Skip to main content

Advertisement

Kennedy’s disease (spinal and bulbar muscular atrophy): a clinically oriented review of a rare disease

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy’s disease, is a rare, X-linked hereditary lower motor neuron disease, characterized by progressive muscular weakness. An expanded trinucleotide repeat (CAG > 37) in the androgen receptor gene (AR), encoding glutamine, is the mutation responsible for Kennedy’s disease. Toxicity of this mutant protein affects both motor neurons and muscles. In this review, we provide a comprehensive, clinically oriented overview of the current literature regarding Kennedy’s disease, highlighting gaps in our knowledge that remain to be addressed in further research. Kennedy’s disease mimics are also discussed, as are ongoing and recently completed therapeutic endeavours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. La Spada AR, Wilson EM, Lubahn DB et al (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79. https://doi.org/10.1038/352077a0

    Article  PubMed  Google Scholar 

  2. Pennuto M, Rinaldi C (2017) From gene to therapy in spinal and bulbar muscular atrophy: are we there yet? Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.07.005

    Article  PubMed  Google Scholar 

  3. Kennedy WR, Alter M, Sung JH (1968) Progressive proximal spinal and bulbar muscular atrophy of late onset. Neurology 18

  4. Harding AE, Thomas PK, Baraitser M et al (1982) X-linked recessive bulbospinal neuronopathy: a report of ten cases. J Neurol Neurosurg Psychiatry 45:1012–1019. https://doi.org/10.1136/jnnp.45.11.1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koutsis G, Kladi A, Breza M et al (2015) Spinobulbar muscular atrophy (Kennedy’s disease): a rare diagnosis in the Greek population. J Neurol Sci 359:450–451. https://doi.org/10.1016/j.jns.2015.10.021

    Article  PubMed  Google Scholar 

  6. Fratta P, Nirmalananthan N, Masset L et al (2014) Correlation of clinical and molecular features in spinal bulbar muscular atrophy. Neurology 82:2077–2084. https://doi.org/10.1212/WNL.0000000000000507

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mariotti C, Castellotti B, Pareyson D et al (2000) Phenotypic manifestations associated with CAG-repeat expansion in the androgen receptor gene in male patients and heterozygous females: a clinical and molecular study of 30 families. Neuromuscul Disord 10:391–397. https://doi.org/10.1016/S0960-8966(99)00132-7

    Article  CAS  PubMed  Google Scholar 

  8. Fischbeck KH (1997) Kennedy disease. J Inherit Metab Dis 20:152–158. https://doi.org/10.1023/A:1005344403603

    Article  CAS  PubMed  Google Scholar 

  9. Guidetti D, Sabadini R, Ferlini A, Torrente I (2001) Epidemiological survey of X-linked bulbar and spinal muscular atrophy, or Kennedy disease, in the province of Reggio Emilia, Italy. Eur J Epidemiol 17:587–591. https://doi.org/10.1023/A:1014580219761

    Article  CAS  PubMed  Google Scholar 

  10. Udd B, Juvonen V, Hakamies L et al (1998) High prevalence of Kennedy’s disease in Western Finland—is the syndrome underdiagnosed? Acta Neurol Scand 98:128–133

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka F, Doyu M, Ito Y et al (1996) Founder effect in spinal and bulbar muscular atrophy (SBMA). Hum Mol Genet 5:1253–1257. https://doi.org/10.1093/hmg/5.9.1253

    Article  CAS  PubMed  Google Scholar 

  12. Li M, Miwa S, Kobayashi Y et al (1998) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 44:249–254. https://doi.org/10.1002/ana.410440216

    Article  CAS  PubMed  Google Scholar 

  13. Grunseich C, Fischbeck KH (2015) Spinal and bulbar muscular atrophy. Neurol Clin 33:847–854. https://doi.org/10.1016/j.ncl.2015.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Amato A, Prior TW, Barohn RJ et al (1993) Kennedy’s disease: a clinicopathologic correlation with mutations in the androgen receptor gene. Neurology 43:791–794

