Skip to main content

Advertisement

Log in

GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The term retinitis pigmentosa (RP) comprises a heterogeneous group of hereditary and sporadic human retinal degenerative diseases. The molecular and cellular events still remain obscure, thus hiding effective therapies. Granulocyte–macrophage colony-stimulating factor (GM-CSF) is a hematopoietic factor which plays a crucial role in protecting neuronal cells. Binding of GM-CSF to its receptor induces several intracellular signaling pathways and kinases. Here we examined whether GM-CSF has a neuroprotective effect on photoreceptor degeneration in Royal College of Surgeons (RCS) rats.

Methods

GM-CSF was injected into the vitreous body of RCS rats either once at the onset of photoreceptor degeneration at day 21, or twice at day 21 and day 42. At day 84, when photoreceptor degeneration is completed, the rats were sacrificed, their eyes enucleated and processed for histological staining and counting the surviving photoreceptor nuclei. The expression of apoptosis-related factors, such as BAD, APAF1 and BCL-2 was examined by Western blot analysis. The expression of neurotrophins such as ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF), and glia-derived neurotrophic actor (GDNF), as well as glial fibrillary acidic protein (GFAP) was analysed by Western blots and immunohistochemistry. The expression of JAK/STAT, ERK1/2 and SRC pathway proteins was assessed by Western blot analysis.

Results

GM-CSF protects significantly against photoreceptor degeneration in comparison to control group. After a single injection of GM-CSF at P21, a 4-fold increase of photoreceptors was observed, whereas eyes which received a repeated injection of GM-CSF at P42 showed a 10-fold increase of photoreceptors. Western blot analysis revealed a decreased BAD and an increased pBAD and BCL-2 expression, indicating changed expression profiles of apoptosis-related proteins. Neurotrophic factors examined are up-regulated, whereas GFAP was also modulated. At cell signalling levels, GM-CSF activates SRC-dependent STAT3 which is independent of JAK2, while proteins of the ERK1/2 pathway are not affected.

Conclusions

The data suggest that GM-CSF is a potent therapeutic agent in photoreceptor degeneration caused by mutation of the receptor tyrosine kinase gene (Mertk), and may be also effective in other photoreceptor degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adler R (1996) Mechanisms of photoreceptor death in retinal degenerations from the cell biology of the 1990s to the ophthalmology of the 21st century? Arch Ophthalmol 114:79–83

    Article  PubMed  CAS  Google Scholar 

  2. Berson EL (1993) Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 34:1659–1676

    PubMed  CAS  Google Scholar 

  3. Pagon RA (1988) Retinitis pigmentosa. Surv Ophthalmol 33:137–177

    Article  PubMed  CAS  Google Scholar 

  4. D'Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651

    Article  PubMed  Google Scholar 

  5. Feng W, Yasumura D, Matthes MT, LaVail MM, Vollrath D (2002) Mertk triggers uptake of photoreceptor outer segments during phagocytosis by cultured retinal pigment epithelial cells. J Biol Chem 277:17016–17022

    Article  PubMed  CAS  Google Scholar 

  6. Dowling JE, Sidman RL (1962) Inherited retinal dystrophy in the rat. J Cell Biol 14:73–109

    Article  PubMed  CAS  Google Scholar 

  7. Bok D, Hall MO (1971) The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 49:664–682

    Article  PubMed  CAS  Google Scholar 

  8. Hall MO (1978) Phagocytosis of light- and dark-adapted rod outer segments by cultured pigment epithelium. Science 202:526–528

    Article  PubMed  CAS  Google Scholar 

  9. LaVail MM, Sidman RL, Gerhardt CO (1975) Congenic strains of RCS rats with inherited retinal dystrophy. J Hered 66:242–244

    PubMed  CAS  Google Scholar 

  10. Mullen RJ, LaVail MM (1976) Inherited retinal dystrophy: Primary defect in pigment epithelium determined with experimental rat chimeras. Science 192:799–801

    Article  PubMed  CAS  Google Scholar 

  11. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS, Matsushima GK (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–211

    Article  PubMed  CAS  Google Scholar 

  12. Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RA, Earp HS, Matsushima G, Reap EA (2002) Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196:135–140

    Article  PubMed  CAS  Google Scholar 

  13. Edwards RB, Szamier RB (1977) Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science 197:1001–1003

    Article  PubMed  CAS  Google Scholar 

  14. Goldman AI, O'Brien PJ (1978) Phagocytosis in the retinal pigment epithelium of the RCS rat. Science 201:1023–1025

    Article  PubMed  CAS  Google Scholar 

  15. Chaitin MH, Hall MO (1983) Defective ingestion of rod outer segments by cultured dystrophic rat pigment epithelial cells. Invest Ophthalmol Vis Sci 24:812–820

