Abstract
Purpose
The purpose of this study was to characterize the local pulmonary inflammatory environment and to elucidate alterations of alveolar macrophage (AMØ) functions after blunt chest trauma.
Methods
Wistar rats were subjected to blunt chest trauma. AMØ were isolated, stimulated, and cultured. Bronchoalveolar lavage (BAL) was collected. Cytokines/chemokines were quantified in the BAL and in AMØ supernatants via ELISA. AMØ phagocytic and chemotactic activity and respiratory burst capacity were assessed.
Results
Following chest trauma, a significant increase of IL-1β (at 6 and 24 h) and IL-6 (at 24 h) in BAL was observed, whereas IL-10 and TNF-α concentrations were not altered. MIP-2 and CINC were substantially increased as early as 6 h and PGE2 early at 10 min, whereas BAL MCP-1 was not elevated until 24 h after trauma. MIP-2 release by AMØ isolated form trauma animals was markedly increased as early as 10 min after injury. IL-1β and IL-10 exhibited a late increase at 24 h. AMØ TNF-α release was increased at 6 h. At 6 or 24 h, AMØ from trauma animals incorporated significantly more opsonized latex beads than their sham controls, and their chemotactic activity was substantially enhanced at 24 h. AMØ oxidative burst capacity remained largely unchanged.
Conclusions
Already very early after chest trauma, inflammatory mediators are present in the intraalveolar compartment. Additionally, AMØ are primed to release cytokines and chemokines. Blunt chest trauma also changes the phagocytic and chemotactic activity of AMØ. These functional changes of AMØ might enable them to better ward off potential pathogens in the course after trauma.
Similar content being viewed by others
References
Minino AM, Heron MP, Smith BL (2006) Deaths: preliminary data for 2004. Natl Vital Stat Rep 54(19):1–49
Boyd AD, Glassman LR (1997) Trauma to the lung. Chest Surg Clin N Am 7(2):263–284
Trupka A, Nast-Kolb D, Schweiberer L (1998) Thoracic trauma. Unfallchirurg 101(4):244–258
Pepe PE, Potkin RT, Reus DH, Hudson LD, Carrico CJ (1982) Clinical predictors of the adult respiratory distress syndrome. Am J Surg 144(1):124–130
Miller PR, Croce MA, Bee TK, Qaisi WG, Smith CP, Collins GL, Fabian TC (2001) ARDS after pulmonary contusion: accurate measurement of contusion volume identifies high-risk patients. J Trauma 51(2):223–228
Perl M, Gebhard F, Brückner UB, Ayala A, Braumüller S, Büttner C, Kinzl L, Knöferl MW (2005) Pulmonary contusion causes impairment of macrophage and lymphocyte immune functions and increases mortality associated with a subsequent septic challenge. Crit Care Med 33(6):1351–1358
Perl M, Gebhard F, Braumüller S, Tauchmann B, Brückner UB, Kinzl L, Knöferl MW (2006) The pulmonary and hepatic immune microenvironment and its contribution to the early systemic inflammation following blunt chest trauma. Crit Care Med 34(4):1152–1159
Knöferl MW, Liener U, Seitz D, Perl M, Brückner UB, Kinzl L, Gebhard F (2003) Cardiopulmonary, histological and inflammatory alterations following lung contusion in a novel mouse model of blunt chest trauma. Shock 19(6):519–525
Knöferl MW, Liener UC, Perl M, Brückner UB, Kinzl L, Gebhard F (2004) Blunt chest trauma induces delayed splenic immunosuppression. Shock 22(1):51–56
Liener UC, Knöferl MW, Sträter J, Barth TF, Pauser EM, Nüssler AK, Kinzl L, Brückner UB, Gebhard F (2003) Induction of apoptosis following blunt chest trauma. Shock 20(6):511–516
