Skip to main content
Log in

Hox genes, evo-devo, and the case of the ftz gene

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The discovery of the broad conservation of embryonic regulatory genes across animal phyla, launched by the cloning of homeotic genes in the 1980s, was a founding event in the field of evolutionary developmental biology (evo-devo). While it had long been known that fundamental cellular processes, commonly referred to as housekeeping functions, are shared by animals and plants across the planet—processes such as the storage of information in genomic DNA, transcription, translation and the machinery for these processes, universal codon usage, and metabolic enzymes—Hox genes were different: mutations in these genes caused “bizarre” homeotic transformations of insect body parts that were certainly interesting but were expected to be idiosyncratic. The isolation of the genes responsible for these bizarre phenotypes turned out to be highly conserved Hox genes that play roles in embryonic patterning throughout Metazoa. How Hox genes have changed to promote the development of diverse body plans remains a central issue of the field of evo-devo today. For this Memorial article series, I review events around the discovery of the broad evolutionary conservation of Hox genes and the impact of this discovery on the field of developmental biology. I highlight studies carried out in Walter Gehring’s lab and by former lab members that have continued to push the field forward, raising new questions and forging new approaches to understand the evolution of developmental mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akam M (1989) Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 57(3):347–349

    Article  CAS  PubMed  Google Scholar 

  • Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, Brenner S, Ragsdale CW, Rokhsar DS (2015) The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524(7564):220–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateson W (1894) Materials for the study of variation treated with especial regards to discontinuity in the origin of species. Macmillan, London

    Book  Google Scholar 

  • Boncinelli E, Somma R, Acampora D, Pannese M, D'Esposito M, Faiella A, Simeone A (1988) Organization of human homeobox genes. Hum Reprod 3(7):880–886

    CAS  PubMed  Google Scholar 

  • Bowler T, Kosman D, Licht JD, Pick L (2006) Computational Identification of Ftz/Ftz-F1 target genes. Dev Biol 299:78–90

    Article  CAS  PubMed  Google Scholar 

  • Brown SJ, Hilgenfeld RB, Denell RE (1994) The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc Natl Acad Sci U S A 91:12922–12926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burglin T and Affolter M (2015) Homeodomain proteins: an update. Chromosoma in press.

  • Carrasco AE, McGinnis W, Gehring WJ, De Robertis EM (1984) Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell 37(2):409–414

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB (2000) Endless forms: the evolution of gene regulation and morphological diversity. Cell 101:577–580

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB, Scott MP (1985) Localization of the fushi tarazu protein during Drosophila embryogenesis. Cell 43:47–57

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity: molecular genetics and the evolution of animal design. 2 edn. Blackwell Science Ltd, Malden, MA

  • Chan S-K, Mann RS (1996) A structural model for a HOX-extradenticle-DNA complex accounts for the choice of HOX protein in the heterodimer. Proc Natl Acad Sci U S A 93:5223–5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SK, Jaffe L, Capovilla M, Botas J, Mann RS (1994) The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78(4):603–615

    Article  CAS  PubMed  Google Scholar 

  • Chisaka O, Musci TS, Capecchi MR (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355(6360):516–520

    Article  CAS  PubMed  Google Scholar 

  • Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci U S A 103(17):6560–6564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn MJ, Tickle C (1999) Developmental basis of limblessness and axial patterning in snakes. Nature 399(6735):474–479

    Article  CAS  PubMed  Google Scholar 

  • Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11(10):759–763

    Article  CAS  PubMed  Google Scholar 

  • Copeland WR, Nasiadka A, Dietrich BH, Krause HM (1996) Patterning of the Drosophila embryo by a homeodomain-deleted Ftz polypeptide. Nature 379:162–165

    Article  CAS  PubMed  Google Scholar 

  • Crocker J, Abe N, Rinaldi L, McGregor AP, Frankel N, Wang S, Alsawadi A, Valenti P, Plaza S, Payre F et al (2015) Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 160(1-2):191–203