    PubMed  CAS  Google Scholar 

  16. Steinberg RH (1994) Survival factors in retinal degenerations. Curr Opin Neurobiol 4:515–524

    Article  PubMed  CAS  Google Scholar 

  17. Stone J, Maslim J, Valter-Kocsi K, Mervin K, Bowers F, Chu Y, Barnett N, Provis J, Lewis G, Fisher SK, Bisti S, Gargini C, Cervetto L, Merin S, Peér J (1999) Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res 18:689–735

    Article  PubMed  CAS  Google Scholar 

  18. Chang GQ, Hao Y, Wong F (1993) Apoptosis: Final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 11:595–605

    Article  PubMed  CAS  Google Scholar 

  19. Katai N, Kikuchi T, Shibuki H, Kuroiwa S, Arai J, Kurokawa T, Yoshimura N (1999) Caspaselike proteases activated in apoptotic photoreceptors of royal college of surgeons rats. Invest Ophthalmol Vis Sci 40:1802–1807

    PubMed  CAS  Google Scholar 

  20. Katai N, Yanagidaira T, Senda N, Murata T, Yoshimura N (2006) Expression of c-jun and bcl-2 family proteins in apoptotic photoreceptors of RCS rats. Jpn J Ophthalmol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  21. Nickells RW, Zack DJ (1996) Apoptosis in ocular disease: A molecular overview. Ophthalmic Genet 17:145–165

    Article  PubMed  CAS  Google Scholar 

  22. Marc RE, Jones BW (2003) Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol 28:139–147

    Article  PubMed  CAS  Google Scholar 

  23. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG, Apfelstedt-Sylla E, Vollrath D (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 26:270–271

    Article  PubMed  CAS  Google Scholar 

  24. McHenry CL, Liu Y, Feng W, Nair AR, Feathers KL, Ding X, Gal A, Vollrath D, Sieving PA, Thompson DA (2004) MERTK arginine-844-cysteine in a patient with severe rod-cone dystrophy: loss of mutant protein function in transfected cells. Invest Ophthalmol Vis Sci 45:1456–1463

    Article  PubMed  Google Scholar 

  25. Duncan JL, LaVail MM, Yasumura D, Matthes MT, Yang H, Trautmann N, Chappelow AV, Feng W, Earp HS, Matsushima GK, Vollrath D (2003) An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest Ophthalmol Vis Sci 44:826–838

    Article  PubMed  Google Scholar 

  26. LaVail MM (2001) Legacy of the RCS rat: Impact of a seminal study on retinal cell biology and retinal degenerative diseases. Prog Brain Res 131:617–627

    Article  PubMed  CAS  Google Scholar 

  27. Chader GJ (2002) Animal models in research on retinal degenerations: Past progress and future hope. Vision Res 42:393–399

    Article  PubMed  Google Scholar 

  28. Vollrath D, Feng W, Duncan JL (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of mertk. Proc Natl Acad Sci USA 98:12584–12589

    Article  PubMed  CAS  Google Scholar 

  29. Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM (1992) Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J Neurosci 12:3554–3567

    PubMed  CAS  Google Scholar 

  30. Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 347:83–86

    Article  PubMed  CAS  Google Scholar 

  31. LaVail MM, Yasumura D, Matthes MT (1998) Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39:592–602

    PubMed  CAS  Google Scholar 

  32. Machida S, Tanaka M, Ishii T, Ohtaka K, Takahashi T, Tazawa Y (2004) Neuroprotective effect of hepatocyte growth factor against photoreceptor degeneration in rats. Invest Ophthalmol Vis Sci 45:4174–4182

    Article  PubMed  Google Scholar 

  33. Whiteley SJ, Klassen H, Coffey PJ, Young MJ (2001) Photoreceptor rescue after low-dose intravitreal IL-1beta injection in the RCS rat. Exp Eye Res 73:557–568

    Article  PubMed  CAS  Google Scholar 

  34. Perry J, Du J, Kjeldbye H, Gouras P (1995) The effects of bFGF on RCS rat eyes. Curr Eye Res 14:585–592

    Article  PubMed  CAS  Google Scholar 

  35. Kent TL, Glybina IV, Abrams GW, Iezzi R (2008) Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat. Invest Ophthalmol Vis Sci 49:372–379

