Skip to main content
Log in

Airway Protective Mechanisms

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e., inspiration or swallow) or the reverse (i.e., expiration reflex or vomiting). These vital mechanisms have not been evaluated in clinical conditions but could be impaired in many neurodegenerative diseases, leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Canning BJ (2006) Anatomy and neurophysiology of the cough reflex. Chest 129(1 Suppl):33S

    Article  PubMed  Google Scholar 

  2. Canning BJ (2007) Encoding of the cough reflex. Pulm Pharmacol Ther 20(4):396–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Pantaleo T, Bongianni F, Mutolo D (2002) Central nervous mechanisms of cough. Pulm Pharmacol Ther 15(3):227–233

    Article  CAS  PubMed  Google Scholar 

  4. Shannon R, Baekey D, Morris K, Lindsey B (1996) Brainstem respiratory networks and cough. Pulm Pharmacol 9(5–6):343–347

    Article  CAS  PubMed  Google Scholar 

  5. Shannon R, Baekey D, Morris K, Nuding S, Segers L, Lindsey B (2004) Production of reflex cough by brainstem respiratory networks. Pulm Pharmacol Ther 17(6):369–376

    Article  CAS  PubMed  Google Scholar 

  6. Fontana GA, Lavorini F (2006) Cough motor mechanisms. Respir Physiol Neurobiol 152(3):266–281

    Article  PubMed  Google Scholar 

  7. Fontana GA, Pantaleo T, Lavorini F, Benvenuti F, Gangemi S (1998) Defective motor control of coughing in Parkinson’s disease. Am J Respir Crit Care Med 158(2):458–464

    Article  CAS  PubMed  Google Scholar 

  8. Smith Hammond CA, Goldstein LB, Zajac DJ, Gray L, Davenport PW, Bolser DC (2001) Assessment of aspiration risk in stroke patients with quantification of voluntary cough. Neurology 56(4):502–506

    Article  CAS  PubMed  Google Scholar 

  9. Smith Hammond CA, Goldstein LB, Horner RD, Ying J, Gray L, Gonzalez-Rothi L, Bolser DC (2009) Predicting aspiration in patients with ischemic stroke: comparison of clinical signs and aerodynamic measures of voluntary cough. Chest 135(3):769–777

    Article  PubMed  Google Scholar 

  10. Pitts T, Bolser D, Rosenbek J, Troche M, Sapienza C (2008) Voluntary cough production and swallow dysfunction in Parkinson’s disease. Dysphagia 23(3):297–301

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pitts T, Troche MS, Carnaby-Mann G, Rosenbek JC, Okun MS, Sapienza CM (2010) Utilizing voluntary cough to detect penetration and aspiration during oropharyngeal swallowing in Parkinson’s disease. Chest. doi:10.1378/chest.10-0342

    PubMed  Google Scholar 

  12. Tsujimura T, Udemgba C, Inoue M, Canning BJ (2013) Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs. J Physiol. doi:10.1113/jphysiol.2013.256024

    PubMed Central  PubMed  Google Scholar 

  13. Pitts T, Rose MJ, Mortensen AN, Poliacek I, Sapienza CM, Lindsey BG, Morris KF, Davenport PW, Bolser DC (2013) Coordination of cough and swallow: a meta-behavioral response to aspiration. Respir Physiol Neurobiol. doi:10.1016/j.resp.2013.08.009

    PubMed Central  PubMed  Google Scholar 

  14. Falk D (1975) Comparative anatomy of the larynx in man and the chimpanzee: implications for language in Neanderthal. Am J Phys Anthropol 43(1):123–132

    Article  CAS  PubMed  Google Scholar 

  15. Lieberman P, Laitman JT, Reidenberg JS, Gannon PJ (1992) The anatomy, physiology, acoustics and perception of speech: essential elements in analysis of the evolution of human speech. J Hum Evol 23(6):447–467

    Article  Google Scholar 

  16. Leder SB, Karas DE (2000) Fiberoptic endoscopic evaluation of swallowing in the pediatric population. Laryngoscope 110(7):1132–1136

    Article  CAS  PubMed  Google Scholar 

  17. Miller (2008) The neurobiology of swallowing and dysphagia. Dev Disabil Res Rev 14(2):77–86

    Article  PubMed  Google Scholar 

  18. Logemann JA, Rademaker AW, Pauloski BR, Ohmae Y, Kahrilas PJ (1998) Normal swallowing physiology as viewed by videofluoroscopy and videoendoscopy. Folia Phoniatr Logop 50(6):311–319

