Skip to main content

Advertisement

The neurological update: therapies for cerebellar ataxias in 2020

  • Neurological Update
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Cerebellar ataxias (CAs) represent a heterogeneous group of sporadic or inherited disorders. The clinical spectrum of CAs is continuously expanding. Our understanding of the mechanisms leading to the clinical deficits has improved over these last decades, in particular thanks to progress in genetics, neuroimaging and the advent of relevant animal models allowing the identification of the pathophysiological pathways leading to CAs. The rationale behind treatments is now established for most of the CAs encountered during daily practice worldwide. In this update, we will discuss the symptomatic, physical and occupational therapies now being trialled along with individualized exercises, and present key emerging issues on immune-mediated cerebellar ataxias, hereditary cerebellar ataxias. Finally, we will discuss novel therapeutic approaches, including cerebellar non-invasive stimulation and treatments acting on RNA/proteins. So far, no state-of-the art randomized placebo-controlled clinical trial has shown a convincing clinically relevant efficacy of any drug, with the exception of 4-aminopyridine for the symptomatic treatment of episodic ataxia type 2 and downbeat nystagmus (placebo-controlled trials).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kuo SH (2019) Ataxia. Continuum (Minneap Minn) 25(4):1036–1054

    Google Scholar 

  2. Manto M, Gandini J, Feil K, Strupp M (2020) Cerebellar ataxias: an update. Curr Opin Neurol 33(1):150–160

    Article  PubMed  Google Scholar 

  3. Bürk K, Sival DA (2018) Scales for the clinical evaluation of cerebellar disorders. Handb Clin Neurol 154:329–339

    Article  PubMed  Google Scholar 

  4. Perlman S, Boltshauser E (2018) Drug treatment. Handb Clin Neurol 155:371–377

    Article  PubMed  Google Scholar 

  5. Schatton C, Synofzik M, Fleszar Z, Giese MA, Schöls L, Ilg W (2017) Individualized exergame training improves postural control in advanced degenerative spinocerebellar ataxia: a rater-blinded, intra-individually controlled trial. Parkinsonism Relat Disord 39:80–84

    Article  PubMed  Google Scholar 

  6. Mitoma H, Manto M, Hampe CS (2017) Immune-mediated cerebellar ataxias: from bench to bedside. Cerebellum Ataxias 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joubert B, Rostásy K, Honnorat J (2018) Immune-mediated ataxias. Handb Clin Neurol 155:313–332

    Article  PubMed  Google Scholar 

  8. Mitoma H, Manto M, Hampe CS (2019) Immune-mediated cerebellar ataxias: practical guidelines and therapeutic challenges. Curr Neuropharmacol 17(1):33–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N (2019) The classification of autosomal recessive cerebellar ataxias: a consensus statement from the society for research on the cerebellum and ataxias task force. Cerebellum. https://doi.org/10.1007/s12311-019-01052-2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Synofzik M, Puccio H, Mochel F, Schöls L (2019) Autosomal recessive cerebellar ataxias: paving the way toward targeted molecular therapies. Neuron 101(4):560–583

    Article  CAS  PubMed  Google Scholar 

  11. Gottesfeld JM (2019) Molecular mechanisms and therapeutics for the GAA·TTC expansion disease Friedreich ataxia. Neurotherapeutics. https://doi.org/10.1007/s13311-019-00764-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cook A, Boesch S, Heck S, Brunt E, Klockgether T, Schöls L, Schulz A, Giunti P (2019) Patient-reported outcomes in Friedreich’s ataxia after withdrawal from idebenone. Acta Neurol Scand 139(6):533–539

    Article  CAS  PubMed  Google Scholar 

  13. Pandolfo M, Arpa J, Delatycki MB, Le Quan Sang KH, Mariotti C, Munnich A, Sanz-Gallego I, Tai G, Tarnopolsky MA, Taroni F, Spino M, Tricta F (2014) Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann Neurol 76(4):509–521

    Article  CAS  PubMed  Google Scholar 

  14. Boesch S, Sturm B, Hering S, Scheiber-Mojdehkar B, Steinkellner H, Goldenberg H, Poewe W (2008) Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord 23(13):1940–1944

