Abstract
Amblyopia is a neurodevelopmental disorder characterized by functional deficits in the visual cortex. Functional magnetic resonance imaging (fMRI) is the most commonly used neuroimaging technique for investigating amblyopia. Herein, we systematically searched a PubMed database from inception to December 2021 to highlight the current progress and promises about fMRI technology in amblyopia; amblyopia’s neural mechanism, the comparison of different types of amblyopia, and the evaluation of the therapeutic effect were explored. Relevant articles published in English and appropriate cross-references were considered for inclusion, including basic studies, imaging techniques, clinical diagnostic and therapeutic studies, case series, and reviews.
Similar content being viewed by others
References
Meier K, Giaschi D (2017) Unilateral amblyopia affects two eyes: fellow eye deficits in amblyopia. Invest Ophthalmol Vis Sci 58:1779–1800. https://doi.org/10.1167/iovs.16-20964
Liang M, Xie B, Yang H, Yu L, Yin X, Wei L, Wang J (2016) Distinct patterns of spontaneous brain activity between children and adults with anisometropic amblyopia: a resting-state fMRI study. Graefes Arch Clin Exp Ophthalmol 254:569–576. https://doi.org/10.1007/s00417-015-3117-9
McKee SP, Levi DM, Movshon JA (2003) The pattern of visual deficits in amblyopia. J Vis 3:380–405. https://doi.org/10.1167/3.5.5
Wallace DK, Repka MX, Lee KA, Melia M, Christiansen SP, Morse CL, Sprunger DT, American Academy of Pediatric Ophthalmology/Strabismus Preferred Practice Pattern Pediatric Ophthalmology P (2018) Amblyopia Preferred Practice Pattern(R). Ophthalmology 125:P105–P142. https://doi.org/10.1016/j.ophtha.2017.10.008
Huang D, Chen X, Zhu H, Ding H, Bai J, Chen J, Fu Z, Pan CW, Liu H (2018) Prevalence of amblyopia and its association with refraction in Chinese preschool children aged 36–48 months. Br J Ophthalmol 102:767–771. https://doi.org/10.1136/bjophthalmol-2016-310083
Maurer D, Mc KS (2018) Classification and diversity of amblyopia. Vis Neurosci 35:E012. https://doi.org/10.1017/S0952523817000190
Levi DM (2020) Rethinking amblyopia 2020. Vision Res 176:118–129. https://doi.org/10.1016/j.visres.2020.07.014
Verghese P, McKee SP, Levi DM (2019) Attention deficits in amblyopia. Curr Opin Psychol 29:199–204. https://doi.org/10.1016/j.copsyc.2019.03.011
Kiorpes L, Daw N (2018) Cortical correlates of amblyopia. Vis Neurosci 35:E016. https://doi.org/10.1017/S0952523817000232
Mortazavi M, Aigner KM, Antono JE, Gambacorta C, Nahum M, Levi DM, Föcker J (2021) Neural correlates of visual spatial selective attention are altered at early and late processing stages in human amblyopia. Eur J Neurosci 53:1086–1106. https://doi.org/10.1111/ejn.15024
Hamm LM, Black J, Dai S, Thompson B (2014) Global processing in amblyopia: a review. Front Psychol 5:583. https://doi.org/10.3389/fpsyg.2014.00583
Li C, Cheng L, Yu Q, Xie B, Wang J (2012) Relationship of visual cortex function and visual acuity in anisometropic amblyopic children. Int J Med Sci 9:115–120. https://doi.org/10.7150/ijms.9.115
Chan J, Hao X, Liu Q, Cang J, Gu Y (2021) Closing the critical period is required for the maturation of binocular integration in mouse primary visual cortex. Front Cell Neurosci 15:749265. https://doi.org/10.3389/fncel.2021.749265
Wen W, Wang Y, Zhou J, He S, Sun X, Liu H, Zhao C, Zhang P (2021) Loss and enhancement of layer-selective signals in geniculostriate and corticotectal pathways of adult human amblyopia. Cell Rep 37:110117. https://doi.org/10.1016/j.celrep.2021.110117
