Skip to main content

Advertisement

Apoptotic cascades as possible targets for inhibiting cell death in Huntington’s disease

  • REVIEW
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a devastating autosomal dominant disorder characterized by progressive motor and neuropsychological symptoms. Evidence implicating the apoptotic cascades as a possible cause for the neurodegeneration seen in HD has directed researchers toward investigating therapeutic treatments targeting caspases and other proapoptotic factors. Cellular and murine models, which have demonstrated that caspase-mediated cleavage could be the cause for the neurodegeneration seen in HD, have evoked more research investigating the possible inhibition of apoptosis in HD. In particular, minocycline, a tetracycline-derived antibiotic that has been shown to increase survival in transgenic mouse models of HD, exhibits a neuroprotective feature in HD and demonstrates an anti-inflammatory as well as an anti-microbial effect by inhibiting microglial activation known to cause apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almqvist E, Spence N, Nichol K, Andrew SE, Vesa J, Peltonen L, et al. (1995) Ancestral differences in the distribution of the delta 2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes: insights into the genetic evolution of Huntington’s disease. Hum Mol Genet 4:207–214

    PubMed  CAS  Google Scholar 

  2. Arregui L, Segovia J (2004) Molecular Strategies for the Treatment of Huntington’s Disease. Curr Pharmacogenom 2:299–311

    Article  CAS  Google Scholar 

  3. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–834

    Article  PubMed  CAS  Google Scholar 

  4. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    Article  PubMed  CAS  Google Scholar 

  5. Berger, Abi (2000) Minocycline slows progress of Huntington’s disease in mice. BMJ 321:70

    Article  PubMed  Google Scholar 

  6. Bonelli RM, Heuberger C, Reisecker F (2003) Minocycline for Huntington’s Disease: An open label study. Neurology 60:883–884

    PubMed  Google Scholar 

  7. Bonelli RM, Hödl AK, Hofmann P, Kapfhammer HP (2004) Neuroprotection in Huntington’s disease: a 2-year study on minocycline. Intl Clin Psychopharmacol 19:337–342

    Article  Google Scholar 

  8. Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden MR (1997) The likelihood of being affected with Huntington’s disease at a particular age, for a specific CAG size. Am J Hum Genet 60:1202–1210

    PubMed  CAS  Google Scholar 

  9. Carmichael J, Chatellier J, Woolfson A, Milstein C, Gersht AR, Rubinsztein DC (2000) Bacterial and Yeast Chaperones Reduce Both Aggregate Formation and Cell Death in Mammalian Cell Models of Huntington’s Disease. Proc Natl Acad Sci U S A 97:9701–9705

    Article  PubMed  CAS  Google Scholar 

  10. Chan SL, Mattson MP (1999) Caspase and Calpain Substrates: Roles in Synaptic Plasticity and Cell Death. J Neurosci Res 58:167–190

    Article  PubMed  CAS  Google Scholar 

  11. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    Article  PubMed  CAS  Google Scholar 

  12. Clarke PGH (1990) Developmental Cell Death:morphological diversity and multiple mechanisms. Anat Embryol 181:195–213

    Article  PubMed  CAS  Google Scholar 

  13. Cooper NR, Kalaria RN, McGeer PL, Rogers J (2000) Key issues in Alzheimer’s disease inflammation. Neurobiol Aging 21:451–453

    Article  PubMed  CAS  Google Scholar 

  14. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  PubMed  CAS  Google Scholar 

  15. Ferrer I, Puig B, Krupinski J, Carmona M, Blanco R (2001) Fas and Fas ligand expression Alzheimer’s disease. Acta Neuropathol (Berl) 102:121–131

    CAS  Google Scholar 

  16. Forno LS, Norville RL (1979) Ultrastructure of the neostriatum in Huntington’s and Parkinson’s disease. Adv Neurol 23:123–135

    Google Scholar 

  17. Friedlander, Robert M. (2003) Apoptosis and Caspases in Neurodegenerative Diseases. N Engl J Med 348:1365–1375

    Article  PubMed  CAS  Google Scholar 

  18. Gu Y, Wu J, Faucheu C, Lalanne JL, Diu A, Livingston DH, Su MS (1995) Interleukin-1 beta converting enzyme requires oligomerization for activity of processed forms in vivo. EMBO J 14:1923–1931

    PubMed  CAS  Google Scholar 

  19. Harper PS (1996) Huntington’s Disease. 2nd ed. Saunders, London

    Google Scholar 

  20. He Y, Appel S, Le W (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydrozydopamine injection into mouse striatum. Brain Res 909:187–193

    Article  PubMed  CAS  Google Scholar 

  21. Hickey MA, Chesselet MF (2003) Apoptosis in Huntington’s Disease. Prog Neuropsychopharmacol Biol Psychiatry 27:255–265

    Article  PubMed  CAS  Google Scholar 

  22. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM, Hayden MR (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192

    Article  PubMed  CAS  Google Scholar 

  23. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosome. Cell 72:971–983

    Article  Google Scholar 

  24. Kahlem P, Terre C, Green H, Djian P (1996) Peptides containing glutamine repeats as substrates for transglutaminase-catalyzed cross-linking: relevance to diseases of the nervous system. Proc Natl Acad Sci U S A 93:14580–14585

    Article  PubMed  CAS  Google Scholar 

  25. Kegel KB, Meloni AR, Yi Y, Kim YJ, Doyle D, Cuiffo BG, et al. (2002) Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J Biol Chem 277:7466–7476

    Article  PubMed  CAS  Google Scholar 

  26. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondrial: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  27. Koliatsos VE, Portera-Cailliau C, Schilling G, Borchelt DB, Becher MW, Ross CA (2001) Apoptosis in Huntington Disease and Animal Models. Adv Cell Aging Gerontol 6:205–223