    Article  PubMed  Google Scholar 

  15. Lynch DR, Hauser L, McCormick A et al (2019) Randomized, double-blind, placebo-controlled study of interferon-γ 1b in Friedreich ataxia. Ann Clin Transl Neurol 6(3):546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lynch DR, Schadt K, Kichula E (2019) Etravirine in Friedreich’s ataxia: lessons from HIV? Mov Disord 34(3):305–306

    Article  PubMed  Google Scholar 

  17. Barca E, Emmanuele V, DiMauro S, Toscano A, Quinzii CM (2019) Anti-oxidant drugs: novelties and clinical implications in cerebellar ataxias. Curr Neuropharmacol 17(1):21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salviati L, Trevisson E, Doimo M, Navas P (eds) (2017) Primary coenzyme Q10 deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC, Stephens K, Amemiya A, Ledbetter N (eds) GeneReviews® [Internet]. University of Washington, Seattle, pp 1993–2017

  19. Fiorucci S, Distrutti E (2019) Chenodeoxycholic acid: an update on its therapeutic applications. Handb Exp Pharmacol. https://doi.org/10.1007/164_2019_226

    Article  PubMed  Google Scholar 

  20. Mohr I, Weiss KH (2019) Biochemical markers for the diagnosis and monitoring of wilson disease. Clin Biochem Rev 40(2):59–77

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zannolli R, Buoni S, Betti G, Salvucci S, Plebani A, Soresina A, Pietrogrande MC, Martino S, Leuzzi V, Finocchi A, Micheli R, Rossi LN, Brusco A, Misiani F, Fois A, Hayek J, Kelly C, Chessa L (2012) A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord 27(10):1312–1316

    Article  CAS  PubMed  Google Scholar 

  22. Pineda M, Juríčková K, Karimzadeh P, Kolnikova M, Malinova V, Insua JL, Velten C, Kolb SA (2019) Disease characteristics, prognosis and miglustat treatment effects on disease progression in patients with Niemann-Pick disease type C: an international, multicenter, retrospective chart review. Orphanet J Rare Dis 14(1):32

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bremova T, Malinová V, Amraoui Y, Mengel E, Reinke J, Kolníková M, Strupp M (2015) Acetyl-dl-leucine in Niemann-Pick type C: a case series. Neurology 85(16):1368–1375

    Article  CAS  PubMed  Google Scholar 

  24. Vibert N, Vidal PP (2001) In vitro effects of acetyl-DL-leucine (tanganil) on central vestibular neurons and vestibulo-ocular networks of the guinea-pig. Eur J Neurosci 13:735–748

    Article  CAS  PubMed  Google Scholar 

  25. Narita A, Shirai K, Itamura S, Matsuda A, Ishihara A, Matsushita K, Fukuda C, Kubota N, Takayama R, Shigematsu H, Hayashi A, Kumada T, Yuge K, Watanabe Y, Kosugi S, Nishida H, Kimura Y, Endo Y, Higaki K, Nanba E, Nishimura Y, Tamasaki A, Togawa M, Saito Y, Maegaki Y, Ohno K, Suzuki Y (2016) Ambroxol chaperone therapy for neuronopathic gaucher disease: a pilot study. Ann Clin Transl Neurol 3(3):200–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolf B (2017) Successful outcomes of older adolescents and adults with profound biotinidase deficiency identified by newborn screening. Genet Med 19(4):396–402

    Article  CAS  PubMed  Google Scholar 

  27. Szmulewicz DJ, McLean CA, Rodriguez ML, Chancellor AM, Mossman S, Lamont D, Roberts L, Storey E, Halmagyi GM (2014) Dorsal root ganglionopathy is responsible for the sensory impairment in CANVAS. Neurology 82(16):1410–1415

    Article  PubMed  PubMed Central  Google Scholar 

  28. Szmulewicz DJ, Roberts L, McLean CA, MacDougall HG, Halmagyi GM, Storey E (2016) Proposed diagnostic criteria for cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). Neurol Clin Pract 6(1):61–68