    Article  CAS  PubMed  Google Scholar 

  • Dawes R, Dawson I, Falciani F, Tear G, Akam M (1994) Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120:1561–1572

    CAS  PubMed  Google Scholar 

  • Desplan C, Theis J, O'Farrell PH (1985) The Drosophila developmental gene, engrailed, encodes sequence-specific DNA binding activity. Nature 318:630–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do MS, Lonai P (1988) Gene organization of murine homeobox-containing gene clusters. Genomics 3(3):195–200

    Article  CAS  PubMed  Google Scholar 

  • Doe CQ, Hiromi Y, Gehring WJ, Goodman CS (1988) Expression and function of the segmentation gene fushi tarazu during Drosophila neurogenesis. Science 239(4836):170–175

    Article  CAS  PubMed  Google Scholar 

  • Dolecki GJ, Wang G, Humphreys T (1988) Stage- and tissue-specific expression of two homeo box genes in sea urchin embryos and adults. Nucleic Acids Res 16(24):11543–11558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dressler GR, Gruss P (1989) Anterior boundaries of Hox gene expression in mesoderm-derived structures correlate with the linear gene order along the chromosome. Differentiation 41(3):193–201

    Article  CAS  PubMed  Google Scholar 

  • Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021–3032

    CAS  PubMed  Google Scholar 

  • Finnerty JR, Martindale MQ (1998) The evolution of the Hox cluster: insights from outgroups. Curr Opin Genet Dev 8(6):681–687

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick VD, Percival-Smith A, Ingles CJ, Krause HM (1992) Homeodomain-independent activity of fushi tarazu polypeptide in Drosophila embryos. Nature 356:610–612

    Article  CAS  PubMed  Google Scholar 

  • Florence B, Guichet A, Ephrussi A, Laughon A (1997) Ftz-F1 is a cofactor in Ftz activation of the Drosophila engrailed gene. Development 124:839–847

    CAS  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortunato SA, Adamski M, Ramos OM, Leininger S, Liu J, Ferrier DE, Adamska M (2014) Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature 514(7524):620–623

    Article  CAS  PubMed  Google Scholar 

  • Frischer LE, Hagen FS, Garber RL (1986) An inversion that disrupts the Antennapedia gene causes abnormal structure and localization of RNAs. Cell 47(6):1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415:910–913

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bellido A (1975) Genetic control of wing disk development in Drosophila. Ciba Found Symp 29: Cell Patterning: pp. 161-182.

  • Gaunt SJ, Krumlauf R, Duboule D (1989) Mouse homeo-genes within a subfamily, Hox-1.4, -2.6 and -5.1, display similar anteroposterior domains of expression in the embryo, but show stage- and tissue-dependent differences in their regulation. Development 107(1):131–141

    CAS  PubMed  Google Scholar 

  • Gehring WJ (1966) Bildung eines vollstandigen Mittlebeines mit Sternopleura in der Antennenregion ei der Mutante Nasobemia (Ns) von Drosophila melanogaster. Arch Jul Klaus Stift Vererbungsforsch 41:44–54

    Google Scholar 

  • Gehring WJ (1985) The homeo box: a key to the understanding of development? Cell 40(1):3–5

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ (1998) Master Control Genes in Development and Evolution. Yale University Press, New Haven

    Google Scholar 

  • Gehring WJ (2012) The animal body plan, the prototypic body segment, and eye evolution. Evol Dev 14(1):34–46

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ, Affolter M, Burglin T (1994a) Homeodomain proteins. Annu Rev Biochem 63:487–526

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, Affolter M, Otting G, Wuthrich K (1994b) Homeodomain-DNA recognition. Cell 78(2):211–223