    Article  CAS  Google Scholar 

  28. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature [Suppl 6738] 399:A7–A14

    CAS  Google Scholar 

  29. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  30. Mallat M, Marin-Teva JL, Cheret C (2005) Phagocytosis in the developing CNS: more than clearing the corpses. Curr Opin Neurobiol 15:101–107

    Article  PubMed  CAS  Google Scholar 

  31. McGeer EG, McGeer PL (1999) Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Des 5:821– 836

    PubMed  CAS  Google Scholar 

  32. Nakagawa T., et al. (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  33. Norremolle A, Riess O, Epplen JT, Fenger K, Hasholt L, Sorensen SA (1993) Trinucleotide repeat elongation in the Huntingtin gene in Huntington disease patients from 71 Danish families. Hum Mol Genet 2:1475– 1476

    PubMed  CAS  Google Scholar 

  34. Passani LA, Bedford MT, Faber PW, McGinnis KM, Sharp AH, Gusella JF, et al. (2000) Huntingtin’s WW domain partners in Huntington’s disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington’s disease pathogenesis. Hum Mol Genet 9:2175–2182

    Article  PubMed  CAS  Google Scholar 

  35. Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A 91:5355–5358

    Article  PubMed  CAS  Google Scholar 

  36. Rangone H, Humbert S, Saudou F (2004) Huntington’s disease: how does huntingtin, an anti-apoptotic protein, become toxic? Pathol Biol 52:338–342

    Article  PubMed  CAS  Google Scholar 

  37. Rothwell NJ, Luheshi G, Toulmond S (1996) Cytokines and their receptors in the central nervous system: physiology, pharmacology, and pathology. Pharmacol Ther 69:85–95

    Article  PubMed  CAS  Google Scholar 

  38. Sapp E, Ge P, Aizawa H, Bird E, Penney J, Young AB, et al. (1995) Evidence for a preferential loss of enkephalin immunoreactivity in the eternal globus pallidus in low grade Huntington’s disease using high resolution image analysis. Neuroscience 64:397–404

    Article  PubMed  CAS  Google Scholar 

  39. Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin Acts in the Nucleus to induce Apoptosis but Death Does Not Correlate with the formation of intranuclear inclusions. Cell 95:55–66

    Article  PubMed  CAS  Google Scholar 

  40. Sawa, Akira (2001) Mechanisms for neuronal cell death and dysfunction in Huntington’s disease: pathological cross-talk between the nucleus and the mitochondria? J Mol Med 79:375–381

    Article  PubMed  CAS  Google Scholar 

  41. Sipione S, Cattaneo E (2001) Modeling Huntington’s Disease in Cells, Flies, and Mice. Mol Neurobiol 23:21–51

    Article  PubMed  CAS  Google Scholar 

  42. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and –10 in a caspase-9-dependent manner. J Cell Biol 144:281–292

    Article  PubMed  CAS  Google Scholar 

  43. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES (1996) Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA 93:14486–14491

    Article  PubMed  CAS  Google Scholar 

  44. Thornberry NA, Rosen A, Nicholson DW (1997) Control of Apoptosis by Proteases. Adv Pharmacol 41:155–177

    Article  PubMed  CAS  Google Scholar 

  45. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J (2001) Minocycline, a Tetracycline Derivative, Is Neuroprotective against Excitotoxicity by Inhibiting Activation and Proliferation of Microglia. J Neurosci 21:2580–2588

    PubMed  CAS  Google Scholar 

  46. Touzani O, Boutin H, Chuquet J, Rothwell N (1999) Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol 100:203–215

    Article  PubMed  CAS  Google Scholar 

  47. Vila M, Przedborski S (2003) Targeting Programmed Cell Death in Neurodegenerative Diseases. Neuroscience 4:1–11

    Google Scholar 

  48. Vonsattel JP, DiFiglia M (1998) Huntington’s Disease. J Neuropathol Exp Neurol 57:369–384

    PubMed  CAS  Google Scholar 

  49. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson Jr., EP (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    PubMed  CAS  Google Scholar 

  50. Vuillaume I, Vermersch P, Destee A, Petit H, Sablonniere B (1998) Genetic polymorphisms adjacent to the CAG repeat influence clinical features at onset in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 64:758–762

    Article  PubMed  CAS  Google Scholar 

  51. Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S et al. (2002) Caspase Cleavage of Mutant Huntingtin Precedes Neurodegeneration in Huntington’s Disease. J Neurosci 22:7862–7872

    PubMed  CAS  Google Scholar 

  52. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  53. Yrjanheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95:15769 –15774

    Article  PubMed  CAS  Google Scholar 

  54. Yrjanheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 96:13496–13500

    Article  PubMed  CAS  Google Scholar 

  55. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 11:155–163

    Article  PubMed  CAS  Google Scholar 

  56. Zhu S, Stavrovskaya IG, Drozda M, et al. (2002) Minocycline inhibits cytochrome c release and delays progression of amytrophic lateral sclerosis in mice. Nature 417:74–78

    Article  PubMed  CAS  Google Scholar 

  57. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, et al. (2001) Loss of huntingtin-mediated bDNF gene transcription in Huntington’s disease. Science 293:493–498

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael M. Bonelli.

Additional information

Received in revised form: 7 February 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattison, L.R., Kotter, M.R., Fraga, D. et al. Apoptotic cascades as possible targets for inhibiting cell death in Huntington’s disease. J Neurol 253, 1137–1142 (2006). https://doi.org/10.1007/s00415-006-0198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0198-8

Keywords