Skip to main content

Canonical transient receptor potential channel 2 (TRPC2): old name–new games. Importance in regulating of rat thyroid cell physiology

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In addition to the TSH-cyclic AMP signalling pathway, calcium signalling is of crucial importance in thyroid cells. Although the importance of calcium signalling has been thoroughly investigated for several decades, the nature of the calcium channels involved in signalling is unknown. In a recent series of investigations using the well-studied rat thyroid FRTL-5 cell line, we showed that these cells exclusively express the transient receptor potential canonical 2 (TRPC2) channel. Our results suggested that the TRPC2 channel is of significant importance in regulating thyroid cell function. These investigations were the first to show that thyroid cells express a member of the TRPC family of ion channels. In this review, we will describe the importance of the TRPC2 channel in regulating TSH receptor expression, thyroglobulin maturation, intracellular calcium and iodide homeostasis and that the channel also regulates thyroid cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297–328

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  3. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universtility of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  4. Bomben VC, Turner KL, Barclay TT, Sontheimer H (2011) Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. J Cell Physiol 226(7):1879–1888. doi:10.1002/jcp.22518

    Article  PubMed  CAS  Google Scholar 

  5. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339. doi:10.1016/j.cell.2007.11.039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Brann JH, Dennis JC, Morrisin EF, Fadool DA (2002) Type-specific inositol 1,4,5-trisphosphate receptor localization in the vomeronasal organ and its interaction with a transient receptor potential channel, TRPC2. J Neurochem 83:1452–1460

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Brennan PA, Zufall F (2006) Pheromonal communication in vertebrates. Nature 444:308–315

    Article  PubMed  CAS  Google Scholar 

  8. Cahalan MD (2009) STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11(6):669–677. doi:10.1038/ncb0609-669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Chu X, Cheung JY, Barber DL, Birnbaumer L, Rothblum LI, Conrad K, Abrasonis V, Chan YM, Stahl R, Carey DJ, Miller BA (2002) Erythropoietin modulates calcium influx through TRPC2. J Biol Chem 277:34375–34382

    Article  PubMed  CAS  Google Scholar 

  10. Colyer J (1998) Phosphorylation states of phospholamban. Ann N Y Acad Sci 853:79–91

    Article  PubMed  CAS  Google Scholar 

  11. Corda D, Marocci R, Kohn LD, Axelrod J, Luini A (1985) Association of the changes in cytosolic Ca and iodide efflux induced by thyrotropin and by the stimulation of alpha 1-adrenergic receptors in cultured rat thyroid cells. J Biol Chem 260:9230–9236

    PubMed  CAS  Google Scholar 

  12. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587(Pt 10):2275–2298. doi:10.1113/jphysiol.2009.170431

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Devuyst O, Golstein PE, Sanches MV, Piontek K, Wilson PD, Guggino WB, Dumont JE, Beauwens R (1997) Expression of CFTR in human and bovine thyroid epithelium. Am J Physiol 272(4 Pt 1):C1299–C1308

    PubMed  CAS  Google Scholar 

  14. Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Vaudry D, Ahidouch A, Sevestre H, Ouadid-Ahidouch H (2011) High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem 28(5):813–822. doi:10.1159/000335795

    Article  PubMed  CAS  Google Scholar 

  15. Di Jeso B, Formisano S, Ulianich L (1997) Perturbation of cellular calcium delays the secretion and alters the glycosylation of thyroglobulin in FRTL-5 cells. Biochem Biophys Res Commun 234(1):133–136. doi:10.1006/bbrc.1997.6601

    Article  PubMed  Google Scholar 

  16. Di Jeso B, Pereira R, Consiglio E, Formisano S, Satrustegui J, Sandoval IV (1998) Demonstration of a Ca2+ requirement for thyroglobulin dimerization and export to the golgi complex. Eur J Biochem 252:583–590

    Article  PubMed  Google Scholar 

  17. Di Jeso B, Ulianich L, Pacifico F, Leonardi A, Vito P, Consiglio E, Formisano S, Arvan P (2003) Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum. Biochem J 370(Pt 2):449–458. doi:10.1042/bj20021257

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dibattista M, Amjad A, Maurya DK, Sagheddu C, Montani G, Tirindelli R, Menini A (2012) Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons. J Gen Physiol 140(1):3–15. doi:10.1085/jgp.201210780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Dulac C, Kimchi T (2007) Neural mechanisms underlying sex-specific behaviours in vertebrates. Curr Opin Neurobiol 17:675–683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Duran C, Qu Z, Osunkoya AO, Cui Y, Hartzell HC (2012) ANOs 3-7 in the anoctamin/Tmem16 Cl- channel family are intracellular proteins. Am J Physiol 302(3):C482–C493. doi:10.1152/ajpcell.00140.2011

