Skip to main content

Advertisement

Increased expression of neuronal cyclooxygenase-2 in the hippocampus in amyotrophic lateral sclerosis both with and without dementia

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The pathophysiological basis of cognitive dysfunction, including frontotemporal dementia (FTD), in patients with amyotrophic lateral sclerosis (ALS) and ALS with dementia (ALSD) remains unclear. On the other hand, increased expression of cyclooxygenase-2 (COX-2) in the spinal cord is thought to play a pivotal role in motor neuron degeneration in ALS. In this study, to assess the relationship between the neuronal COX-2 expression in the cerebrum, the formation of tau- and α-synuclein-negative but ubiquitin-positive neuronal inclusions (UPIs), and dementia in motor neuron disease (MND), we examined neuronal COX-2 immunoreactivity in the frontal cortex and hippocampus of patients with non-demented ALS without UPIs (n=11), ALSD with UPIs (n=6), and normal controls (n=24) using a quantitative immunohistochemical technique. Neuronal COX-2 expression in all CA1–4 in the hippocampus was significantly up-regulated in the ALSD group, and, to lesser degree but significantly, in the ALS group. Neuronal COX-2 expression in the frontal cortex was also significantly up-regulated in the ALSD group but not in the ALS group. These findings suggest that (1) the frontal cortex and hippocampus of MND are involved in the same pathogenic process associated with COX-2 induction that has been observed in spinal anterior horn cells, (2) COX-2 induction in the cerebrum is a pathogenic process that can occur even in the absence of UPI formation in MND, and (3) COX-2 expression in the cerebrum may be associated with cognitive dysfunction in MND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrahams S, Goldstein LH, Kew JJ, Brooks DJ, Lloyd CM, Frith CD, Leigh PN (1996) Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain 119:2105–2120

    PubMed  Google Scholar 

  2. Abrahams S, Goldstein LH, Al-Chalabi A, Pickering A, Morris RG, Passingham RE, Brooks DJ, Leigh PN (1997) Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 62:464–472

    CAS  PubMed  Google Scholar 

  3. Almer G, Guegan C, Teismann P, Naini A, Rosoklija G, Hays AP, Chen C, Przedborski S (2001) Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol 49:176–185

    CAS  PubMed  Google Scholar 

  4. Arima K, Ueda K, Sunohara N, Hirai S, Izumiyama Y, Tonozuka-Uehara H, Kawai M (1998) Immunoelectron-microscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res 808:93–100

    PubMed  Google Scholar 

  5. Barelli H, Lebeau A, Vizzavona J, Delaere P, Chevallier N, Drouot C, Marambaud P, Ancolio K, Buxbaum JD, Khorkova O, Heroux J, Sahasrabudhe S, Martinez J, Warter JM, Mohr M, Checler F (1997) Characterization of new polyclonal antibodies specific for 40 and 42 amino acid-long amyloid beta peptides: their use to examine the cell biology of presenilins and the immunohistochemistry of sporadic Alzheimer’s disease and cerebral amyloid angiopathy cases. Mol Med 10:695–707

    Google Scholar 

  6. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    CAS  PubMed  Google Scholar 

  7. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  8. Brownell B, Oppenheimer DR, Hughes JT (1970) The central nervous system in motor neurone disease. J Neurol Neurosurg Psychiatry 33:338–357

    CAS  PubMed  Google Scholar 

  9. Drachman DB, Rothstein JD (2000) Inhibition of cyclooxygenase-2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis. Ann Neurol 48:792–795

    Google Scholar 

  10. Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, Rothstein JD (2002) Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol 52:771–778

    Article  CAS  PubMed  Google Scholar 

  11. Ho L, Purohit D, Haroutunian V, Luterman JD, Willis F, Naslund J, Buxbaum JD, Mohs RC, Aisen PS, Pasinetti GM (2001) Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch Neurol 58:487–492

    Article  CAS  PubMed  Google Scholar 

  12. Hoerth-Lomen C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60:1094–1097

    PubMed  Google Scholar 

  13. Holton JL, Revesz T, Crooks R, Scaravilli F (2002) Evidence for pathological involvement of the spinal cord in motor neuron disease-inclusion dementia. Acta Neuropathol 103:221–227

    PubMed  Google Scholar 

  14. Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K (2002) Morphometrical reappraisal of motor neuron system of Pick’s disease and amyotrophic lateral sclerosis with dementia. Acta Neuropathol 104:21–28

    Article  PubMed  Google Scholar 

  15. Iwasaki Y, Kinoshita M, Ikeda K, Takamiya K, Shiojima T (1990) Cognitive impairment in amyotrophic lateral sclerosis and its relation to motor disabilities. Acta Neurol Scand 81:141–143