Seitz DH, Perl M, Mangold S, Neddermann A, Braumüller ST, Zhou S, Bachem MG, Huber-Lang MS, Knöferl MW (2008) Pulmonary contusion induces alveolar type 2 epithelial cell apoptosis: role of alveolar macrophages and neutrophils. Shock 30(5):537–544
Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89
Huber-Lang M, Sarma VJ, Lu KT, McGuire SR, Padgaonkar VA, Guo RF, Younkin EM, Kunkel RG, Ding J, Erickson R, Curnutte JT, Ward PA (2001) Role of C5a in multiorgan failure during sepsis. J Immunol 166(2):1193–1199
Huber-Lang MS, Younkin EM, Sarma JV, McGuire SR, Lu KT, Guo RF, Padgaonkar VA, Curnutte JT, Erickson R, Ward PA (2002) Complement-induced impairment of innate immunity during sepsis. J Immunol 169(6):3223–3231
Czermak BJ, Sarma V, Pierson CL, Warner RL, Huber-Lang M, Bless NM, Schmal H, Friedl HP, Ward PA (1999) Protective effects of C5a blockade in sepsis. Nat Med 5(7):788–792
Gibbs DF, Warner RL, Weiss SJ, Johnson KJ, Varani J (1999) Characterization of matrix metalloproteinases produced by rat alveolar macrophages. Am J Respir Cell Mol Biol 20(6):1136–1144
Sibille Y, Reynolds HY (1990) Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141(2):471–501
Souza AL Jr, Poggetti RS, Fontes B, Birolini D (2000) Gut ischemia/reperfusion activates lung macrophages for tumor necrosis factor and hydrogen peroxide production. J Trauma 49(2):232–236
Fels AO, Cohn ZA (1986) The alveolar macrophage. J Appl Physiol 60(2):353–369
Davis KA, Fabian TC, Croce MA, Proctor KG (1999) Prostanoids: early mediators in the secondary injury that develops after unilateral pulmonary contusion. J Trauma 46(5):824–831
Hellinger A, Konerding MA, Malkusch W, Obertacke U, Redl H, Bruch J, Schlag G (1995) Does lung contusion affect both the traumatized and the noninjured lung parenchyma? A morphological and morphometric study in the pig. J Trauma 39(4):712–719
Obertacke U, Neudeck F, Majetschak M, Hellinger A, Kleinschmidt C, Schade FU, Hogasen K, Jochum M, Strohmeier W, Thurnher M, Redl H, Schlag G (1998) Local and systemic reactions after lung contusion: an experimental study in the pig. Shock 10(1):7–12
Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349
Keel M, Ecknauer E, Stocker R, Ungethum U, Steckholzer U, Kenney J, Gallati H, Trentz O, Ertel W (1996) Different pattern of local and systemic release of proinflammatory and anti-inflammatory mediators in severely injured patients with chest trauma. J Trauma 40(6):907–912
Gebhard F, Kelbel MW, Strecker W, Kinzl L, Brückner UB (1997) Chest trauma and its impact on the release of vasoactive mediators. Shock 7(5):313–317
Strecker W, Gebhard F, Rager J, Steinbach G, Ring C, Perl M, Kinzl L, Beck A (2002) Interleukin-6 (IL-6) - an early marker of chest trauma. Eur J Trauma 28:75–84
Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Brückner UB (2000) Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg 135(3):291–295
Mauel J, Ransijn A, Corradin SB, Buchmuller-Rouiller Y (1995) Effect of PGE2 and of agents that raise cAMP levels on macrophage activation induced by IFN-gamma and TNF-alpha. J Leukoc Biol 58(2):217–224
Melton SM, Davis KA, Moomey CB Jr, Fabian TC, Proctor KG (1999) Mediator-dependent secondary injury after unilateral blunt thoracic trauma. Shock 11(6):396–402
Ayala A, Chung CS, Song GY, Chaudry IH (2001) IL-10 mediation of activation-induced TH1 cell apoptosis and lymphoid dysfunction in polymicrobial sepsis. Cytokine 14(1):37–48