    Article  CAS  Google Scholar 

  21. Ekokoski E, Webb TE, Simon J, Törnquist K (2001) Mechanism of P2 receptor-evoked DNA synthesis in thyroid FRTL-5 cells. J Cell Physiol 187:166–175

    Article  PubMed  CAS  Google Scholar 

  22. Evans MG, Marty A (1986) Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. J Physiol 378:437–460

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Fiorio Pla A, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25(10):2687–2701. doi:10.1523/jneurosci.0951-04.2005

    Article  PubMed  Google Scholar 

  24. Fong P (2011) Thyroid iodide efflux: a team effort? J Physiol 589(Pt 24):5929–5939. doi:10.1113/jphysiol.2011.218594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Gailly P, Colson-Van Schoor M (2001) Involvement of trp-2 protein in store-operated influx of calcium in fibroblasts. Cell Calcium 30:157–165

    Article  PubMed  CAS  Google Scholar 

  26. Gratschev D, Blom T, Björklund S, Törnquist K (2004) Phosphatase inhibition unmasks a calcium entry pathway dependent on protein kinase A in thyroid FRTL-5 cells. Comparison with store-operated calcium entry. J Biol Chem 279:49816–49824

    Article  PubMed  CAS  Google Scholar 

  27. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6(8):837–845. doi:10.1038/nn1092

    Article  PubMed  CAS  Google Scholar 

  28. Hartzell HC, Yu K, Xiao Q, Chien LT, Qu Z (2009) Anoctamin/TMEM16 family members are Ca2+-activated Cl channels. J Physiol 587(Pt 10):2127–2139. doi:10.1113/jphysiol.2008.163709

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Hay JC (2007) Calcium: a fundamental regulator of intracellular membrane fusion? EMBO Rep 8(3):236–240. doi:10.1038/sj.embor.7400921

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701. doi:10.1038/nrm2476

    Article  PubMed  CAS  Google Scholar 

  31. Hofmann T, Schaefer M, Schultz G, Gudermann T (2000) Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2. Biochem J 351:115–122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Huang GN, Zeng W, Kim JY, Yan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC I (CRAC) and TRPC1 channels. Nat Cell Biol 8:1003–1010

    Article  PubMed  CAS  Google Scholar 

  33. Iacovelli L, Capobianco L, Salvatore L, Sallese M, D'Ancona GM, De Blasi A (2001) Thyrotropin activates mitogen-activated protein kinase pathway in FRTL-5 by a cAMP-dependent protein kinase A-independent mechanism. Mol Pharmacol 60(5):924–933

    PubMed  CAS  Google Scholar 

  34. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates Ca2+ entry into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502

    Article  PubMed  CAS  Google Scholar 

  35. Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448:1009–1014

    Article  PubMed  CAS  Google Scholar 

  36. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP (2001) Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 22(5):631–656. doi:10.1210/edrv.22.5.0444

    Article  PubMed  CAS  Google Scholar 

  37. Kuang CY, Yu Y, Wang K, Qian DH, Den MY, Huang L (2012) Knockdown of transient receptor potential canonical-1 reduces the proliferation and migration of endothelial progenitor cells. Stem Cells Dev 21(3):487–496. doi:10.1089/scd.2011.0027

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99:6376–6381

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A 96(10):5791–5796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241. doi:10.1016/j.cub.2005.05.055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Löf C, Sukumaran P, Viitanen T, Vainio M, Kemppainen K, Pulli I, Näsman J, Kukkonen JP, öornquist K (2012) Communication between the calcium and cAMP pathways regulate the expression of the TSH receptor: TRPC2 in the center of action. Mol Endocrinol (Baltimore, Md) 26(12):2046–2057. doi:10.1210/me.2012-1171

    Article  Google Scholar 

  42. Louis M, Zanou N, Van Schoor M, Gailly P (2008) TRPC1 regulates skeletal myoblast migration and differentiation. J Cell Sci 121(Pt 23):3951–3959. doi:10.1242/jcs.037218

    Article  PubMed  CAS  Google Scholar 

  43. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pehromone transduction. Neuron 40:551–561

    Article  PubMed  CAS  Google Scholar 

  44. Marcocci C, Luini A, Santisteban P, Grollman EF (1987) Norepinephrine and thyrotropin stimulation of iodide efflux in FRTL-5 thyroid cells involves metabolites of arachidonic acid and is associated with the iodination of thyroglobulin. Endocrinology 120:1127–1133