    Article  CAS  PubMed  Google Scholar 

  15. Cortes CJ, Ling SC, Guo LT et al (2014) Muscle expression of mutant androgen receptor accounts for systemic and motor neuron disease phenotypes in spinal and bulbar muscular atrophy. Neuron 82:295–307. https://doi.org/10.1016/j.neuron.2014.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adachi H, Katsuno M, Minamiyama M et al (2005) Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain 128:659–670. https://doi.org/10.1093/brain/awh381

    Article  PubMed  Google Scholar 

  17. Rinaldi C, Bott LC, Fischbeck KH (2014) Muscle matters in Kennedy’s disease. Neuron 82:251–253. https://doi.org/10.1016/j.neuron.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rocchi A, Milioto C, Parodi S et al (2016) Glycolytic to oxidative fiber type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high fat diet. Acta Neuropathol 132:127–144. https://doi.org/10.1007/s00401-016-1550-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ishihara H, Kanda F, Nishio H et al (2001) Clinical features and skewed X-chromosome inactivation in female carriers of X-linked recessive spinal and bulbar muscular atrophy. J Neurol 248:856–860. https://doi.org/10.1007/s004150170069

    Article  CAS  PubMed  Google Scholar 

  20. La Spada A (1996) Spinal and bulbar muscular atrophy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews®. University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1333/. Accessed 10 mar 2018

    Google Scholar 

  21. Biancalana V, Serville F, Pommier J et al (1992) Moderate instability of the trinucleotide repeat in spinobulbar muscular atrophy. Hum Mol Genet 1:255–258

    Article  CAS  PubMed  Google Scholar 

  22. Atsuta N, Watanabe H, Ito M et al (2006) Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. Brain 129:1446–1455. https://doi.org/10.1093/brain/awl096

    Article  PubMed  Google Scholar 

  23. Grunseich C, Kats IR, Bott LC et al (2014) Early onset and novel features in a spinal and bulbar muscular atrophy patient with a 68 CAG repeat. Neuromuscul Disord 24:978–981. https://doi.org/10.1016/j.nmd.2014.06.441

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kooy RF, Reyniers E, Storm K et al (1999) CAG Repeat contraction in the androgen receptor gene in three brothers with mental retardation. Am J Med Genet 213:209–213

    Article  Google Scholar 

  25. Kuhlenbäumer G, Kress W, Ringelstein EB, Stögbauer F (2001) Thirty-seven CAG repeats in the androgen receptor gene in two healthy individuals. J Neurol 248:23–26. https://doi.org/10.1007/s004150170265

    Article  PubMed  Google Scholar 

  26. Koutsis G, Karadima G, Kladi A, Panas M (2014) Late-onset Huntington’s disease: diagnostic and prognostic considerations. Parkinsonism Relat Disord 20:726–730. https://doi.org/10.1016/j.parkreldis.2014.03.017

    Article  PubMed  Google Scholar 

  27. Chahin N, Sorenson EJ (2009) Serum creatine kinase levels in spinobulbar muscular atrophy and amyotrophic lateral sclerosis. Muscle Nerve 40:126–129. https://doi.org/10.1002/mus.21310

    Article  CAS  PubMed  Google Scholar 

  28. Rhodes LE, Freeman BK, Auh S et al (2009) Clinical features of spinal and bulbar muscular atrophy. Brain 132:3242–3251. https://doi.org/10.1093/brain/awp258

    Article  PubMed  PubMed Central  Google Scholar 

  29. Querin G, Bertolin C, Da Re E et al (2015) Non-neural phenotype of spinal and bulbar muscular atrophy: results from a large cohort of Italian patients. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2015-311305

    Article  PubMed  PubMed Central  Google Scholar 

  30. Manzano R, Sorarú G, Grunseich C et al (2018) Beyond motor neurons: expanding the clinical spectrum in Kennedy’ s disease. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2017-316961

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hijikata Y, Hashizume A, Yamada S et al (2018) Biomarker-based analysis of preclinical progression in spinal and bulbar muscular atrophy. Neurology. https://doi.org/10.1212/WNL.0000000000005360.