    Article  CAS  PubMed  Google Scholar 

  • Green J, Akam M (2013) Evolution of the pair rule gene network: insights from a centipede. Dev Biol 382(1):235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guichet A, Copeland JWR, Erdelyi M, Hlousek D, Zavorszky P, Ho J, Brown S, Percival-Smith A, Krause HM, Ephrussi A (1997) The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature 385:548–552

    Article  CAS  PubMed  Google Scholar 

  • Hafen E, Kuroiwa A, Gehring WJ (1984) Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell 37:833–841

    Article  CAS  PubMed  Google Scholar 

  • Han W, Yu Y, Su K, Kohanski RA, Pick L (1998) A binding site for multiple transcriptional activators in the fushi tarazu proximal enhancer is essential for gene expression in vivo. Mol Cell Biol 18:3384–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffer A, Pick L (2013) Conservation and variation in Hox genes: how insect models pioneered the evo-devo field. Annu Rev Entomol 58:161–179

    Article  CAS  PubMed  Google Scholar 

  • Heffer A, Shultz J, Pick L (2010) Surprising flexibility in a conserved Hox transcription factor over 550 million years of evolution. Proc Natl Acad Sci U S A 107:18040–18045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffer A, Lohr U, Pick L (2011) ftz evolution: findings, hypotheses and speculations (response to DOI 10.1002/bies.201100019). Bioessays 33(12):910–918

    Article  PubMed  Google Scholar 

  • Heffer A, Grubbs N, Mahaffey J, Pick L (2013a) The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene. Evol Dev 15(6):406–417

    Article  CAS  PubMed  Google Scholar 

  • Heffer A, Xiang J, Pick L (2013b) Variation and constraint in Hox gene evolution. Proc Natl Acad Sci U S A 110(6):2211–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiromi Y, Gehring WJ (1987) Regulation and function of the Drosophila segmentation gene fushi tarazu. Cell 50:963–974

    Article  CAS  PubMed  Google Scholar 

  • Hiromi Y, Kuroiwa A, Gehring WJ (1985) Control elements of the Drosophila segmentation gene fushi tarazu. Cell 43:603–613

    Article  CAS  PubMed  Google Scholar 

  • Holland PW (2013) Evolution of homeobox genes. Wiley Interdiscip Rev Dev Biol 2(1):31–45

    Article  CAS  PubMed  Google Scholar 

  • Holland PW, Hogan BL (1988) Expression of homeo box genes during mouse development: a review. Genes Dev 2(7):773–782

    Article  CAS  PubMed  Google Scholar 

  • Hou HY, Heffer A, Anderson WR, Liu J, Bowler T, Pick L (2009) Stripy Ftz target genes are coordinately regulated by Ftz-F1. Dev Biol 335(2):442–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsia CC, Pare AC, Hannon M, Ronshaugen M, McGinnis W (2010) Silencing of an abdominal Hox gene during early development is correlated with limb development in a crustacean trunk. Evol Dev 12(2):131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238

    CAS  PubMed  Google Scholar 

  • Janssen R, Damen WG (2006) The ten Hox genes of the millipede Glomeris marginata. Dev Genes Evol 216(7-8):451–465

    Article  CAS  PubMed  Google Scholar 

  • Jeannotte L, Lemieux M, Charron J, Poirier F, Robertson EJ (1993) Specification of axial identity in the mouse: role of the Hox-a5 (Hox 1.3) gene. Genes Dev 7:2085–2096

    Article  CAS  PubMed  Google Scholar 

  • Jeong S, Rokas A, Carroll SB (2006) Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 125(7):1387–1399

    Article  CAS  PubMed  Google Scholar 

  • Johnson FB, Parker E, Krasnow MA (1995) Extradenticle protein is a selective cofactor for the Drosophila homeotics: role of the homeodomain and YPWM amino acid motif in the interaction. Proc Natl Acad Sci U S A 92:739–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson WC, Ordway AJ, Watada M, Pruitt JN, Williams TM, Rebeiz M (2015) Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species. PLoS Genet 11(6):e1005279