    Article  PubMed  Google Scholar 

  36. Frasson M, Picaud S, Leveillard T, Simonutti M, Mohand-Said S, Dreyfus H, Hicks D, Sabel J (1999) Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40:2724–2734

    PubMed  CAS  Google Scholar 

  37. Miyazaki M, Ikeda Y, Yonemitsu Y, Goto Y, Sakamoto T, Tabata T, Ueda Y, Hasegawa M, Tobimatsu S, Ishibashi T, Sueishi K (2003) Simian lentiviral vector-mediated retinal gene transfer of pigment epithelium-derived factor protects retinal degeneration and electrical defect in Royal College of Surgeons rats. Gene Ther 10:1503–1511

    Article  PubMed  CAS  Google Scholar 

  38. Cayouette M, Behn D, Sendtner M, Lachapelle P, Gravel C (1998) Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. J Neurosci 18:9282–9293

    PubMed  CAS  Google Scholar 

  39. Tao W, Wen R, Goddard MB, Sherman SD, O'Rourke PJ, Stabila PF, Bell WJ, Dean BJ, Kauper KA, Budz VA, Tsiaras WG, Acland GM, Pearce-Kelling S, Laties AM, Aguirre GD (2002) Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 43:3292–3298

    PubMed  Google Scholar 

  40. Chaum E (2003) Retinal neuroprotection by growth factors: a mechanistic perspective. J Cell Biochem 88:57–75

    Article  PubMed  CAS  Google Scholar 

  41. McGee Sanftner LH, Abel H, Hauswirth WW, Flannery JG (2001) Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther 4:622–629

    Article  PubMed  CAS  Google Scholar 

  42. Dame JB, Christensen RD, Juul SE (1999) The distribution of granulocyte–macrophage colony-stimulating factor and its receptor in the developing human fetus. Pediatr Res 46:358–366

    Article  PubMed  CAS  Google Scholar 

  43. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schäbitz WR (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098

    Article  PubMed  CAS  Google Scholar 

  44. Schabitz WR, Kruger C, Pitzer C, Weber D, Laage R, Gassler N, Aronowski J, Mier W, Kirsch F, Dittgen T, Bach A, Sommer C, Schneider A (2008) A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). J Cereb Blood Flow Metab 28:29–43

    Article  PubMed  Google Scholar 

  45. Metcalf D (1989) The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27–30

    Article  PubMed  CAS  Google Scholar 

  46. Nicola NA (2001) GM-CSF receptor. In: Oppenheim JJ, Feldman M (eds) Cytokine reference. Academic Press, San Diego, pp 1935–1944

    Google Scholar 

  47. Chao DT, Linette GP, Boise LH, White LS, Thompson CB, Korsmeyer SJ (1995) Bcl-XL and bcl-2 repress a common pathway of cell death. J Exp Med 182:821–828

    Article  PubMed  CAS  Google Scholar 

  48. Peterson WM, Wang Q, Tzekova R, Wiegand SJ (2000) Ciliary neurotrophic factor and stress stimuli activate the jak-STAT pathway in retinal neurons and glia. J Neurosci 20:4081–4090

    PubMed  CAS  Google Scholar 

  49. Choi JK, Choi BH, Ha Y, Park H, Yoon SH, Park HC, Park SR (2007) Signal transduction pathways of GM-CSF in neural cell lines. Neurosci Lett 420:217–222

    Article  PubMed  CAS  Google Scholar 

  50. Dahl ME, Arai KI, Watanabe S (2000) Association of lyn tyrosine kinase to the GM-CSF and IL-3 receptor common betac subunit and role of src tyrosine kinases in DNA synthesis and anti-apoptosis. Genes Cells 5:143–153

    Article  PubMed  CAS  Google Scholar 

  51. Schallenberg M, Charalambous P, Thanos S (2009) GM-CSF regulates the ERK1/2 pathways and protects injured retinal ganglion cells from induced death. Exp Eye Res 89:665–677

    Article  PubMed  CAS  Google Scholar 

  52. Armitage JO (1998) Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 92:4491–4508

    PubMed  CAS  Google Scholar 

  53. Raivich G, Gehrmann J, Kreutzberg GW (1991) Increase of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor receptors in the regenerating rat facial nucleus. J Neurosci Res 30:682–686

    Article  PubMed  CAS  Google Scholar 

  54. Moore S, Thanos S (1996) The concept of microglia in relation to central nervous system disease and regeneration. Prog Neurobiol 48:441–460

    Article  PubMed  CAS  Google Scholar 

  55. Liva SM, Kahn MA, Dopp JM, de Vellis J (1999) Signal transduction pathways induced by GM-CSF in microglia: significance in the control of proliferation. Glia 26:344–352