    Article  PubMed  Google Scholar 

  32. Rhodes LE, Freeman BK, Auh S et al (2009) Clinical features of spinal and bulbar muscular atrophy. Brain 25:285–287. https://doi.org/10.1093/brain/awp258

    Article  Google Scholar 

  33. Parboosingh JS, Figlewicz D, Krizus A et al (1997) Spinobulbar muscular atrophy can mimic ALS: the importance of genetic testing in male patients with atypical ALS. Neurology 49:568–572. https://doi.org/10.1212/WNL.49.2.568

    Article  CAS  PubMed  Google Scholar 

  34. Ferrante M, Wilbourn AJ (1997) The characteristic electrodiagnostic features of Kennedy’s disease. Muscle Nerve 20:323–329

    Article  CAS  PubMed  Google Scholar 

  35. Garg N, Park SB, Vucic S et al (2016) Differentiating lower motor neuron syndromes. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2016-313526

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fischbeck KH (2016) Spinal and Bulbar Muscular Atrophy. J Mol Neurosci 58:317. https://doi.org/10.1007/s12031-015-0674-7

    Article  CAS  PubMed  Google Scholar 

  37. Sumner CJ, Fischbeck KH (2002) Jaw drop in Kennedy’s disease. Neurology 59:1471–1472. https://doi.org/10.1212/01.WNL.0000033325.01878.13

    Article  PubMed  Google Scholar 

  38. Praline J, Guennoc AM, Malinge MC et al (2008) Pure bulbar motor neuron involvement linked to an abnormal CAG repeat expansion in the androgen receptor gene. Amyotroph Lateral Scler 9:40–42. https://doi.org/10.1080/17482960701553915

    Article  CAS  PubMed  Google Scholar 

  39. Araki K, Nakanishi H, Nakamura T et al (2015) Myotonia-like symptoms in a patient with spinal and bulbar muscular atrophy. Neuromuscul Disord 25:913–915. https://doi.org/10.1016/j.nmd.2015.08.006

    Article  PubMed  Google Scholar 

  40. Finsterer J, Soraru G (2015) Onset manifestations of spinal and bulbar muscular atrophy (Kennedy’s disease). J Mol Neurosci. https://doi.org/10.1007/s12031-015-0663-x

    Article  PubMed  Google Scholar 

  41. Finsterer J (2009) Bulbar and spinal muscular atrophy (Kennedy’s disease): a review. Eur J Neurol 16:556–561. https://doi.org/10.1111/j.1468-1331.2009.02591.x

    Article  CAS  PubMed  Google Scholar 

  42. Nishiyama A, Sugeno N, Tateyama M et al (2014) Postural leg tremor in X-linked spinal and bulbar muscular atrophy. J Clin Neurosci 21:799–802. https://doi.org/10.1016/j.jocn.2013.07.026

    Article  PubMed  Google Scholar 

  43. Warnecke T, Oelenberg S, Teismann I et al (2009) Dysphagia in X-linked bulbospinal muscular atrophy (Kennedy disease). Neuromuscul Disord 19:704–708. https://doi.org/10.1016/j.nmd.2009.06.371

    Article  PubMed  Google Scholar 

  44. Hashizume A, Banno H, Katsuno M et al (2017) Quantitative assessment of swallowing dysfunction in patients with spinal and bulbar muscular atrophy. Intern Med 56:3159–3165. https://doi.org/10.2169/internalmedicine.8799-16

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sperfeld AD, Hanemann CO, Ludolph AC, Kassubek J (2005) Laryngospasm: an underdiagnosed symptom of X-linked spinobulbar muscular atrophy. Neurology 64:753–754. https://doi.org/10.1212/01.WNL.0000151978.74467.E7

    Article  PubMed  Google Scholar 

  46. Finsterer J (2010) Perspectives of Kennedy’s disease. J Neurol Sci 298:1–10. https://doi.org/10.1016/j.jns.2010.08.025

    Article  CAS  PubMed  Google Scholar 

  47. Pedroso JL, Vale TC, Barsottini OG et al (2018) Perioral and tongue fasciculations in Kennedy’s disease. Neurol Sci 39:777–779. https://doi.org/10.1007/s10072-017-3170-8

    Article  PubMed  Google Scholar 

  48. Jokela ME, Udd B (2015) Diagnostic clinical, electrodiagnostic and muscle pathology features of spinal and bulbar muscular atrophy. J Mol Neurosci. https://doi.org/10.1007/s12031-015-0684-5