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moreno-Ajona D, Álvarez-Gómez L, Manrique-Huarte R, Rivas E, Martínez-Vila E, Pérez-Fernández N (2019) VEMPs and dysautonomia assessment in definite cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS): a case series study. Cerebellum. https://doi.org/10.1007/s12311-019-01061-1

    Article  Google Scholar 

  30. Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, Yau WY, Humphrey J, Jaunmuktane Z, Sivakumar P, Polke J, Ilyas M, Tribollet E, Tomaselli PJ, Devigili G, Callegari I, Versino M, Salpietro V, Efthymiou S, Kaski D, Wood NW, Andrade NS, Buglo E, Rebelo A, Rossor AM, Bronstein A, Fratta P, Marques WJ, Züchner S, Reilly MM, Houlden H (2019) Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet 51(4):649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rafehi H, Szmulewicz DJ, Bennett MF, Sobreira NLM, Pope K, Smith KR, Gillies G, Diakumis P, Dolzhenko E, Eberle MA, Barcina MG, Breen DP, Chancellor AM, Cremer PD, Delatycki MB, Fogel BL, Hackett A, Halmagyi GM, Kapetanovic S, Lang A, Mossman S, Mu W, Patrikios P, Perlman SL, Rosemergy I, Storey E, Watson SRD, Wilson MA, Zee DS, Valle D, Amor DJ, Bahlo M, Lockhart PJ (2019) Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am J Hum Genet 105(1):151–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zesiewicz TA, Wilmot G, Kuo SH, Perlman S, Greenstein PE, Ying SH, Ashizawa T, Subramony SH, Schmahmann JD, Figueroa KP et al (2018) Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology. Neurology 90(10):464–471

    Article  PubMed  PubMed Central  Google Scholar 

  33. Manes M, Alberici A, Di Gregorio E et al (2017) Docosahexaenoic acid is a beneficial replacement treatment for spinocerebellar ataxia 38. Ann Neurol 82(4):615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gómez-Ruiz M, Rodríguez-Cueto C, Luna-Piñel E, Hernández-Gálvez M, Fernández-Ruiz J (2019) Endocannabinoid system in spinocerebellar ataxia type-3 and other autosomal-dominant cerebellar ataxias: potential role in pathogenesis and expected relevance as neuroprotective targets. Front Mol Neurosci 12:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griggs RC, Moxley RT 3rd, Lafrance RA, McQuillen J (1978) Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 28(12):1259–1264

    Article  CAS  PubMed  Google Scholar 

  36. Strupp M, Kalla R, Dichgans M, Freilinger T, Glasauer S, Brandt T (2004) Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 62(9):1623–1625

    Article  CAS  PubMed  Google Scholar 

  37. Strupp M, Kalla R, Claassen J, Adrion C, Mansmann U, Klopstock T, Freilinger T, Neugebauer H, Spiegel R, Dichgans M, Lehmann-Horn F, Jurkat-Rott K, Brandt T, Jen JC, Jahn K (2011) A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 77(3):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strupp M, Teufel J, Zwergal A, Schniepp R, Khodakhah K, Feil K (2017) Aminopyridines for the treatment of neurologic disorders. Neurol Clin Pract 7(1):65–76

    Article  PubMed  PubMed Central  Google Scholar 

  39. Etzion Y, Grossman Y (2001) Highly 4-aminopyridine sensitive delayed rectifier current modulates the excitability of guinea pig cerebellar Purkinje cells. Exp Brain Res 139:419–425

    Article  CAS  PubMed  Google Scholar 

  40. Alvina K, Khodakhah K (2010) The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci 30:7258–7268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hourez R, Servais L, Orduz D et al (2011) Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 31:11795–11807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strupp M, Zwergal A, Brandt T (2007) Episodic ataxia type 2. Neurotherapeutics 4:267–273

    Article  CAS  PubMed  Google Scholar 

  43. Wagner JN, Glaser M, Brandt T, Strupp M (2008) Downbeat nystagmus: aetiology and comorbidity in 117 patients. J Neurol Neurosurg Psychiatry 79:672–677