Gu Y, Cang J (2016) Binocular matching of thalamocortical and intracortical circuits in the mouse visual cortex. eLife 5:e2203. https://doi.org/10.7554/eLife.22032
Wang BS, Sarnaik R, Cang J (2010) Critical period plasticity matches binocular orientation preference in the visual cortex. Neuron 65:246–256. https://doi.org/10.1016/j.neuron.2010.01.002
Wiesel TN, Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J Neurophysiol 26:978–993. https://doi.org/10.1152/jn.1963.26.6.978
Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278:377–409. https://doi.org/10.1098/rstb.1977.0050
Hubel DH, Livingstone MS (1990) Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. J Neurosci 10:2223–2237. https://doi.org/10.1523/jneurosci.10-07-02223.1990
Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357:219–240. https://doi.org/10.1113/jphysiol.1984.sp015498
Arden GB, Vaegan HCR, Powell DJ, Carter RM (1980) Pattern ERGs are abnormal in many amblyopes. Trans Ophthalmol Soc U K 100:453–460
Hess RF, Thompson B, Gole G, Mullen KT (2009) Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci 29:1064–1070. https://doi.org/10.1111/j.1460-9568.2009.06650.x
Miki A, Liu GT, Goldsmith ZG, Liu CS, Haselgrove JC (2003) Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging. Ophthalmologica 217:365–369. https://doi.org/10.1159/000071353
von Noorden GK (1973) Histological studies of the visual system in monkeys with experimental amblyopia. Invest Ophthalmol 12:727–738
Hensch TK, Quinlan EM (2018) Critical periods in amblyopia. Vis Neurosci 35:E014. https://doi.org/10.1017/S0952523817000219
Wu KR, Yu YJ, Tang LY, Chen SY, Zhang MY, Sun T, Wu SN, Yu K, Li B, Shao Y (2020) Altered brain network centrality in patients with adult strabismus with amblyopia: a resting-state functional magnetic resonance imaging (fMRI) Study. Med Sci Monit 26:e925856. https://doi.org/10.12659/MSM.925856
Shao Y, Li QH, Li B, Lin Q, Su T, Shi WQ, Zhu PW, Yuan Q, Shu YQ, He Y, Liu WF, Ye L (2019) Altered brain activity in patients with strabismus and amblyopia detected by analysis of regional homogeneity: a resting-state functional magnetic resonance imaging study. Mol Med Rep 19:4832–4840. https://doi.org/10.3892/mmr.2019.10147
Joly O, Franko E (2014) Neuroimaging of amblyopia and binocular vision: a review. Front Integr Neurosci 8:62. https://doi.org/10.3389/fnint.2014.00062
Pillai JJ (2010) The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol 31:219–225. https://doi.org/10.3174/ajnr.A1845
Buchbinder BR (2016) Functional magnetic resonance imaging. Handb Clin Neurol 135:61–92. https://doi.org/10.1016/B978-0-444-53485-9.00004-0
Dai P, Zhou X, Ou Y, Xiong T, Zhang J, Chen Z, Zou B, Wei X, Wu Y, Xiao M (2021) Altered effective connectivity of children and young adults with unilateral amblyopia: a resting-state functional magnetic resonance imaging Study. Front Neurosci 15:657576. https://doi.org/10.3389/fnins.2021.657576
Min YL, Su T, Shu YQ, Liu WF, Chen LL, Shi WQ, Jiang N, Zhu PW, Yuan Q, Xu XW, Ye L, Shao Y (2018) Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat 14:2351–2359. https://doi.org/10.2147/NDT.S171462
Goodyear BG, Menon RS (2001) Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum Brain Mapp 14:210–217. https://doi.org/10.1002/hbm.1053
Brown HD, Woodall RL, Kitching RE, Baseler HA, Morland AB (2016) Using magnetic resonance imaging to assess visual deficits: a review. Ophthalmic Physiol Opt 36:240–265. https://doi.org/10.1111/opo.12293