    Article  PubMed  Google Scholar 

  49. Rocchi C, Greco V, Urbani A, Giorgio A (2011) Subclinical autonomic dysfunction in spinobulbar muscular atrophy. Muscle Nerve 44:737–740. https://doi.org/10.1002/mus.22159

    Article  PubMed  Google Scholar 

  50. Romigi A, Liguori C, Placidi F et al (2014) Sleep disorders in spinal and bulbar muscular atrophy (Kennedy’s disease): a controlled polysomnographic and self-reported questionnaires study. J Neurol 261:889–893. https://doi.org/10.1007/s00415-014-7293-z

    Article  PubMed  Google Scholar 

  51. Araki A, Katsuno M, Suzuki K et al (2014) Brugada syndrome in spinal and bulbar muscular atrophy. Neurology 82:1813–1821. https://doi.org/10.1212/WNL.0000000000000434

    Article  PubMed  Google Scholar 

  52. Rosenbohm A, Hirsch S, Volk AE et al (2018) The metabolic and endocrine characteristics in spinal and bulbar muscular atrophy. J Neurol 265:1–11. https://doi.org/10.1007/s00415-018-8790-2

    Article  CAS  Google Scholar 

  53. Guber RD, Takyar V, Kokkinis A et al (2017) Nonalcoholic fatty liver disease in spinal and bulbar muscular atrophy. Neurology 89:2481–2490. https://doi.org/10.1212/WNL.0000000000004748

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kassubek J, Juengling FD, Sperfeld A (2007) Widespread white matter changes in Kennedy disease: a voxel based morphometry study. J Neurol Neurosurg Psychiatry 78:1209–1213. https://doi.org/10.1136/jnnp.2006.112532

    Article  PubMed  PubMed Central  Google Scholar 

  55. Soukup GR, Sperfeld AD, Uttner I et al (2009) Frontotemporal cognitive function in X-linked spinal and bulbar muscular atrophy (SBMA): a controlled neuropsychological study of 20 patients. J Neurol 256:1869–1875. https://doi.org/10.1007/s00415-009-5212-5

    Article  PubMed  Google Scholar 

  56. Di Rosa E, Sorarù G, Kleinbub JR et al (2014) Theory of mind, empathy and neuropsychological functioning in X-linked Spinal and Bulbar Muscular Atrophy: a controlled study of 20 patients. J Neurol 262:394–401. https://doi.org/10.1007/s00415-014-7567-5

    Article  PubMed  Google Scholar 

  57. Lai TH, Liu RS, Yang BH et al (2013) Cerebral involvement in spinal and bulbar muscular atrophy (Kennedy’s disease): a pilot study of PET. J Neurol Sci 335:139–144. https://doi.org/10.1016/j.jns.2013.09.016

    Article  PubMed  Google Scholar 

  58. Sperfeld AD, Karitzky J, Brummer D et al (2002) X-linked bulbospinal neuronopathy. Arch Neurol 59:1921. https://doi.org/10.1001/archneur.59.12.1921

    Article  PubMed  Google Scholar 

  59. Igarashi S, Tanno Y, Onodera O et al (1992) Strong correlation between the number of CAG repeats in androgen receptor genes and the clinical onset of features of spinal and bulbar muscular atrophy. Neurology 42:2300–2302

    Article  CAS  PubMed  Google Scholar 

  60. Nakatsuji H, Araki A, Hashizume A et al (2017) Correlation of insulin resistance and motor function in spinal and bulbar muscular atrophy. J Neurol 264:839–847. https://doi.org/10.1007/s00415-017-8405-3

    Article  CAS  PubMed  Google Scholar 

  61. Sobue G, Doyu M, Kachi T et al (1993) Subclinical phenotypic expressions in heterozygous females of X-linked recessive bulbospinal neuronopathy. J Neurol Sci 117:74–78. https://doi.org/10.1016/0022-510X(93)90157-T

    Article  CAS  PubMed  Google Scholar 

  62. Manganelli F, Iodice V, Provitera V et al (2007) Small-fiber involvement in spinobulbar muscular atrophy (Kennedy’s disease). Muscle Nerve 36:816–820. https://doi.org/10.1002/mus.20872