    Article  CAS  PubMed  Google Scholar 

  44. Kalla R, Deutschlander A, Hufner K et al (2006) Detection of floccular hypometabolism in downbeat nystagmus by fMRI. Neurology 66:281–283

    Article  CAS  PubMed  Google Scholar 

  45. Strupp M, Schüler O, Krafczyk S, Jahn K, Schautzer F, Büttner U, Brandt T (2003) Treatment of downbeat nystagmus with 3,4-diaminopyridine: a placebo-controlled study. Neurology 61(2):165–170

    Article  CAS  PubMed  Google Scholar 

  46. Claassen J, Spiegel R, Kalla R et al (2013) A randomised double-blind, cross-over trial of 4-aminopyridine for downbeat nystagmus–effects on slowphase eye velocity, postural stability, locomotion and symptoms. J Neurol Neurosurg Psychiatry 84:1392–1399

    Article  PubMed  Google Scholar 

  47. Ilg W, Bastian AJ, Boesch S et al (2014) Consensus paper: management of degenerative cerebellar disorders. Cerebellum 13:248–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Claassen J, Feil K, Bardins S et al (2013) Dalfampridine in patients with downbeat nystagmus: an observational study. J Neurol 260:1992–1996

    Article  CAS  PubMed  Google Scholar 

  49. Schniepp R, Wuehr M, Neuhaeusser M, Benecke AK, Adrion C, Brandt T, Strupp M, Jahn K (2012) 4-aminopyridine and cerebellar gait: a retrospective case series. J Neurol 259:2491–2493

    Article  PubMed  Google Scholar 

  50. Giordano I, Bogdanow M, Jacobi H, Jahn K, Minnerop M, Schoels L et al (2013) Experience in a short-term trial with 4-aminopyridine in cerebellar ataxia. J Neurol 260:2175–2176

    Article  CAS  PubMed  Google Scholar 

  51. van Dun K, Bodranghien F, Manto M, Mariën P (2014) Targeting the cerebellum by noninvasive neurostimulation: a review. Cerebellum 16(3):695–741

    Article  Google Scholar 

  52. Oldrati V, Schutter D (2018) Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum 17(2):228–236

    Article  PubMed  Google Scholar 

  53. Bodranghien F, Oulad Ben Taib N, Van Maldergem L, Manto M (2017) A postural tremor highly responsive to transcranial cerebello-cerebral DCS in ARCA3. Front Neurol 8:71

    Article  PubMed  PubMed Central  Google Scholar 

  54. Benussi A, Koch G, Cotelli M, Padovani A, Borroni B (2015) Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord 30(12):1701–1705

    Article  PubMed  Google Scholar 

  55. Benussi A, Dell'Era V, Cotelli MS, Turla M, Casali C, Padovani A, Borroni B (2017) Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul 10(2):242–250

    Article  PubMed  Google Scholar 

  56. Benussi A, Dell'Era V, Cantoni V, Bonetta E, Grasso R, Manenti R, Cotelli M, Padovani A, Borroni B (2018) Cerebello-spinal tDCS in ataxia: a randomized, double-blind, sham-controlled, crossover trial. Neurology 91(12):e1090–e1101

    Article  PubMed  Google Scholar 

  57. Klockgether T, Mariotti C, Paulson HL (2019) Spinocerebellar ataxia. Nat Rev Dis Primers 5(1):24

    Article  PubMed  Google Scholar 

  58. Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W, Figueroa KP, Hung G, Rigo F, Bennett CF, Otis TS, Pulst SM (2017) Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 544(7650):362–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG, Gattis D, Hung G, Kordasiewicz HB, Paulson HL, McLoughlin HS (2017) Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol Ther Nucleic Acids 7:200–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McLoughlin HS, Moore LR, Chopra R, Komlo R, McKenzie M, Blumenstein KG, Zhao H, Kordasiewicz HB, Shakkottai VG, Paulson HL (2018) Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann Neurol 84(1):64–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pérez Ortiz JM, Orr HT (2018) Spinocerebellar ataxia type 1: molecular mechanisms of neurodegeneration and preclinical studies. Adv Exp Med Biol 1049:135–145