Dai XJ, Liu CL, Zhou RL, Gong HH, Wu B, Gao L, Wang YX (2015) Long-term total sleep deprivation decreases the default spontaneous activity and connectivity pattern in healthy male subjects: a resting-state fMRI study. Neuropsychiatr Dis Treat 11:761–772. https://doi.org/10.2147/NDT.S78335
Wang X, Cui D, Zheng L, Yang X, Yang H, Zeng J (2012) Combination of blood oxygen level-dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia. Mol Vis 18:909–919
Janz C, Heinrich SP, Kornmayer J, Bach M, Hennig J (2001) Coupling of neural activity and BOLD fMRI response: new insights by combination of fMRI and VEP experiments in transition from single events to continuous stimulation. Magn Reson Med 46:482–486. https://doi.org/10.1002/mrm.1217
Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47. https://doi.org/10.1093/cercor/1.1.1-a
Levi DM (2013) Linking assumptions in amblyopia. Vis Neurosci 30:277–287. https://doi.org/10.1017/S0952523813000023
Kiorpes L (2006) Visual processing in amblyopia: animal studies. Strabismus 14:3–10. https://doi.org/10.1080/09273970500536193
Pinto JG, Jones DG, Williams CK, Murphy KM (2015) Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex. Front Neural Circuits 9:3. https://doi.org/10.3389/fncir.2015.00003
Siu CR, Beshara SP, Jones DG, Murphy KM (2017) Development of glutamatergic proteins in human visual cortex across the lifespan. J Neurosci 37:6031–6042. https://doi.org/10.1523/JNEUROSCI.2304-16.2017
Siu CR, Murphy KM (2018) The development of human visual cortex and clinical implications. Eye Brain 10:25–36. https://doi.org/10.2147/EB.S130893
Barnes GR, Hess RF, Dumoulin SO, Achtman RL, Pike GB (2001) The cortical deficit in humans with strabismic amblyopia. J Physiol 533:281–297. https://doi.org/10.1111/j.1469-7793.2001.0281b.x
Muckli L, Kiess S, Tonhausen N, Singer W, Goebel R, Sireteanu R (2006) Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vision Res 46:506–526. https://doi.org/10.1016/j.visres.2005.10.014
Majaj NJ, Carandini M, Movshon JA (2007) Motion integration by neurons in macaque MT is local, not global. J Neurosci 27:366–370. https://doi.org/10.1523/JNEUROSCI.3183-06.2007
Li X, Dumoulin SO, Mansouri B, Hess RF (2007) Cortical deficits in human amblyopia: their regional distribution and their relationship to the contrast detection deficit. Invest Ophthalmol Vis Sci 48:1575–1591. https://doi.org/10.1167/iovs.06-1021
Mizoguchi S, Suzuki Y, Kiyosawa M, Mochizuki M, Ishii K (2005) Differential activation of cerebral blood flow by stimulating amblyopic and fellow eye. Graefes Arch Clin Exp Ophthalmol 243:576–582. https://doi.org/10.1007/s00417-004-1009-5
Conner IP, Odom JV, Schwartz TL, Mendola JD (2007) Monocular activation of V1 and V2 in amblyopic adults measured with functional magnetic resonance imaging. J AAPOS 11:341–350. https://doi.org/10.1016/j.jaapos.2007.01.119
Li H, Yang X, Gong Q, Chen H, Liao M, Liu L (2013) BOLD responses to different temporospatial frequency stimuli in V1 and V2 visual cortex of anisometropic amblyopia. Eur J Ophthalmol 23:147–155. https://doi.org/10.5301/ejo.5000211
Bonhomme GR, Liu GT, Miki A, Francis E, Dobre MC, Modestino EJ, Aleman DO, Haselgrove JC (2006) Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging. J AAPOS 10:540–546. https://doi.org/10.1016/j.jaapos.2006.07.008
Thompson B, Villeneuve MY, Casanova C, Hess RF (2012) Abnormal cortical processing of pattern motion in amblyopia: evidence from fMRI. Neuroimage 60:1307–1315. https://doi.org/10.1016/j.neuroimage.2012.01.078
Liang M, Xiao H, Xie B, Yin X, Wang J, Yang H (2019) Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study. BMC Neurosci 20:39. https://doi.org/10.1186/s12868-019-0524-6