    Article  PubMed  CAS  Google Scholar 

  56. David S, Ousman SS (2002) Recruiting the immune response to promote axon regeneration in the injured spinal cord. Neuroscientist 8:33–41

    Article  PubMed  Google Scholar 

  57. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76

    Article  PubMed  CAS  Google Scholar 

  58. Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, Park HS (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11:913–922

    Article  PubMed  CAS  Google Scholar 

  59. Ha Y, Kim YS, Cho JM, Yoon SH, Park SR, Yoon DH, Kim EY, Park HC (2005) Role of granulocyte–macrophage colony-stimulating factor in preventing apoptosis and improving functional outcome in experimental spinal cord contusion injury. J Neurosurg Spine 2:55–61

    Article  PubMed  Google Scholar 

  60. Kim JK, Choi BH, Park HC, Park SR, Kim YS, Yoon SH, Park HS, Kim EY, Ha Y (2004) Effects of GM-CSF on the neural progenitor cells. Neuroreport 15:2161–2165

    Article  PubMed  CAS  Google Scholar 

  61. Lawrence JM, Keegan DJ, Muir EM, Coffey PJ, Rogers JH, Wilby MJ, Fawcett JW, Lund RD (2004) Transplantation of schwann cell line clones secreting GDNF or BDNF into the retinas of dystrophic Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 45:267–274

    Article  PubMed  Google Scholar 

  62. Tso MO, Zhang C, Abler AS, Chang CJ, Wong F, Chang GQ, Lam TT (1994) Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmol Vis Sci 35:2693–2699

    PubMed  CAS  Google Scholar 

  63. Reed JA, Clegg DJ, Smith KB, Tolod-Richer EG, Matter EK, Picard LS, Seeley RJ (2005) GM-CSF action in the CNS decreases food intake and body weight. J Clin Invest 115:3035–3044

    Article  PubMed  CAS  Google Scholar 

  64. Huang X, Choi JK, Park SR, Ha Y, Park H, Yoon SH, Park HC, Park JO, Choi BH (2007) GM-CSF inhibits apoptosis of neural cells via regulating the expression of apoptosis-related proteins. Neurosci Res 58:50–57

    Article  PubMed  CAS  Google Scholar 

  65. Englund-Johansson U, Mohlin C, Liljekvist-Soltic I, Ekström P, Johansson K (2010) Human neural progenitor cells promote photoreceptor survival in retinal explants. Exp Eye Res 90:292–299

    Article  PubMed  CAS  Google Scholar 

  66. Rickman DW, Nacke RE, Bowes Rickman C (1999) Characterization of the cell death promoter, bad, in the developing rat retina and forebrain. Brain Res Dev Brain Res 115:41–47

    Article  PubMed  CAS  Google Scholar 

  67. Chen J, Flannery JG, LaVail MM, Steinberg RH, Xu J, Simon MI (1996) Bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations. Proc Natl Acad Sci USA 93:7042–7047

    Article  PubMed  CAS  Google Scholar 

  68. McKernan DP, Cotter TG (2007) A critical role for bim in retinal ganglion cell death. J Neurochem 102:922–930

    Article  PubMed  CAS  Google Scholar 

  69. Battle TE, Frank DA (2002) The role of STATs in apoptosis. Curr Mol Med 2:381–392

    Article  PubMed  CAS  Google Scholar 

  70. Song Y, Zhao L, Tao W, Laties AM, Luo Z, Wen R (2003) Photoreceptor protection by cardiotrophin-1 in transgenic rats with the rhodopsin mutation s334ter. Invest Ophthalmol Vis Sci 44:4069–4075

    Article  PubMed  Google Scholar 

  71. Ihle JN (1996) STATs: Signal transducers and activators of transcription. Cell 84:331–334

    Article  PubMed  CAS  Google Scholar 

  72. O'Shea JJ (1997) Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity 7:1–11

    Article  PubMed  Google Scholar 

  73. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Article  PubMed  CAS  Google Scholar 

  74. Watanabe S, Itoh T, Arai K (1996) JAK2 is essential for activation of c-fos and c-myc promoters and cell proliferation through the human granulocyte-macrophage colony-stimulating factor receptor in BA/F3 cells. J Biol Chem 271:12681–12686

    Article  PubMed  CAS  Google Scholar 

  75. Quelle FW, Sato N, Witthuhn BA, Inhorn RC, Eder M, Miyajima A, Griffin JD, Ihle JN (1994) JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol 14:4335–4341