    CAS  PubMed  Google Scholar 

  16. Kawashima T, Doh-ura K, Kikuchi H, Iwaki T (2001) Cognitive dysfunction in patients with amyotrophic lateral sclerosis is associated with spherical or crescent-shaped ubiquitinated intraneuronal inclusions in the parahippocampal gyrus and amygdala, but not in the neostriatum. Acta Neuropathol 102:467–472

    CAS  PubMed  Google Scholar 

  17. Kelley KA, Ho L, Winger D, Freire-Moar J, Borelli CB, Aisen PS, Pasinetti GM (1999) Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am J Pathol 155:995–1004

    CAS  PubMed  Google Scholar 

  18. Kew JJ, Goldstein LH, Leigh PN, Abrahams S, Cosgrave N, Passingham RE, Frackowiak RS, Brooks DJ (1993) The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain 116:1399–1423

    PubMed  Google Scholar 

  19. Kew JJ, Leigh PN, Playford ED, Passingham RE, Goldstein LH, Frackowiak RS, Brooks DJ (1993) Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain 116:655–680

    PubMed  Google Scholar 

  20. Mackenzie IRA, Feldman H (2003) The relationship between extramotor ubiquitin-immunoreactive neuronal inclusions and dementia in motor neuron disease. Acta Neuropathol 105:98–102

    CAS  PubMed  Google Scholar 

  21. Mann DM (1998) Dementia of frontal type and dementias with subcortical gliosis. Brain Pathol 8:325–338

    CAS  PubMed  Google Scholar 

  22. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58:1803–1809

    CAS  PubMed  Google Scholar 

  23. Mitsuyama Y, Takamiya S (1979) Presenile dementia with motor neuron disease in Japan. A new entity? Arch Neurol 36:592–593

    CAS  PubMed  Google Scholar 

  24. Nakano I (1993) Temporal lobe lesions in amyotrophic lateral sclerosis with or without dementia—a neuropathological study. Neuropathology 13:215–227

    Google Scholar 

  25. Neary D, Snowden JS, Northen B, Goulding P (1988) Dementia of frontal lobe type. J Neurol Neurosurg Psychiatry 51:353–361

    CAS  PubMed  Google Scholar 

  26. Neary D, Snowden JS, Mann DM, Northen B, Goulding PJ, Macdermott N (1990) Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry 53:23–32

    CAS  PubMed  Google Scholar 

  27. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    CAS  PubMed  Google Scholar 

  28. Okamoto K, Hirai S, Yamazaki T, Sun XY, Nakazato Y (1991) New ubiquitin-positive intraneuronal inclusions in the extra-motor cortices in patients with amyotrophic lateral sclerosis. Neurosci Lett 129:233–236

    CAS  PubMed  Google Scholar 

  29. Okamoto K, Murakami N, Kusaka H, Yoshida M, Hashizume Y, Nakazato Y, Matsubara E, Hirai S (1992) Ubiquitin-positive intraneuronal inclusions in the extramotor cortices of presenile dementia patients with motor neuron disease. J Neurol 239:426–430

    CAS  PubMed  Google Scholar 

  30. Pasinetti GM, Aisen PS (1998) Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87:319–324

    Google Scholar 

  31. Perry TL, Hansen S, Jones K (1987) Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology 37:1845–1848

    CAS  PubMed  Google Scholar 

  32. Piao YS, Wakabayashi K, Kakita A, Yamada M, Hayashi S, Morita T, Ikuta F, Oyanagi K, Takahashi H (2003) Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis: 102 autopsy cases examined between 1962 and 2000. Brain Pathol 13:10–22

    PubMed  Google Scholar 

  33. Plaitakis A, Constantakakis E, Smith J (1988) The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol 24:446–449

    CAS  PubMed  Google Scholar 

  34. Pompl PN, Ho L, Bianchi M, McManus T, Qin W, Pasinetti GM (2003) A therapeutic role for cyclooxygenase-2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. FASEB J 17:725–727

    CAS  PubMed  Google Scholar 

  35. Sairanen T, Ristimaki A, Karjalainen-Lindsberg ML, Paetau A, Kaste M, Lindsberg PJ (1998) Cyclooxygenase-2 is induced globally in infarcted human brain. Ann Neurol 43:738–747

    CAS  PubMed  Google Scholar 

  36. Strauss KI, Marini AM (2002) Cyclooxygenase-2 inhibition protects cultured cerebellar granule neurons from glutamate-mediated cell death. J Neurotrauma 19:627–638

    Article  PubMed  Google Scholar 

  37. Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C (1999) A prospective study of cognitive impairment in ALS. Neurology 53:1665–1670