Secen J, Culham J, Ho C, Giaschi D (2011) Neural correlates of the multiple-object tracking deficit in amblyopia. Vision Res 51:2517–2527. https://doi.org/10.1016/j.visres.2011.10.011
Barnes GR, Li X, Thompson B, Singh KD, Dumoulin SO, Hess RF (2010) Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Invest Ophthalmol Vis Sci 51:1432–1438. https://doi.org/10.1167/iovs.09-3931
Mendola JD, Conner IP, Roy A, Chan ST, Schwartz TL, Odom JV, Kwong KK (2005) Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum Brain Mapp 25:222–236. https://doi.org/10.1002/hbm.20109
Xiao JX, Xie S, Ye JT, Liu HH, Gan XL, Gong GL, Jiang XX (2007) Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry. Am J Ophthalmol 143:489–493. https://doi.org/10.1016/j.ajo.2006.11.039
Duan Y, Norcia AM, Yeatman JD, Mezer A (2015) The structural properties of major white matter tracts in strabismic amblyopia. Invest Ophthalmol Vis Sci 56:5152–5160. https://doi.org/10.1167/iovs.15-17097
Li Q, Jiang Q, Guo M, Li Q, Cai C, Yin X (2013) Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study. Br J Ophthalmol 97:524–529. https://doi.org/10.1136/bjophthalmol-2012-302218
Tsai TH, Su HT, Hsu YC, Shih YC, Chen CC, Hu FR, Tseng WI (2019) White matter microstructural alterations in amblyopic adults revealed by diffusion spectrum imaging with systematic tract-based automatic analysis. Br J Ophthalmol 103:511–516. https://doi.org/10.1136/bjophthalmol-2017-311733
Allen B, Spiegel DP, Thompson B, Pestilli F, Rokers B (2015) Altered white matter in early visual pathways of humans with amblyopia. Vision Res 114:48–55. https://doi.org/10.1016/j.visres.2014.12.021
Wu Y, Liu LQ (2017) Research advances on cortical functional and structural deficits of amblyopia. Zhonghua Yan Ke Za Zhi 53:392–395. https://doi.org/10.3760/cma.j.issn.0412-4081.2017.05.015
Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017. https://doi.org/10.1152/jn.1963.26.6.1003
Gotou T, Kameyama K, Kobayashi A, Okamura K, Ando T, Terata K, Yamada C, Ohta H, Morizane A, Hata Y (2021) Dark rearing promotes the recovery of visual cortical responses but not the morphology of geniculocortical axons in amblyopic cat. Front Neural Circuits 15:637638. https://doi.org/10.3389/fncir.2021.637638
Peng J, Yao F, Li Q, Ge Q, Shi W, Su T, Tang L, Pan Y, Liang R, Zhang L, Shao Y (2021) Alternations of interhemispheric functional connectivity in children with strabismus and amblyopia: a resting-state fMRI study. Sci Rep 11:15059. https://doi.org/10.1038/s41598-021-92281-1
Kozma P, Kiorpes L (2003) Contour integration in amblyopic monkeys. Vis Neurosci 20:577–588. https://doi.org/10.1017/s0952523803205113
Tao X, Zhang B, Shen G, Wensveen J, Smith EL 3rd, Nishimoto S, Ohzawa I, Chino YM (2014) Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys. J Neurosci 34:13840–13854. https://doi.org/10.1523/JNEUROSCI.1992-14.2014
Bi H, Zhang B, Tao X, Harwerth RS, Smith EL 3rd, Chino YM (2011) Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cereb Cortex 21:2033–2045. https://doi.org/10.1093/cercor/bhq272
Shooner C, Hallum LE, Kumbhani RD, Ziemba CM, Garcia-Marin V, Kelly JG, Majaj NJ, Movshon JA, Kiorpes L (2015) Population representation of visual information in areas V1 and V2 of amblyopic macaques. Vision Res 114:56–67. https://doi.org/10.1016/j.visres.2015.01.012
El-Shamayleh Y, Kiorpes L, Kohn A, Movshon JA (2010) Visual motion processing by neurons in area MT of macaque monkeys with experimental amblyopia. J Neurosci 30:12198–12209. https://doi.org/10.1523/JNEUROSCI.3055-10.2010