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurgens G, Wieschaus E, Nusslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster II. Zygotic loci on the third chromosome. Roux's Arch Dev Biol 193:283–295

    Article  Google Scholar 

  • Kaufman TC, Lewis RA, Wakimoto BT (1980) Cytogenetic analysis of chromosome 3 in Drosophila melanogaster. The homeotic gene complex in polytene chromosome interval 84A-B. Genetics 94:115–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessel M, Balling R, Gruss P (1990) Variations of cervical vertebrae after expression of a Hox-1.1 transgene in mice. Cell 61(2):301–308

    Article  CAS  PubMed  Google Scholar 

  • Khila A, Abouheif E, Rowe L (2009) Evolution of a novel appendage ground plan in water striders is driven by changes in the Hox gene Ultrabithorax. PLoS Genet 5(7):e1000583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khila A, Abouheif E, Rowe L (2014) Comparative functional analyses of ultrabithorax reveal multiple steps and paths to diversification of legs in the adaptive radiation of semi-aquatic insects. Evolution 68(8):2159–2170

    CAS  PubMed  Google Scholar 

  • Kourakis MJ, Master VA, Lokhorst DK, Nardelli-Haefliger D, Wedeen CJ, Matindale MQ, Shankland M (1997) Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helodella. Dev Biol 190:284–300

    Article  CAS  PubMed  Google Scholar 

  • Krumlauf R, Holland PW, McVey JH, Hogan BL (1987) Developmental and spatial patterns of expression of the mouse homeobox gene, Hox 2.1. Development 99(4):603–617

    CAS  PubMed  Google Scholar 

  • Laughon A (1991) DNA binding specificity of homeodomains. Biochemistry 30:11357–11367

    Article  CAS  PubMed  Google Scholar 

  • Lawrence PA (1992) The making of a fly: the genetics of animal design. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Lawrence PA, Johnston P (1989) Pattern formation in the Drosophila embryo: allocation of cells to parasegments by even-skipped and fushi tarazu. Development 105:761–767

    CAS  PubMed  Google Scholar 

  • Lawrence PA, Morata G (1983) The elements of the bithorax complex. Cell 35(3 Pt 2):595–601

    Article  CAS  PubMed  Google Scholar 

  • Lawrence PA, Morata G (1994) Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell 78(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Levine M, Rubin GM, Tjian R (1984) Human DNA sequences homologous to a protein coding region conserved between homeotic genes of Drosophila. Cell 38(3):667–673

    Article  CAS  PubMed  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  CAS  PubMed  Google Scholar 

  • Lewis EB (1994) Homeosis: the first 100 years. Trends Genet 10:341–343

    Article  CAS  PubMed  Google Scholar 

  • Lewis RA, Wakimoto BT, Denell RE, Kaufman TC (1980) Genetic analysis of the Antennapedia gene complex (ANT-C) and adjacent chromosomal regions of Drosophila melanogaster. II. Polytene chromosome segments 84A-84B1,2. Genetics 95:383–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lohr U, Pick L (2005) Cofactor-interaction motifs and the cooption of a homeotic Hox protein into the segmentation pathway of Drosophila melanogaster. Curr Biol 15:643–649

    Article  PubMed  CAS  Google Scholar 

  • Lohr U, Yussa M, Pick L (2001) Drosophila fushi tarazu: a gene on the border of homeotic function. Curr Biol 11:1403–1412

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Anderson WR, Zhang H, Feng S, Pick L (2013) Functional conservation of Drosophila FTZ-F1 and its mammalian homologs suggests ligand-independent regulation of NR5A family transcriptional activity. Dev Genes Evol 223(3):199–205

    Article  CAS  PubMed  Google Scholar 

  • Lufkin T, Mark M, Hart CP, Dolle P, LeMeur M, Chambon P (1992) Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359(6398):835–841