    Article  PubMed  Google Scholar 

  63. Antonini G, Gragnani F, Romaniello A et al (2000) Sensory involvement in spinal-bulbar muscular atrophy (Kennedy’s disease). Muscle Nerve 23:252–258

    Article  CAS  PubMed  Google Scholar 

  64. Banno H (2012) Molecular pathophysiology and disease-modifying therapies for spinal and bulbar muscular atrophy. Arch Neurol 69:436. https://doi.org/10.1001/archneurol.2011.2308

    Article  PubMed  Google Scholar 

  65. Meriggioli MN, Rowin J, Sanders DB (1999) Distinguishing clinical and electrodiagnostic features of X-linked bulbospinal neuronopathy. Muscle Nerve 22:1693–1697

    Article  CAS  PubMed  Google Scholar 

  66. Fernández-Rhodes LE, Kokkinis AD, White MJ et al (2011) Efficacy and safety of dutasteride in patients with spinal and bulbar muscular atrophy: a randomised placebo-controlled trial. Lancet Neurol 10:140–147. https://doi.org/10.1016/S1474-4422(10)70321-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dahlqvist JR, Vissing J (2016) Exercise therapy in spinobulbar muscular atrophy and other neuromuscular disorders. J Mol Neurosci 58:388–393. https://doi.org/10.1007/s12031-015-0686-3

    Article  CAS  PubMed  Google Scholar 

  68. Katsuno M, Adachi H, Doyu M et al (2003) Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat Med 9:768–773. https://doi.org/10.1038/nm878

    Article  CAS  PubMed  Google Scholar 

  69. Banno H, Katsuno M, Suzuki K et al (2009) Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy. Ann Neurol 65:140–150. https://doi.org/10.1002/ana.21540

    Article  CAS  PubMed  Google Scholar 

  70. Hashizume A, Katsuno M, Suzuki K et al (2017) Long-term treatment with leuprorelin for spinal and bulbar muscular atrophy: Natural history-controlled study. J Neurol Neurosurg Psychiatry 88:1026–1032. https://doi.org/10.1136/jnnp-2017-316015

    Article  PubMed  Google Scholar 

  71. Querin G, D’Ascenzo C, Peterle E et al (2013) Pilot trial of clenbuterol in spinal and bulbar muscular atrophy. Neurology 80:2095–2098. https://doi.org/10.1212/WNL.0b013e318295d766

    Article  CAS  PubMed  Google Scholar 

  72. Pourshafie N, Lee PR, Chen K et al (2016) MiR-298 counteracts mutant androgen receptor toxicity in spinal and bulbar muscular atrophy. Mol Ther. https://doi.org/10.1038/mt.2016.13

    Article  PubMed  PubMed Central  Google Scholar 

  73. Weydt P, Sagnelli A, Rosenbohm A et al (2015) Clinical trials in spinal and bulbar muscular atrophy—past, present, and future. J Mol Neurosci. https://doi.org/10.1007/s12031-015-0682-7

    Article  PubMed  Google Scholar 

  74. Pareyson D, Fratta P, Pradat P et al (2016) Towards a european registry and biorepository for patients with spinal and bulbar muscular atrophy. J Mol Neurosci. https://doi.org/10.1007/s12031-015-0704-5

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianthi Breza.

Ethics declarations

Ethical approval

Institutional Review Board approval was not required for this paper, because it is a review of previously published articles.

Conflicts of interest

None of the authors have any financial disclosure to make or have any conflict of interest relevant to the manuscript. G. Koutsis has received research grants from Genesis Pharma and Teva, consultation fees, advisory boards and honoraria from Genzyme, Genesis Pharma, Teva, and Novartis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video legend: Fasciculations of tongue in a 61-year-old SBMA patient with wasting of the tongue, scalloping of the borders, and midline furrowing. (MOV 15253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breza, M., Koutsis, G. Kennedy’s disease (spinal and bulbar muscular atrophy): a clinically oriented review of a rare disease. J Neurol 266, 565–573 (2019). https://doi.org/10.1007/s00415-018-8968-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8968-7

Keywords