Algaze A, Roberts C, Leguire L, Schmalbrock P, Rogers G (2002) Functional magnetic resonance imaging as a tool for investigating amblyopia in the human visual cortex: a pilot study. J AAPOS 6:300–308. https://doi.org/10.1067/mpa.2002.124902
Talebnejad MR, Hosseinmenni S, Jafarzadehpur E, Mirzajani A, Osroosh E (2016) Comparison of the wave amplitude of visually evoked potential in amblyopic eyes between patients with esotropia and anisometropia and a normal group. Iran J Med Sci 41:94–101
Perez-Rico C, Garcia-Romo E, Gros-Otero J, Roldan-Diaz I, Arevalo-Serrano J, Germain F, Blanco R (2015) Evaluation of visual function and retinal structure in adult amblyopes. Optom Vis Sci 92:375–383. https://doi.org/10.1097/OPX.0000000000000492
Miller NP, Aldred B, Schmitt MA, Rokers B (2020) Impact of amblyopia on the central nervous system. Journal of binocular vision and ocular motility 70:182–192. https://doi.org/10.1080/2576117X.2020.1841710
Lerner Y, Hendler T, Malach R, Harel M, Leiba H, Stolovitch C, Pianka P (2006) Selective fovea-related deprived activation in retinotopic and high-order visual cortex of human amblyopes. Neuroimage 33:169–179. https://doi.org/10.1016/j.neuroimage.2006.06.026
Chadnova E, Reynaud A, Clavagnier S, Hess RF (2017) Latent binocular function in amblyopia. Vision Res 140:73–80. https://doi.org/10.1016/j.visres.2017.07.014
Levi DM, Li RW, Klein SA (2005) “Phase capture” in amblyopia: the influence function for sampled shape. Vision Res 45:1793–1805. https://doi.org/10.1016/j.visres.2005.01.021
Bonneh YS, Sagi D, Polat U (2007) Spatial and temporal crowding in amblyopia. Vision Res 47:1950–1962. https://doi.org/10.1016/j.visres.2007.02.015
Levi DM, Knill DC, Bavelier D (2015) Stereopsis and amblyopia: a mini-review. Vision Res 114:17–30. https://doi.org/10.1016/j.visres.2015.01.002
Hu X, Qin Y, Ying X, Yuan J, Cui R, Ruan X, He X, Lu ZL, Lu F, Hou F (2021) Temporal characteristics of visual processing in amblyopia. Front Neurosci 15:673491. https://doi.org/10.3389/fnins.2021.673491
Yen CC, Fukuda M, Kim SG (2011) BOLD responses to different temporal frequency stimuli in the lateral geniculate nucleus and visual cortex: insights into the neural basis of fMRI. Neuroimage 58:82–90. https://doi.org/10.1016/j.neuroimage.2011.06.022
Lu Z, Huang Y, Lu Q, Feng L, Nguchu BA, Wang Y, Wang H, Li G, Zhou Y, Qiu B, Zhou J, Wang X (2019) Abnormal intra-network architecture in extra-striate cortices in amblyopia: a resting state fMRI study. Eye Vis (Lond) 6:20. https://doi.org/10.1186/s40662-019-0145-2
Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H (2011) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34:430–442. https://doi.org/10.1016/j.tins.2011.05.005
Ding K, Liu Y, Yan X, Lin X, Jiang T (2013) Altered functional connectivity of the primary visual cortex in subjects with amblyopia. Neural Plast 2013:612086. https://doi.org/10.1155/2013/612086
Wang T, Li Q, Guo M, Peng Y, Li Q, Qin W, Yu C (2014) Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state. Brain Res 1563:41–51. https://doi.org/10.1016/j.brainres.2014.03.015
Mendola JD, Lam J, Rosenstein M, Lewis LB, Shmuel A (2018) Partial correlation analysis reveals abnormal retinotopically organized functional connectivity of visual areas in amblyopia. Neuroimage Clin 18:192–201. https://doi.org/10.1016/j.nicl.2018.01.022
Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, Grzadzinski R, Evans AC, Zang YF, Castellanos FX, Milham MP (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034–15043. https://doi.org/10.1523/JNEUROSCI.2612-10.2010