    PubMed  CAS  Google Scholar 

  76. Samardzija M, Wenzel A, Aufenberg S, Thiersch M, Reme C, Grimm C (2006) Differential role of jak-STAT signaling in retinal degenerations. FASEB J 20:2411–2413

    Article  PubMed  CAS  Google Scholar 

  77. Han C, Bowen WC, Michalopoulos GK, Wu T (2008) Alpha-1 adrenergic receptor transactivates signal transducer and activator of transcription-3 (Stat3) through activation of src and epidermal growth factor receptor (EGFR) in hepatocytes. J Cell Physiol 216:486–497

    Article  PubMed  CAS  Google Scholar 

  78. He JC, Gomes I, Nguyen T, Jayaram G, Ram PT, Devi LA, Iyengar R (2005) The G alpha(o/i)-coupled cannabinoid receptor-mediated neurite outgrowth involves rap regulation of src and Stat3. J Biol Chem 280:33426–33434

    Article  PubMed  CAS  Google Scholar 

  79. Alonso G, Koegl M, Mazurenko N, Courtneidge SA (1995) Sequence requirements for binding of src family tyrosine kinases to activated growth factor receptors. J Biol Chem 270:9840–9848

    Article  PubMed  CAS  Google Scholar 

  80. Anderson SM, Jorgensen B (1995) Activation of src-related tyrosine kinases by IL-3. J Immunol 155:1660–1670

    PubMed  CAS  Google Scholar 

  81. Weng G, Bhalla US, Iyengar R (1999) Complexity in biological signaling systems. Science 284:92–96

    Article  PubMed  CAS  Google Scholar 

  82. Kassen SC, Thummel R, Campochiaro LA, Harding MJ, Bennett NA, Hyde DR (2009) CNTF induces photoreceptor neuroprotection and Müller glial cell proliferation through two different signaling pathways in the adult zebrafish retina. Exp Eye Res 88:1051–1064

    Article  PubMed  CAS  Google Scholar 

  83. Touchard E, Heiduschka P, Berdugo M, Kowalczuk L, Bigey P, Chahory S, Gandolphe C, Jeanny JC, Behar-Cohen F (2011) Non-viral gene therapy for GDNF production in RCS rat: the crucial role of the plasmid dose. Gene Ther, doi:10.1038/gt.2011.154

  84. Zhang M, Mo X, Fang Y, Guo W, Wu J, Zhang S, Huang Q (2009) Rescue of photoreceptors by BDNF gene transfer using in vivo electroporation in the RCS rat of retinitis pigmentosa. Curr Eye Res 34:791–799

    Article  PubMed  CAS  Google Scholar 

  85. Bouhy D, Malgrange B, Multon S, Poirrier AL, Scholtes F, Schoenen J, Franzen R (2006) Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J 20:1239–1241

    Article  PubMed  CAS  Google Scholar 

  86. Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H, Tanaka K, Parada LF, Wada K (2002) Microglia–Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 22:9228–9236

    PubMed  CAS  Google Scholar 

  87. Joly S, Pernet V, Chemtob S, Di Polo A, Lachapelle P (2007) Neuroprotection in the juvenile rat model of light-induced retinopathy: Evidence suggesting a role for FGF-2 and CNTF. Invest Ophthalmol Vis Sci 48:2311–2320

    Article  PubMed  Google Scholar 

  88. Valter K, Bisti S, Stone J (2003) Location of CNTFRalpha on outer segments: Evidence of the site of action of CNTF in rat retina. Brain Res 985:169–175

    Article  PubMed  CAS  Google Scholar 

  89. Cuthbertson RA, Lang RA, Coghlan JP (1990) Macrophage products IL-1 alpha, TNF alpha and bFGF may mediate multiple cytopathic effects in the developing eyes of GM-CSF transgenic mice. Exp Eye Res 51:335–344

    Article  PubMed  CAS  Google Scholar 

  90. Rhee KD, Ruiz A, Duncan JL, Hauswirth WW, Lavail MM, Bok D, Yang XJ (2007) Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 48:1389–1400

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Wissing and M. Langkamp-Flock for their technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft (DFG Grants Th386/16-1 and Th386/16-2 to S.T.) and the IMF-Münster (Grant NA 110503 to S.T.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Schallenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schallenberg, M., Charalambous, P. & Thanos, S. GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins. Graefes Arch Clin Exp Ophthalmol 250, 699–712 (2012). https://doi.org/10.1007/s00417-012-1932-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-1932-9

Keywords

Navigation