull JJ, Claridge TDW, Prescott AG, Schofield CJ (2001) Evidence for oxidation at C-3 of the flavonoid C-ring during anthocyanin biosynthesis. Chem Commun 1828–1829

  • Wellmann F, Lukacin R, Moriguchi T, Britsch L, Schiltz E, Matern U (2002) Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. Eur J Biochem 269:4134–4142

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Wisman E, Hartmann U, Sagasser M, Baumann E, Palme K, Hahlbrock K, Saedler H, Weisshaar B (1998) Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate new phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci USA 95:12432–12437

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Chemler J, Huang L, Martens S, Koffas MA (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71:3617–3623

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Niida R, Saito K (2007) Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282:14932–14941

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Melanie Kuhlmann for excellent technical assistance and the Sequencing Core Facility at the Bielefeld University for doing an excellent job in determining DNA sequences. This project was funded in part by the EU project FLAVO (FOOD-CT-2004-513960) and the GABI program of the Bundesministerium für Bildung und Forschung (BMBF)/Projektträger Jülich (PTJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stracke.

Additional information

Nucleotide sequence database accession numbers: GenBank accession EU287457 and EU287459.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2008_841_MOESM1_ESM.pdf

Fig. S1 Multiple alignment of FLS polypeptides. Result from ClustalW2 multiple sequence alignment done at EMBL-EBI (http://www.ebi.ac.uk/Tools/clustalw2/) using default parameters (Chenna et al. 2003). Protein sequence data were obtained from GenBank (http://www.ncbi.nlm.nih.gov/): Petroselinum crispum PcFLS (AAP57395), Petunia x hybrida PhFLS (CAA80264), Solanum tuberosum StFLS (CAA63092), Eustoma grandiflorum EgFLS (AAF64168), Citrus unshiu CuFLS (BAA36554), Malus domestica MdFLS (AAX89401) and Camellia sinensis CsFLS (ABM88786). Amino acid residues, identical in all polypeptides are black boxed. Amino acids found at least in all polypeptides with proven FLS activity are marked in grey. The three regions of high similarity found in 2 oxoglutarate-dependent- and related enzymes (Britsch et al. 1993; Wellmann et al. 2002) are underlined. Amino acid residues, involved in iron binding (Myllylä et al. 1992; Britsch et al. 1993; Lukacin and Britsch 1997; Clifton et al. 2006) are marked with squares (■). The HxD...H motif, defining amino acids involved in 2 oxoglutarate binding (Britsch et al. 1993; Roach et al. 1995; Lukacin and Britsch 1997), is marked with circles (●). A diamond (♦) marks conserved amino acids of unknown function (Lukacin and Britsch 1997; Wellmann et al. 2002). At the bottom of the sequence alignment, the following symbols denote the degree of conservation in each column: (*) identical in all sequences, (:) conserved substitutions, (.) semi-conserved substitutions (PDF 337 kb)

425_2008_841_MOESM2_ESM.xls

Table S1 Summary of LC-PDA-QTOF-MS derived data showing differential metabolites in seedlings of analysed genotypes. Results of three independent biological samples are given. RT, retention time [min]; observed mass [m/z], averaged accurate mass ([M H] ), as mass-to-charge ratio; calc mass, calculated accurate mass; D mass [ppm], deviation between the averages of observed and calculated accurate masses, in parts per million; UV/Vis, absorbance maxima in the UV/Vis range (nd, not detectable absorbance); MS fragments, MS/MS fragments obtained through increased collision energy on indicated parent mass; mol formular, molecular formula of the metabolite; metabolite name, common name of putatively identified metabolite; mean, data represent means of results from the three given separate experiments; SD, standard deviation (XLS 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stracke, R., De Vos, R.C.H., Bartelniewoehner, L. et al. Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Planta 229, 427–445 (2009). https://doi.org/10.1007/s00425-008-0841-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0841-y

Keywords

Navigation