Zhang S, Gao GP, Shi WQ, Li B, Lin Q, Shu HY, Shao Y (2021) Abnormal interhemispheric functional connectivity in patients with strabismic amblyopia: a resting-state fMRI study using voxel-mirrored homotopic connectivity. BMC Ophthalmol 21:255. https://doi.org/10.1186/s12886-021-02015-0
Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61. https://doi.org/10.1007/s12031-007-0029-0
Tae WS, Ham BJ, Pyun SB, Kang SH, Kim BJ (2018) Current clinical applications of diffusion-tensor imaging in neurological disorders. J Clin Neurol (Seoul, Korea) 14:129–140. https://doi.org/10.3988/jcn.2018.14.2.129
Baroncelli L, Lunghi C (2021) Neuroplasticity of the visual cortex: in sickness and in health. Exp Neurol 335:113515. https://doi.org/10.1016/j.expneurol.2020.113515
Lin X, Ding K, Liu Y, Yan X, Song S, Jiang T (2012) Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state FMRI. PLoS One 7:e43373. https://doi.org/10.1371/journal.pone.0043373
Dai P, Zhang J, Wu J, Chen Z, Zou B, Wu Y, Wei X, Xiao M (2019) Altered spontaneous brain activity of children with unilateral amblyopia: A Resting State fMRI Study. Neural Plast 2019:3681430. https://doi.org/10.1155/2019/3681430
Leguire LE, Algaze A, Kashou NH, Lewis J, Rogers GL, Roberts C (2011) Relationship among fMRI, contrast sensitivity and visual acuity. Brain Res 1367:162–169. https://doi.org/10.1016/j.brainres.2010.10.082
Goodyear BG, Nicolle DA, Humphrey GK, Menon RS (2000) BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol 84:1907–1913. https://doi.org/10.1152/jn.2000.84.4.1907
Yang X, Lu L, Li Q, Huang X, Gong Q, Liu L (2019) Altered spontaneous brain activity in patients with strabismic amblyopia: a resting-state fMRI study using regional homogeneity analysis. Exp Ther Med 18:3877–3884. https://doi.org/10.3892/etm.2019.8038
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682. https://doi.org/10.1073/pnas.98.2.676
Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM (2013) The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. Neuroimage 78:463–473. https://doi.org/10.1016/j.neuroimage.2013.04.013
Kiviniemi V, Kantola JH, Jauhiainen J, Tervonen O (2004) Comparison of methods for detecting nondeterministic BOLD fluctuation in fMRI. Magn Reson Imaging 22:197–203. https://doi.org/10.1016/j.mri.2003.09.007
Simmers AJ, Ledgeway T, Hess RF, McGraw PV (2003) Deficits to global motion processing in human amblyopia. Vision Res 43:729–738. https://doi.org/10.1016/s0042-6989(02)00684-3
Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3:716–723. https://doi.org/10.1038/76673
Kourtzi Z, Bulthoff HH, Erb M, Grodd W (2002) Object-selective responses in the human motion area MT/MST. Nat Neurosci 5:17–18. https://doi.org/10.1038/nn780
Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872. https://doi.org/10.1073/pnas.87.24.9868
Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230
Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141. https://doi.org/10.1038/375139a0
Ho CS, Giaschi DE, Boden C, Dougherty R, Cline R, Lyons C (2005) Deficient motion perception in the fellow eye of amblyopic children. Vision Res 45:1615–1627. https://doi.org/10.1016/j.visres.2004.12.009
Ho CS, Giaschi DE (2009) Low- and high-level motion perception deficits in anisometropic and strabismic amblyopia: evidence from fMRI. Vision Res 49:2891–2901. https://doi.org/10.1016/j.visres.2009.07.012
Vedamurthy I, Suttle CM, Alexander J, Asper LJ (2008) A psychophysical study of human binocular interactions in normal and amblyopic visual systems. Vision Res 48:1522–1531. https://doi.org/10.1016/j.visres.2008.04.004