    Article  CAS  PubMed  Google Scholar 

  62. Cendelin J, Buffo A, Hirai H, Magrassi L, Mitoma H, Sherrard R, Vozeh F, Manto M (2019) Task force paper on cerebellar transplantation: are we ready to treat cerebellar disorders with cell therapy? Cerebellum 18(3):575–592

    Article  CAS  PubMed  Google Scholar 

  63. Piguet F, de Montigny C, Vaucamps N, Reutenauer L, Eisenmann A, Puccio H (2018) Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol Ther 26(8):1940–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gérard C, Xiao X, Filali M, Coulombe Z, Arsenault M, Couet J, Li J, Drolet MC, Chapdelaine P, Chikh A, Tremblay JP (2014) An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Mol Ther Methods Clin Dev 1:14044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nayler S, Kozlov SV, Lavin MF, Wolvetang E (2017) Lentiviral reprogramming of A-T patient fibroblasts to induced pluripotent stem cells. Methods Mol Biol 1599:401–418

    Article  CAS  PubMed  Google Scholar 

  66. Carranza D, Torres-Rusillo S, Ceballos-Pérez G, Blanco-Jimenez E, Muñoz-López M, García-Pérez JL, Molina IJ (2018) Reconstitution of the ataxia-telangiectasia cellular phenotype with lentiviral vectors. Front Immunol 9:2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dezawa M, Ishikawa H, Hoshino M, Itokazu Y, Nabeshima Y (2005) Potential of bone marrow stromal cells in applications for neuro-degenerative, neuro-traumatic and muscle degenerative diseases. Curr Neuropharmacol 3(4):257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hayashi T, Onoe H (2013) Neuroimaging for optimization of stem cell therapy in Parkinson’s disease. Expert Opin Biol Ther 13(12):1631–1638

    Article  CAS  PubMed  Google Scholar 

  69. Choumerianou DM, Dimitriou H, Kalmanti M (2008) Stem cells: promises versus limitations. Tissue Eng Part B Rev 14(1):53–60

    Article  CAS  PubMed  Google Scholar 

  70. Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, Cheong JW, Jeong Y, Park HJ, Kim DJ, Nam CM, Lee JD, Kim HO, Sohn YH (2012) A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 72(1):32–40

    Article  PubMed  Google Scholar 

  71. Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H (2014) Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum 13(3):323–330

    Article  CAS  PubMed  Google Scholar 

  72. Oliveira Miranda C, Marcelo A, Silva TP, Barata J, Vasconcelos-Ferreira A, Pereira D, Nóbrega C, Duarte S, Barros I, Alves J, Sereno J, Petrella LI, Castelhano J, Paiva VH, Rodrigues-Santos P, Alves V, Nunes-Correia I, Nobre RJ, Gomes C, Castelo-Branco M, Pereira de Almeida L (2018) Repeated mesenchymal stromal cell treatment sustainably alleviates machado-joseph disease. Mol Ther 26(9):2131–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Manto.

Ethics declarations

Conflicts of interest

M.M. is Chief Editor of The Cerebellum, Chief Editor of Cerebellum and Ataxias, Deputy Editor of the Journal of NeuroEngineeing and Rehabilitation, Editor of Contemporary Clinical Neurosciences. He has received royalties from Cambrige University Press, Springer, Lavoisier Medecine, Elsevier, Morgan and Claypool. M.S. is Joint Chief Editor of the Journal of Neurology, Editor in Chief of Frontiers of Neuro-otology and Section Editor of F1000. He has received speaker’s honoraria from Abbott, Actelion, Auris Medical, Biogen, Eisai, Gr€unenthal, GSK, Henning Pharma, Interacoustics, Merck, MSD, Otometrics, Pierre-Fabre, TEVA, UCB. He is a shareholder of IntraBio. He acts as a consultant for Abbott, Actelion, AurisMedical, Heel, IntraBio, and Sensorion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandini, J., Manto, M., Bremova-Ertl, T. et al. The neurological update: therapies for cerebellar ataxias in 2020. J Neurol 267, 1211–1220 (2020). https://doi.org/10.1007/s00415-020-09717-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-09717-3

Keywords