    Article  CAS  PubMed  Google Scholar 

  • Lynch VJ (2009) Use with caution: developmental systems divergence and potential pitfalls of animal models. Yale J Biol Med 82(2):53–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154(1):459–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch VJ, Wagner GP (2008) Resurrecting the role of transcription factor change in developmental evolution. Evolution 62(9):2131–2154

    Article  CAS  PubMed  Google Scholar 

  • Malicki J, Schughart K, McGinnis W (1990) Mouse Hox-2.2 specifies thoracic segmental identity in Drosophila embryos and larvae. Cell 63:961–967

    Article  CAS  PubMed  Google Scholar 

  • Mann RS (1995) The specificity of homeotic gene function. Bioessays 17:855–863

    Article  CAS  PubMed  Google Scholar 

  • Mann R, Carroll S (2002) Molecular mechanisms of selector gene function and evolution. Curr Opin Genet Dev 12(5):592

    Article  CAS  PubMed  Google Scholar 

  • Mann RS, Lelli KM, Joshi R (2009) Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 88:63–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield JH (2013) Cis-regulatory change associated with snake body plan evolution. Proc Natl Acad Sci U S A 110(26):10473–10474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx JL (1986) The continuing saga of "homeo-madness". Science 232(4747):158–159

    Article  CAS  PubMed  Google Scholar 

  • Mavilio F, Simeone A, Boncinelli E, Andrews PW (1988) Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid. Differentiation 37(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68(2):283–302

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ (1984a) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37:403–408

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ (1984b) A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308:428–433

    Article  CAS  PubMed  Google Scholar 

  • McGinnis N, Kuziora MA, McGinnis W (1990) Human Hox-4.2 and Drosophila Deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell 63:969–976

    Article  CAS  PubMed  Google Scholar 

  • McGregor AP (2005) How to get ahead: the origin, evolution and function of bicoid. Bioessays 27(9):904–913

    Article  CAS  PubMed  Google Scholar 

  • Muller MM, Carrasco AE, DeRobertis EM (1984) A homeo-box-containing gene expressed during oogenesis in Xenopus. Cell 39(1):157–162

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Affolter M, Leupin W, Otting G, Wuthrich K, Gehring WJ (1988) Isolation and sequence-specific DNA binding of the Antennapedia homeodomain. EMBO J 7(13):4299–4304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy P, Davidson DR, Hill RE (1989) Segment-specific expression of a homoeobox-containing gene in the mouse hindbrain. Nature 341(6238):156–159

    Article  CAS  PubMed  Google Scholar 

  • Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  CAS  PubMed  Google Scholar 

  • Odenwald WF, Garbern J, Arnheiter H, Tournier-Lasserve E, Lazzarini RA (1989) The Hox-1.3 homeo box protein is a sequence-specific DNA binding phosphoprotein. Genes Dev 3:158–172

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Panfilio KA, Akam M (2007) A comparison of Hox3 and Zen protein coding sequences in taxa that span the Hox3/zen divergence. Dev Genes Evol 217(4):323–329

    Article  CAS  PubMed  Google Scholar 

  • Papillon D, Telford MJ (2007) Evolution of Hox3 and ftz in arthropods: insights from the crustacean Daphnia pulex. Dev Genes Evol 217(4):315–322

    Article  CAS  PubMed  Google Scholar 

  • Perrimon NA, Lanjuin C, Arnold E, Noll E (1996) Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element induced mutations. Genetics 144:1681–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pick L, Heffer A (2012) Hox gene evolution: multiple mechanisms contributing to evolutionary novelties. Ann N Y Acad Sci 1256:15–32

    Article  PubMed  Google Scholar 

  • Pick L, Schier A, Affolter M, Schmidt-Glenewinkel T, Gehring WJ (1990) Analysis of the ftz upstream element: germ layer-specific enhancers are independently autoregulated. Genes Dev 4:1224–1239