Liang M, Xie B, Yang H, Yin X, Wang H, Yu L, He S, Wang J (2017) Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study. Neuroradiology 59:517–524. https://doi.org/10.1007/s00234-017-1824-0
McKee SP, Schor CM, Steinman SB, Wilson N, Koch GG, Davis SM, Hsu-Winges C, Day SH, Chan CL, Movshon JA et al (1992) The classification of amblyopia on the basis of visual and oculomotor performance. Trans Am Ophthalmol Soc 90:123–144 (discussion 145-128)
Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741
Crawford ML, von Noorden GK (1979) The effects of short-term experimental strabismus on the visual system in Macaca mulatta. Invest Ophthalmol Vis Sci 18:496–505
Kiorpes L, Kiper DC, O’Keefe LP, Cavanaugh JR, Movshon JA (1998) Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci 18:6411–6424
Harrad R, Sengpiel F, Blakemore C (1996) Physiology of suppression in strabismic amblyopia. Br J Ophthalmol 80:373–377. https://doi.org/10.1136/bjo.80.4.373
Wiesel TN (1982) Postnatal development of the visual cortex and the influence of environment. Nature 299:583–591. https://doi.org/10.1038/299583a0
Kiorpes L, Boothe RG, Hendrickson AE, Movshon JA, Eggers HM, Gizzi MS (1987) Effects of early unilateral blur on the macaque’s visual system. I. Behavioral observations. J Neurosci 7:1318–1326
Movshon JA, Eggers HM, Gizzi MS, Hendrickson AE, Kiorpes L, Boothe RG (1987) Effects of early unilateral blur on the macaque’s visual system. III. Physiological observations. J Neurosci 7:1340–1351
Hess RF, Campbell FW, Greenhalgh T (1978) On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss. Pflugers Arch 377:201–207. https://doi.org/10.1007/BF00584273
Lee KM, Lee SH, Kim NY, Kim CY, Sohn JW, Choi MY, Gyu Choi D, Hwang JM, Ho Park K, Lee DS, Suk YuY, Hyun Chang K (2001) Binocularity and spatial frequency dependence of calcarine activation in two types of amblyopia. Neurosci Res 40:147–153. https://doi.org/10.1016/s0168-0102(01)00220-6
Choi MY, Lee KM, Hwang JM, Choi DG, Lee DS, Park KH, Yu YS (2001) Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol 85:1052–1056. https://doi.org/10.1136/bjo.85.9.1052
Huang C, Tao L, Zhou Y, Lu ZL (2007) Treated amblyopes remain deficient in spatial vision: a contrast sensitivity and external noise study. Vision Res 47:22–34. https://doi.org/10.1016/j.visres.2006.09.015
Spiegel DP, Byblow WD, Hess RF, Thompson B (2013) Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activation in individuals with amblyopia. Neurorehab Neural Repair 27:760–769. https://doi.org/10.1177/1545968313491006
Zhai J, Chen M, Liu L, Zhao X, Zhang H, Luo X, Gao J (2013) Perceptual learning treatment in patients with anisometropic amblyopia: a neuroimaging study. Br J Ophthalmol 97:1420–1424. https://doi.org/10.1136/bjophthalmol-2013-303778
Gupta S, Kumaran SS, Saxena R, Gudwani S, Menon V, Sharma P (2016) BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy. Int Ophthalmol 36:557–568. https://doi.org/10.1007/s10792-015-0159-2
Halicka J, Bittsansky M, Sivak S, Pinero DP, Ziak P (2021) Virtual reality visual training in an adult patient with anisometropic amblyopia: visual and functional magnetic resonance outcomes. Vision (Basel) 5(2):22. https://doi.org/10.3390/vision5020022
Tailor V, Bossi M, Greenwood JA, Dahlmann-Noor A (2016) Childhood amblyopia: current management and new trends. Br Med Bull 119:75–86. https://doi.org/10.1093/bmb/ldw030
Chen CW, Zhu Q, Duan YB, Yao JY (2021) Comparison between binocular therapy and patching for treatment of amblyopia: a meta-analysis of randomised controlled trials. BMJ Open Ophthalmol 6:e000625. https://doi.org/10.1136/bmjophth-2020-000625