    CAS  PubMed  Google Scholar 

  38. Talbot PR (1996) Frontal lobe dementia and motor neuron disease. J Neural Transm Suppl 47:125–132

    CAS  PubMed  Google Scholar 

  39. Talbot PR, Goulding PJ, Lloyd JJ, Snowden JS, Neary D, Testa HJ (1995) Inter-relation between classic motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study. J Neurol Neurosurg Psychiatry 58:541–547

    CAS  PubMed  Google Scholar 

  40. Tan CF, Kakita A, Piao YS, Kikugawa K, Endo K, Tanaka M, Okamoto K, Takahashi H (2003) Primary lateral sclerosis: a rare upper-motor-predominant form of amyotrophic lateral sclerosis often accompanied by frontotemporal lobar degeneration with ubiquitinated neuronal inclusions? Report of an autopsy case and a review of the literature. Acta Neuropathol 105:615–620

    PubMed  Google Scholar 

  41. The Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 57:416–418

    PubMed  Google Scholar 

  42. Toyoshima Y, Piao YS, Tan CF, Morita M, Tanaka M, Oyanagi K, Okamoto K, Takahashi H (2003) Pathological involvement of the motor neuron system and hippocampal formation in motor neuron disease inclusion dementia. Acta Neuropathol 106:50–56

    PubMed  Google Scholar 

  43. Tsuchiya K, Ikeda K, Haga C, Kobayashi T, Morimatsu Y, Nakano I, Matsushita M (2001) Atypical amyotrophic lateral sclerosis with dementia mimicking frontal Pick’s disease: a report of an autopsy case with a clinical course of 15 years. Acta Neuropathol 101:625–630

    CAS  PubMed  Google Scholar 

  44. Tsuchiya K, Ikeda K, Mimura M, Takahashi M, Miyazaki H, Anno M, Shiotsu H, Akabane H, Niizato K, Uchihara T, Tominaga I, Nakano I (2002) Constant involvement of the Betz cells and pyramidal tract in amyotrophic lateral sclerosis with dementia: a clinicopathological study of eight autopsy cases. Acta Neuropathol 104:249–259

    CAS  PubMed  Google Scholar 

  45. Tsuchiya K, Takahashi M, Shiotsu H, Akiyama H, Haga C, Watabiki S, Taki K, Nakano I, Ikeda K (2002) Sporadic amyotrophic lateral sclerosis with circumscribed temporal atrophy: a report of an autopsy case without dementia and with ubiquitinated intraneuronal inclusions. Neuropathology 22:308–316

    Article  PubMed  Google Scholar 

  46. Wakabayashi K, Piao YS, Hayashi S, Kakita A, Yamada M, Takahashi H (2001) Ubiquitinated neuronal inclusions in the neostriatum in patients with amyotrophic lateral sclerosis with and without dementia—a study of 60 patients 31 to 87 years of age. Clin Neuropathol 20:47–52

    CAS  PubMed  Google Scholar 

  47. Wightman G, Anderson VE, Martin J, Swash M, Anderton BH, Neary D, Mann D, Luthert P, Leigh PN (1992) Hippocampal and neocortical ubiquitin-immunoreactive inclusions in amyotrophic lateral sclerosis with dementia. Neurosci Lett 139:269–274

    CAS  PubMed  Google Scholar 

  48. Wilson CM, Grace GM, Munoz DG, He BP, Strong MJ (2001) Cognitive impairment in sporadic ALS: a pathologic continuum underlying a multisystem disorder. Neurology 57:651–657

    CAS  PubMed  Google Scholar 

  49. Yasojima K, Tourtellotte WW, McGeer EG, McGeer PL (2001) Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology 57:952–956

    CAS  PubMed  Google Scholar 

  50. Yokota O, Terada S, Ishizu H, Ishihara T, Ujike H, Nakashima H, Nakashima Y, Kugo A, Checler F, Kuroda S (2003) Cyclooxygenase-2 in the hippocampus is up-regulated in Alzheimer’s disease but not in variant Alzheimer’s disease with cotton wool plaques in humans. Neurosci Lett 343:175–179

    CAS  PubMed  Google Scholar 

  51. Yuasa R (1964) Amyotrophic lateral sclerosis with organic dementia: report of a case. Clin Neurol 4:529–534

    Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. M. Kobashi and Ms. M. Onbe for their excellent technical assistance. This work was supported in part by a research grant from the Zikei Institute of Psychiatry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Yokota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokota, O., Terada, S., Ishizu, H. et al. Increased expression of neuronal cyclooxygenase-2 in the hippocampus in amyotrophic lateral sclerosis both with and without dementia. Acta Neuropathol 107, 399–405 (2004). https://doi.org/10.1007/s00401-004-0826-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0826-2

Keywords