    Article  CAS  PubMed  Google Scholar 

  19. Logemann (1998) Evaluation and treatment of swallowing disorders. ProEd, Austin

    Google Scholar 

  20. Bosma JF (1957) Deglutition: pharyngeal stage. Physiol Rev 37(3):275–300

    CAS  PubMed  Google Scholar 

  21. Edgeworth FH (1916) Q J Microsc Sci 6I:383

    Google Scholar 

  22. Kitagawa J, Shingai T, Takahashi Y, Yamada Y (2002) Pharyngeal branch of the glossopharyngeal nerve plays a major role in reflex swallowing from the pharynx. Am J Physiol Regul Integr Comp Physiol 282(5):R1342–R1347

    Article  CAS  PubMed  Google Scholar 

  23. Mu L, Sanders I (2000) Neuromuscular specializations of the pharyngeal dilator muscles: II. Compartmentalization of the canine genioglossus muscle. Anat Rec 260(3):308–325

    Article  CAS  PubMed  Google Scholar 

  24. Goyal RK, Cobb BW (1981) Motility of the pharynx, esophagus, and esophageal sphincters. Physiol Gastrointest Tract 1:359–391

    Google Scholar 

  25. Hyodo M, Aibara R, Kawakita S, Yumoto E (1998) Histochemical study of the canine inferior pharyngeal constrictor muscle: implications for its function. Acta Otolaryngol 118(2):272–279

    Article  CAS  PubMed  Google Scholar 

  26. Dodds WJ, Logemann JA, Stewart ET (1990) Radiologic assessment of abnormal oral and pharyngeal phases of swallowing. AJR Am J Roentgenol 154(5):965–974

    Article  CAS  PubMed  Google Scholar 

  27. Logemann JA, Pauloski BR, Rademaker AW, Colangelo LA, Kahrilas PJ, Smith CH (2000) Temporal and biomechanical characteristics of oropharyngeal swallow in younger and older men. J Speech Lang Hear Res 43(5):1264

    Article  CAS  PubMed  Google Scholar 

  28. Dodds WJ, Stewart ET, Logemann JA (1990) Physiology and radiology of the normal oral and pharyngeal phases of swallowing. AJR Am J Roentgenol 154(5):953–963

    Article  CAS  PubMed  Google Scholar 

  29. Dua K, Surapaneni SN, Kuribayashi S, Hafeezullah M, Shaker R (2011) Pharyngeal airway protective reflexes are triggered before the maximum volume of fluid that the hypopharynx can safely hold is exceeded. Am J Physiol Gastrointest Liver Physiol 301(2):G197–G202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Batson OV (1960) The Valsalva maneuver and the vertebral vein system. Angiology 11(5):443–447

    Article  CAS  PubMed  Google Scholar 

  31. Bartlett D (1989) Respiratory functions of the larynx. Physiol Rev 69(1):33–57

    PubMed  Google Scholar 

  32. Merwin GE, Goldstein LP, Rothman HB (1985) A comparison of speech using artificial larynx and tracheoesophageal puncture with valve in the same speaker. Laryngoscope 95(6):730–734

    Article  CAS  PubMed  Google Scholar 

  33. Morris I (1988) Functional anatomy of the upper airway. Emerg Med Clin N Am 6(4):639

    CAS  Google Scholar 

  34. Wang AY, Kadkade R, Kahrilas PJ, Hirano I (2005) Effectiveness of esophageal dilation for symptomatic cricopharyngeal bar. Gastrointest Endosc 61(1):148–152

    Article  PubMed  Google Scholar 

  35. Goyal RK, Martin SB, Shapiro J, Spechler SJ (1993) The role of cricopharyngeus muscle in pharyngoesophageal disorders. Dysphagia 8(3):252–258

    Article  CAS  PubMed  Google Scholar 

  36. Fan X, Scott L, Underbrink M, Hersey M (2008) Resolution of cricopharyngeal bar with Botox injection combined with esophageal dilation. Am J Gastroenterol 103:27

    Article  Google Scholar 

  37. Natt R, McCormick M, Clayton J, Ryall C (2010) Percutaneous chemical myotomy using botulinum neurotoxin A under local anaesthesia in the treatment of cricopharyngeal dysphagia following laryngectomy. Auris Nasus Larynx 37(4):500–503

    Article  CAS  PubMed  Google Scholar 

  38. Williams RB, Wallace KL, Ali GN, Cook IJ (2002) Biomechanics of failed deglutitive upper esophageal sphincter relaxation in neurogenic dysphagia. Am J Physiol Gastrointest Liver Physiol 283(1):G16–G26

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Dr Pitts has received grant monies from the National Institutes of Health and the University of Florida's Opportunity Fund. She also makes public statements at scientific conferences nationally and international on the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Pitts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitts, T. Airway Protective Mechanisms. Lung 192, 27–31 (2014). https://doi.org/10.1007/s00408-013-9540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-013-9540-y

Keywords

Navigation