    Article  PubMed  CAS  Google Scholar 

  45. Martin SC (1992) ATP activates a Ca2+-dependent Cl- current in the rat thyroid cell line, FRTL-5. J Membr Biol 125:243–253

    Article  PubMed  CAS  Google Scholar 

  46. Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Gen Biol 12(3):218. doi:10.1186/gb-2011-12-3-218

    Article  CAS  Google Scholar 

  47. Okajima F, Tokumitsu Y, Kondo Y, Ui M (1987) P2-purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J Biol Chem 262(28):13483–13490

    PubMed  CAS  Google Scholar 

  48. Pesce L, Bizhanova A, Caraballo JC, Westphal W, Butti ML, Comellas A, Kopp P (2012) TSH regulates pendrin membrane abundance and enhances iodide efflux in thyroid cells. Endocrinology 153(1):512–521. doi:10.1210/en.2011-1548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Phay JE, Ringel MD (2013) Metastatic mechanisms in follicular cell-derived thyroid cancer. Endocrine-Rel Canc 20(6):R307–R319. doi:10.1530/erc-13-0187

    Article  CAS  Google Scholar 

  50. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233. doi:10.1038/nature05122

    Article  PubMed  CAS  Google Scholar 

  51. Prevarskaya N, Skryma R, Shuba Y (2011) Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer 11:609–618

    Article  PubMed  CAS  Google Scholar 

  52. Qu Z, Hartzell HC (2000) Anion permeation in Ca(2+)-activated Cl(−) channels. J Gen Physiol 116(6):825–844

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Raspé E, Dumont JE (1994) Control of dog thyrocyte plasma membrane iodide permeability by the Ca2+-phosphatidylinositol and adenosine 3′,5′-monophosphate cascades. Endocrinology 135:989–995

    Google Scholar 

  54. Raspé E, Laurent E, Corvilain Erjans B, Erneux C, Dumont JE (1991) Control of intracellular Ca2+-concentration and the inositol phosphate accumulation in dog thyrocyte primary culture: evidence for different kinetics of Ca2+-phosphatidylinositol cascade activation and for involvement in the regulation of H2O2. J Cell Physiol 146:242–250

    Article  PubMed  Google Scholar 

  55. Raspe' E, Laurent E, Andry G, Dumont JE (1991) ATP, bradykinin, TRH and TSH activates the Ca2+-phosphatidylinositol cascade of human thyrocytes in primary culture. Mol Cell Endocrinol 81:175–183

    Article  Google Scholar 

  56. Rigutto S, Hoste C, Grasberger H, Milenkovic M, Communi D, Dumont JE, Corvilain B, Miot F, De Deken X (2009) Activation of dual oxidases Duox1 and Duox2. Differential regulation mediated by cAMP-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem 284:6725–6734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Rivas M, Mellström B, Naranjo JR, Santisteban P (2004) Transcriptional repressor DREAM interacts with thyroid transcription factor-1 and regulates thyroglobulin gene expression. J Biol Chem 279:33114–33122

    Article  PubMed  CAS  Google Scholar 

  58. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445. doi:10.1083/jcb.200502019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Saji M, Ikuyama S, Akamizu T, Kohn LD (1991) Increases in cytosolic Ca++ down regulates thyrotropin receptor gene expression by a mechanism different from the cAMP signal. Biochem Biophys Res Commun 176:94–101

    Article  PubMed  CAS  Google Scholar 

  60. Schaefer M (2005) Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 451(1):35–42. doi:10.1007/s00424-005-1467-6

    Article  PubMed  CAS  Google Scholar 

  61. Sho K, Okajima F, Akiyama H, Shoda Y, Kobayashi I, Kondo Y (1989) Requirement of insulin growth factor I plus hydrocortisone for the regeneration of thyrotropin (TSH)-dependent mechanism of I efflux and Ca2+ mobilization in FRTL-5 cells during TSH depletion. Endocrinology 124:598–604

    Article  PubMed  CAS  Google Scholar 

  62. Sho K, Okajima F, Majid MA, Kondo Y (1991) Reciprocal modulation of thyrotropin actions by P1-purinergic agonists in FRTL-5 thyroid cells. Inhibition of cAMP pathway and stimulation of phospholipase C-Ca2+ pathway. J Biol Chem 266:12180–12184

    PubMed  CAS  Google Scholar 

  63. Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for trp2. Science 295:1493–1500