Eppinger MJ, Ward PA, Bolling SF, Deeb GM (1996) Regulatory effects of interleukin-10 on lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 112(5):1301–1305
Shanley TP, Vasi N, Denenberg A (2000) Regulation of chemokine expression by IL-10 in lung inflammation. Cytokine 12(7):1054–1064
Muehlstedt SG, Lyte M, Rodriguez JL (2002) Increased IL-10 production and HLA-DR suppression in the lungs of injured patients precede the development of nosocomial pneumonia. Shock 17(6):443–450
Song GY, Chung CS, Chaudry IH, Ayala A (1999) What is the role of interleukin 10 in polymicrobial sepsis: anti-inflammatory agent or immunosuppressant? Surgery 126(2):378–383
Grattendick K, Stuart R, Roberts E, Lincoln J, Lefkowitz SS, Bollen A, Moguilevsky N, Friedman H, Lefkowitz DL (2002) Alveolar macrophage activation by myeloperoxidase: a model for exacerbation of lung inflammation. Am J Respir Cell Mol Biol 26(6):716–722
Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127
Martin TR (2008) Interactions between mechanical and biological processes in acute lung injury. Proc Am Thorac Soc 5(3):291–296
Iwaki M, Ito S, Morioka M, Iwata S, Numaguchi Y, Ishii M, Kondo M, Kume H, Naruse K, Sokabe M, Hasegawa Y (2009) Mechanical stretch enhances IL-8 production in pulmonary microvascular endothelial cells. Biochem Biophys Res Commun 389(3):531–536
Cox G, Crossley J, Xing Z (1995) Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol 12(2):232–237
Call DR, Nemzek JA, Ebong SJ, Bolgos GR, Newcomb DE, Wollenberg GK, Remick DG (2001) Differential local and systemic regulation of the murine chemokines KC and MIP2. Shock 15(4):278–284
Teodorczyk-Injeyan JA, Cembrzynska-Nowak M, Lalani S, Peters WJ, Mills GB (1995) Immune deficiency following thermal trauma is associated with apoptotic cell death. J Clin Immunol 15(6):318–328
Borges VM, Vandivier RW, McPhillips KA, Kench JA, Morimoto K, Groshong SD, Richens TR, Graham BB, Muldrow AM, Van HL, Henson PM, Janssen WJ (2009) TNFalpha inhibits apoptotic cell clearance in the lung, exacerbating acute inflammation. Am J Physiol Lung Cell Mol Physiol 297(4):L586–L595
Acknowledgements
We thank Sonja Braumüller for excellent technical assistance during the experimental procedures and data acquisition.
Authors’ Contributions
Study conception and design: Ulrich C. Liener, Mario Perl, Markus W. Knöferl, Uwe B. Brückner, Florian Gebhard, Markus S. Huber-Lang
Acquisition of data: Ulrich C. Liener, Mario Perl
Analysis and interpretation of data: Ulrich C. Liener, Mario Perl, Markus W. Knöferl, Uwe B. Brückner, Florian Gebhard, Markus S. Huber-Lang
Drafting of manuscript: Ulrich C. Liener, Mario Perl, Markus W. Knöferl, Daniel H. Seitz
Critical revision of manuscript: Ulrich C. Liener, Mario Perl, Markus W. Knöferl, Daniel H. Seitz, Uwe B. Brückner, Florian Gebhard, Markus S. Huber-Lang
Author information
Authors and Affiliations
Corresponding author
Additional information
Ulrich C. Liener and Mario Perl contributed equally to the manuscript.
This study was supported by grants of the Deutsche Forschungsgemeinschaft (DFG) to UCL and FG (GE 1105/1-1) to MP (PE-908/2-1) and MWK (KN 475/5-1, DFG KFO-200).
Rights and permissions
About this article
Cite this article
Liener, U.C., Perl, M., Huber-Lang, M.S. et al. Is the function of alveolar macrophages altered following blunt chest trauma?. Langenbecks Arch Surg 396, 251–259 (2011). https://doi.org/10.1007/s00423-010-0645-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00423-010-0645-y