    Article  CAS  PubMed  Google Scholar 

  • Pick L, Lohr U, Yu Y (2000) A double interaction screen to isolate DNA binding and protein-tethered transcription factors. In: Zhu L, Hannon GJ (eds) Yeast Hybrid Technologies. Eaton Publishing, Natick

    Google Scholar 

  • Prud'homme B, Gompel N, Rokas A, Kassner VA, Williams TM, Yeh SD, True JR, Carroll SB (2006) Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440(7087):1050–1053

    Article  PubMed  CAS  Google Scholar 

  • Prud'homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution. Proc Natl Acad Sci U S A 104(Suppl 1):8605–8612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prud'homme B, Minervino C, Hocine M, Cande JD, Aouane A, Dufour HD, Kassner VA, Gompel N (2011) Body plan innovation in treehoppers through the evolution of an extra wing-like appendage. Nature 473(7345):83–86

    Article  PubMed  CAS  Google Scholar 

  • Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917

    Article  PubMed  Google Scholar 

  • Ruddle FH, Hart CP, Awgulewitsch A, Fainsod A, Utset M, Dalton D, Kerk N, Rabin M, Ferguson-Smith A, Fienberg A et al (1985) Mammalian homeo box genes. Cold Spring Harb Symp Quant Biol 50:277–284

    Article  CAS  PubMed  Google Scholar 

  • Schier AF, Gehring WJ (1992) Direct homeodomain-DNA interaction in the autoregulation of the fushi tarazu gene. Nature 356:804–807

    Article  CAS  PubMed  Google Scholar 

  • Schier AF, Gehring WJ (1993) Analysis of a fushi tarazu autoregulatory element: multiple sequence elements contribute to enhancer activity. EMBO J 12:1111–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneuwly S, Klemenz R, Gehring WJ (1987a) Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 325:816–818

    Article  CAS  PubMed  Google Scholar 

  • Schneuwly S, Kuroiwa A, Gehring WJ (1987b) Molecular analysis of the dominant homeotic Antennapedia phenotype. EMBO J 6(1):201–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schughart K, Kappen C, Ruddle FH (1988) Mammalian homeobox-containing genes: genome organization, structure, expression and evolution. Br J Cancer Suppl 9:9–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz CJE, Sampson HM, Hlousek D, Percival-Smith A, Copeland JWR, Simmonds AJ, Krause HM (2001) FTZ-Factor 1 and Fushi Tarazu interact via conserved nuclear receptor and coactivator motifs. EMBO J 20:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott MP, Weiner AJ (1984) Structural relationships among genes that control development: sequence homolgy between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc Natl Acad Sci U S A 81:4115–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd JC, McGinnis W, Carrasco AE, De Robertis EM, Gehring WJ (1984) Fly and frog homoeo domains show homologies with yeast mating type regulatory proteins. Nature 310(5972):70–71

    Article  CAS  PubMed  Google Scholar 

  • Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? Evolution 62(9):2155–2177

    Article  PubMed  PubMed Central  Google Scholar 

  • Struhl G (1985) Near-reciprocal phenotypes caused by inactivation or indiscriminate expression of the Drosophila segmentation gene ftz. Nature 318:677–680

    Article  CAS  PubMed  Google Scholar 

  • Stuart JJ, Brown SJ, Beeman RW, Denell RE (1991) A deficiency of the homeotic complex of the beetle Tribolium. Nature 350:72–74

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kasahara M, Yoshioka H, Morohashi K, Umesono K (2003) LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol 23(1):238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbert PB, Garber RL (1994) The Drosophila homeotic mutation Nasobemia (AntpNs) and its revertants: an analysis of mutational reversion. Genetics 138(3):709–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Barmina O, Sanders LE, Arbeitman MN, Kopp A (2011) Evolution of sex-specific traits through changes in HOX-dependent doublesex expression. PLoS Biol 9(8):e1001131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telford MJ (2000) Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan Lox5. Curr Biol 10(6):349–352