    Article  PubMed  CAS  Google Scholar 

  64. Sukumaran P, Löf C, Kemppainen K, Kankaanpää P, Pulli I, Näsman J, Viitanen T, Törnquist K (2012) Canonical transient receptor potential channel 2 (TRPC2) as a major regulator of calcium homeostasis in rat thyroid FRTL-5 cells: importance of protein kinase C delta (PKCdelta) and stromal interaction molecule 2 (STIM2). J Biol Chem 287(53):44345–44360. doi:10.1074/jbc.M112.374348

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Sukumaran P, Löf C, Pulli I, Kemppainen K, Viitanen T, Törnquist K (2013) Significance of the transient receptor potential canonical 2 (TRPC2) channel in the regulation of rat thyroid FRTL-5 cell proliferation, migration, adhesion and invasion. Mol Cell Endocrinol 374(1–2):10–21. doi:10.1016/j.mce.2013.03.026

    Article  PubMed  CAS  Google Scholar 

  66. Sutton KA, Jungenickel MK, Wang Y, Cullen K, Lambert S, Florman HM (2004) Enkurin is a novel calmodulin and TRPC channel biinding protein in sperm. Dev Biol 274:426–435

    Article  PubMed  CAS  Google Scholar 

  67. Tajeddine N, Gailly P (2012) TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling. J Biol Chem 287(20):16146–16157. doi:10.1074/jbc.M112.340034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Takada K, Amino N, Tada H, Miyai K (1990) Relationship between proliferation and cell cycle-dependent Ca2+ influx induced by a combination of thyrotropin and insulin-like growth factor-1 in rat thyroid cells. J Clin Invest 86:1548–1555

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Takasu N, Murakami M, Nagasawa Y, Yamada T, Shimizu Y, Kojima I, Ogata E (1987) BAY-K-8644, a calcium channel agonist, induces a rise in cytoplasmic free calcium and iodide discharge in thyroid cells. Biochem Biophys Res Commun 143(3):1107–1111

    Article  PubMed  CAS  Google Scholar 

  70. Tang J, Lin Y, Zhang Z, Tikunov S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxy termini of trp channnels. J Biol Chem 276:21303–21310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Tong Q, Chu X, Cheung JY, Conrad K, Stahl R, Barber DL, Mignery G, Miller BA (2004) Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase Cgamma and IP3R. Am J Physiol 287:C1667–C1678

    Article  CAS  Google Scholar 

  72. Törnquist K (1992) Evidence for receptor-mediated calcium entry and refilling of intracellular calcium stores in FRTL-5 rat thyroid cells. J Cell Physiol 150:90–98

    Article  PubMed  Google Scholar 

  73. Törnquist K (1993) Modulatory effect of protein kinase C on thapsigargin-induced calcium entry in FRTL-5 cells. Biochem J 290:443–447

    PubMed  PubMed Central  Google Scholar 

  74. Törnquist K, Ekokoski E, Dugué B (1996) ATP functions as a comitogen in thyroid FRTL-5 cells. J Cell Physiol 166:241–248

    Article  PubMed  Google Scholar 

  75. Törnquist K, Saarinen P, Vainio M, Ahlström M (1997) Sphingosine 1-phosphate mobilizes sequestered calcium, activates calcium entry, and stimulates DNA synthesis in thyroid FRTL-5 cells. Endocrinology 138:4049–4057

    PubMed  Google Scholar 

  76. Twyffels L, Massart C, Golstein PE, Raspe E, Van Sande J, Dumont JE, Beauwens R, Kruys V (2011) Pendrin: the thyrocyte apical membrane iodide transporter? Cell Physiol Biochem 28(3):491–496. doi:10.1159/000335110

    Article  PubMed  CAS  Google Scholar 

  77. Usachev YM, Marsh AJ, Johanns TM, Lemke MM, Thayer SA (2006) Activation of protein kinase C in sensory neurons accelerates Ca2+ uptake into the endoplasmic reticulum. J Neurosci 26(1):311–318. doi:10.1523/jneurosci.2920-05.2006

    Article  PubMed  CAS  Google Scholar 

  78. van den Hove MF, Croizet-Berger K, Jouret F, Guggino SE, Guggino WB, Devuyst O, Courtoy PJ (2006) The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology 147(3):1287–1296. doi:10.1210/en.2005-1149

    Article  PubMed  Google Scholar 

  79. Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96:2060–2064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Plant Physiol Plant Mol Biol 76:387–417. doi:10.1146/annurev.biochem.75.103004.142819

    CAS  Google Scholar 

  81. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223. doi:10.1126/science.1127883