Sen S, Singh P, Saxena R (2021) Management of amblyopia in pediatric patients: current insights. Eye (Lond). https://doi.org/10.1038/s41433-021-01669-w
Singh A, Nagpal R, Mittal SK, Bahuguna C, Kumar P (2017) Pharmacological therapy for amblyopia. Taiwan J Ophthalmol 7:62–69. https://doi.org/10.4103/tjo.tjo_8_17
Repka MX, Beck RW, Holmes JM, Birch EE, Chandler DL, Cotter SA, Hertle RW, Kraker RT, Moke PS, Quinn GE, Scheiman MM, Pediatric Eye Disease Investigator G (2003) A randomized trial of patching regimens for treatment of moderate amblyopia in children. Arch Ophthalmol 121:603–611. https://doi.org/10.1001/archopht.121.5.603
Farvardin M, Khalili MR, Behnia M (2019) Levodopa plus occlusion therapy versus occlusion therapy alone for children with anisometropic amblyopia. J Ophthalmic Vis Res 14:457–464. https://doi.org/10.18502/jovr.v14i4.5451
Bhartiya P, Sharma P, Biswas NR, Tandon R, Khokhar SK (2002) Levodopa-carbidopa with occlusion in older children with amblyopia. J AAPOS 6:368–372. https://doi.org/10.1067/mpa.2002.129043
LeWitt PA (2016) New levodopa therapeutic strategies. Parkinsonism Relat Disord 22(Suppl 1):S37-40. https://doi.org/10.1016/j.parkreldis.2015.09.021
Gottlob I, Stangler-Zuschrott E (1990) Effect of levodopa on contrast sensitivity and scotomas in human amblyopia. Invest Ophthalmol Vis Sci 31:776–780
Algaze A, Leguire LE, Roberts C, Ibinson JW, Lewis JR, Rogers G (2005) The effects of L-dopa on the functional magnetic resonance imaging response of patients with amblyopia: a pilot study. J AAPOS 9:216–223. https://doi.org/10.1016/j.jaapos.2005.01.014
Goodyear BG, Nicolle DA, Menon RS (2002) High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes. Strabismus 10:129–136. https://doi.org/10.1076/stra.10.2.129.8140
Yang C-I, Yang M-L, Huang J-C, Wan Y-L, Jui-Fang Tsai R, Wai Y-Y, Liu H-L (2003) Functional MRI of amblyopia before and after levodopa. Neurosci Lett 339:49–52. https://doi.org/10.1016/s0304-3940(02)01465-9
Rogers GL (2003) Functional magnetic resonance imaging (fMRI) and effects of L-dopa on visual function in normal and amblyopic subjects. Trans Am Ophthalmol Soc 101:401–415
Lu W, Yu X, Zhao L, Zhang Y, Zhao F, Wang Y, Qiu J (2020) Enhanced gray matter volume compensates for decreased brain activity in the ocular motor area in children with anisometropic amblyopia. Neural Plast 2020:8060869. https://doi.org/10.1155/2020/8060869
Funding
This study was funded by the National Natural Science Foundation of China (grant number 82070996).
Author information
Authors and Affiliations
Contributions
The first draft of the manuscript was written by Guiqu Wang, and Longqian Liu commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval
Formal consent is not required for this type of study (review article). This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
This article does not contain any studies with human participants.
Conflict of interest
All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article received support from the mentorship team. Further information can be found in the editorial https://link.springer.com/article/10.1007s00417-019–04518-5.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, G., Liu, L. Amblyopia: progress and promise of functional magnetic resonance imaging. Graefes Arch Clin Exp Ophthalmol 261, 1229–1246 (2023). https://doi.org/10.1007/s00417-022-05826-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00417-022-05826-z