    Article  CAS  PubMed  Google Scholar 

  • Utset MF, Awgulewitsch A, Ruddle FH, McGinnis W (1987) Region-specific expression of two mouse homeo box genes. Science 235(4794):1379–1382

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Lynch VJ (2008) The gene regulatory logic of transcription factor evolution. Trends Ecol Evol 23(7):377–385

    Article  PubMed  Google Scholar 

  • Wakimoto BT, Kaufman TC (1981) Analysis of larval segmentation genotypes associated with the Antennapedia gene complex in Drosophila melanogaster. Dev Biol 81:51–64

    Article  CAS  PubMed  Google Scholar 

  • Wakimoto BT, Turner FR, Kaufman TC (1984) Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. Dev Biol 102(1):147–172

    Article  CAS  PubMed  Google Scholar 

  • Wasik BR, Rose DJ, Moczek AP (2010) Beetle horns are regulated by the Hox gene, Sex combs reduced, in a species- and sex-specific manner. Evol Dev 12(4):353–362

    Article  CAS  PubMed  Google Scholar 

  • Weiner AJ, Scott MP, Kaufman TC (1984) A molecular analysis of fushi tarazu, a gene in Drosophila melanogaster that encodes a product affecting embryonic segment number and cell fate. Nature 37:843–851

    CAS  Google Scholar 

  • Wilkins AS (1986) Homeo box fever, extrapolation and developmental biology. Bioessays 4(4):147–148

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (1989) Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341(6241):405–409

    Article  CAS  PubMed  Google Scholar 

  • Wilson MJ, Dearden PK (2012) Pair-Rule Gene Orthologues Have Unexpected Maternal Roles in the Honeybee (Apis mellifera). PLoS One 7(9):e46490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo J, Ko S, Kim H, Sampson H, Yun JH, Choe KM, Chang I, Arrowsmith CH, Krause HM, Cho HS et al (2011) Crystal structure of Fushi tarazu factor 1 ligand binding domain/Fushi tarazu peptide complex identifies new class of nuclear receptors. J Biol Chem 286(36):31225–31231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Li W, Su K, Han W, Yussa M, Perrimon N, Pick L (1997) The nuclear hormone receptor FTZ-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature 385:552–555

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Yussa M, Song J, Hirsch J, Pick L (1999) A double interaction screen identifies positive and negative ftz gene regulators and Ftz-interacting proteins. Mech Dev 83:95–105

    Article  CAS  PubMed  Google Scholar 

  • Yussa M, Lohr U, Su K, Pick L (2001) The nuclear receptor Ftz-F1 and homeodomain protein Ftz interact through evolutionarily conserved protein domains. Mech Dev 107:39–53

    Article  CAS  PubMed  Google Scholar 

  • Zhao JJ, Lazzarini RA, Pick L (1993) The mouse Hox-1.3 gene is functionally equivalent to the Drosophila Sex combs reduced gene. Genes Dev 7:343–354

    Article  CAS  PubMed  Google Scholar 

  • Zhao JJ, Lazzarini RA, Pick L (1996) Functional dissection of the mouse Hox-a5 gene. EMBO J 15:1313–1322

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This author apologizes to the many researchers whose work was not cited in this Gehring lab-centric review. Thanks to Patricia Graham, Jeff Shultz, Alys Jarvela, Alison Heffer, and a reviewer with personal knowledge of the behind the scenes history, for comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Pick.

Ethics declarations

This work was funded by the National Institutes of Health (GM113230). The author declares that she has no conflict of interest. The article does not contain any studies with human participants or animals performed by the author.

Additional information

This article is dedicated to the memory of Walter Gehring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pick, L. Hox genes, evo-devo, and the case of the ftz gene. Chromosoma 125, 535–551 (2016). https://doi.org/10.1007/s00412-015-0553-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-015-0553-6

Keywords