    Article  PubMed  CAS  Google Scholar 

  82. Viitanen TM, Sukumaran P, Lof C, Tornquist K (2013) Functional coupling of TRPC2 cation channels and the calcium-activated anion channels in rat thyroid cells: implications for iodide homeostasis. J Cell Physiol 228(4):814–823. doi:10.1002/jcp.24230

    Article  PubMed  CAS  Google Scholar 

  83. Villone G, De Amicis F, Veneziani BM, Salzano S, Di Carlo A, Tramontano D (1997) Sustained versus transient cyclic AMP intracellular levels: effect on thyrotropin-dependent growth of thyroid cells. Cell Growth Diff 8(11):1181–1188

    PubMed  CAS  Google Scholar 

  84. Weiss S, Philp NJ, Grollman EF (1984) Iodide transport in a continuous line of cultured cells from rat thyroid. Endocrinology 114:1090–1098

    Article  PubMed  CAS  Google Scholar 

  85. Weiss SJ, Philp NJ, Grollman EF (1984) Effect of thyrotropin on iodide efflux in FRTL-5 cells mediated by Ca. Endocrinology 114:1108–1113

    Article  PubMed  CAS  Google Scholar 

  86. Wildi-Runge S, Stoppa-Vaucher S, Lambert R, Turpin S, Van Vliet G, Deladoey J (2012) A high prevalence of dual thyroid ectopy in congenital hypothyroidism: evidence for insufficient signaling gradients during embryonic thyroid migration or for the polyclonal nature of the thyroid gland? J Clin Endocrinol Metab 97(6):E978–E981. doi:10.1210/jc.2011-3156

    Article  PubMed  CAS  Google Scholar 

  87. Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87(3):965–1010. doi:10.1152/physrev.00049.2006

    Article  PubMed  CAS  Google Scholar 

  88. Yang SL, Cao Q, Zhou KC, Feng YJ, Wang YZ (2009) Transient receptor potential channel C3 contributes to the progression of human ovarian cancer. Oncogene 28(10):1320–1328. doi:10.1038/onc.2008.475

    Article  PubMed  CAS  Google Scholar 

  89. Yildirim E, Birnbaumer L (2007) TRPC2: molecular biology and functional importance. Handb Exp Pharmacol 179:51–73

    Google Scholar 

  90. Yildirim E, Dietrich A, Birnbaumer L (2003) The mouse C-type transient receptor potential2 (TRPC2) channel: alternative splicing and calmodulin binding to its N terminus. Proc Natl Acad Sci U S A 100:2220–2225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Yoshida A, Hattori K, Hisatome I, Taniguchi S, Ueta Y, Hukui H, Santo Y, Igawa O, Shigemasa C, Kosugi S, Grollman EF (1999) A TSH/dibutyryl cAMP activated Cl-/I- channel in FRTL-5 cells. Biochem Biophys Res Commun 259(3):631–635. doi:10.1006/bbrc.1999.0836

    Article  PubMed  CAS  Google Scholar 

  92. Yu K, Zhu J, Qu Z, Cui YY, Hartzell HC (2014) Activation of the Ano1 (TMEM16A) chloride channel by calcium is not mediated by calmodulin. J Gen Physiol 143(2):253–267. doi:10.1085/jgp.201311047

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Schwar MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789

    Article  PubMed  CAS  Google Scholar 

  94. Yue D, Wang Y, Xiao JY, Wang P, Ren CS (2009) Expression of TRPC6 in benign and malignant human prostate tissues. Asian J Androl 11(5):541–547. doi:10.1038/aja.2009.53

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Zhang J, Webb DM (2003) Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl Acad Sci U S A 14:8337–8341. doi:10.1073/pnas.1331721100

    Article  Google Scholar 

Download references

Acknowledgments

There exists an extensive literature both on thyroid function and on TRPC channel physiology. We apologize to all our colleagues whose work we have not been able to cite due to space restriction. The studies emanating from the Törnquist lab were generously supported by the Academy of Finland, the Sigrid Juselius Foundation, the Minerva Foundation, the Centre of Excellence in Cell Stress and Molecular Ageing (Åbo Akademi University), the Magnus Ehrnrooth Foundation, the Borg Foundation, the K. Albin Johansson Foundation and the Oscar Öflund Foundation, which are gratefully acknowledged.

Conflict of interest

The authors declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kid Törnquist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Törnquist, K., Sukumaran, P., Kemppainen, K. et al. Canonical transient receptor potential channel 2 (TRPC2): old name–new games. Importance in regulating of rat thyroid cell physiology. Pflugers Arch - Eur J Physiol 466, 2025–2034 (2014). https://doi.org/10.1007/s00424-014-1509-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1509-z

Keywords