Skip to main content

Advertisement

Single-cell transcriptome unveils unique transcriptomic signatures of human organ-specific endothelial cells

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The heterogeneity of endothelial cells (ECs) across human tissues remains incompletely inventoried. We constructed an atlas of > 210,000 ECs derived from 38 regions across 24 human tissues. Our analysis reveals significant differences in transcriptome, phenotype, metabolism and transcriptional regulation among ECs from various tissues. Notably, arterial, venous, and lymphatic ECs shared more common markers in multiple tissues than capillary ECs, which exhibited higher heterogeneity. This diversity in capillary ECs suggests their greater potential as targets for drug development. ECs from different tissues and vascular beds were found to be associated with specific diseases. Importantly, tissue specificity of EC senescence is more determined by somatic site than by tissue type (e.g. subcutaneus adipose tissue and visceral adipose tissue). Additionally, sex-specific differences in brain EC senescence were observed. Our EC atlas offers valuble resoursce for identifying EC subclusters in single-cell datasets from body tissues or organoids, facilitating the screen of tissue-specific targeted therapies, and serving as a powerful tool for future discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The processed expression matrices used and/or analysed during the current study have been deposited in the figshare (https://figshare.com/), under doi: 10. 6084 / m9. Figshare.25111283. In addition, we have created two ShinyCell app (https://niuruize0525.shinyapps.io/human_ecs_atlas/ and https://niuruize0525.shinyapps.io/human_tissues_ec_atlas/) that allows researchers to browse gene expression and to visualize the results. The code for this project is publicly available through GitHub (https://github.com/niuruize/Human_EC).

References

  1. Al-Enazy S, Ali S, Albekairi N, El-Tawil M, Rytting E (2017) Placental control of drug delivery. Adv Drug Deliv Rev 116:63–72. https://doi.org/10.1016/j.addr.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  2. Alatzoglou KS, Gregory LC, Dattani MT (2020) Development of the pituitary gland. Compr Physiol 10:389–413. https://doi.org/10.1002/cphy.c150043

    Article  PubMed  Google Scholar 

  3. Ale-Agha N, Jakobs P, Goy C, Zurek M, Rosen J, Dyballa-Rukes N, Metzger S, Greulich J, von Ameln F, Eckermann O, Unfried K, Brack F, Grandoch M, Thielmann M, Kamler M, Gedik N, Kleinbongard P, Heinen A, Heusch G, Gödecke A, Altschmied J, Haendeler J (2021) Mitochondrial telomerase reverse transcriptase protects from myocardial ischemia/reperfusion injury by improving complex I composition and function. Circulation 144:1876–1890. https://doi.org/10.1161/circulationaha.120.051923

    Article  CAS  PubMed  Google Scholar 

  4. Alghamdi N, Chang W, Dang P, Lu X, Wan C, Gampala S, Huang Z, Wang J, Ma Q, Zang Y, Fishel M, Cao S, Zhang C (2021) A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. Genome Res 31:1867–1884. https://doi.org/10.1101/gr.271205.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Augustin HG, Koh GY (2017) Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science. https://doi.org/10.1126/science.aal2379

    Article  PubMed  Google Scholar 

  6. Austad SN, Fischer KE (2016) Sex differences in lifespan. Cell Metab 23:1022–1033. https://doi.org/10.1016/j.cmet.2016.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bloom SI, Islam MT, Lesniewski LA, Donato AJ (2023) Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol 20:38–51. https://doi.org/10.1038/s41569-022-00739-0

    Article  PubMed  Google Scholar 

  8. Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC (2021) Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun 95:7–14. https://doi.org/10.1016/j.bbi.2020.12.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cespedes Feliciano EM, Chen WY, Bradshaw PT, Prado CM, Alexeeff S, Albers KB, Castillo AL, Caan BJ (2019) Adipose tissue distribution and cardiovascular disease risk among breast cancer survivors. J Clin Oncol 37:2528–2536. https://doi.org/10.1200/jco.19.00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen K, Mou R, Zhu P, Xu X, Wang H, Jiang L, Hu Y, Hu X, Ma L, Xiao Q, Xu Q (2023) The effect of lymphangiogenesis in transplant arteriosclerosis. Circulation 147:482–497. https://doi.org/10.1161/circulationaha.122.060799

    Article  CAS  PubMed  Google Scholar 

  11. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 100:10623–10628. https://doi.org/10.1073/pnas.1434429100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colafella KMM, Denton KM (2018) Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 14:185–201. https://doi.org/10.1038/nrneph.2017.189

    Article  PubMed  Google Scholar 

  13. da Silva R, Conde DA, Baudisch A, Colchero F (2022) Slow and negligible senescence among testudines challenges evolutionary theories of senescence. Science 376:1466–1470. https://doi.org/10.1126/science.abl7811

    Article  CAS  PubMed  Google Scholar 

  14. Dai DF, Rabinovitch PS, Ungvari Z (2012) Mitochondria and cardiovascular aging. Circ Res 110:1109–1124. https://doi.org/10.1161/circresaha.111.246140

    Article  CAS  PubMed  Google Scholar 

  15. Dann E, Henderson NC, Teichmann SA, Morgan MD, Marioni JC (2022) Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat Biotechnol 40:245–253. https://doi.org/10.1038/s41587-021-01033-z

    Article  CAS  PubMed  Google Scholar 

  16. De Miguel Z, Khoury N, Betley MJ, Lehallier B, Willoughby D, Olsson N, Yang AC, Hahn O, Lu N, Vest RT, Bonanno LN, Yerra L, Zhang L, Saw NL, Fairchild JK, Lee D, Zhang H, McAlpine PL, Contrepois K, Shamloo M, Elias JE, Rando TA, Wyss-Coray T (2021) Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600:494–499. https://doi.org/10.1038/s41586-021-04183-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DeLeon-Pennell KY, Mouton AJ, Ero OK, Ma Y, Padmanabhan Iyer R, Flynn ER, Espinoza I, Musani SK, Vasan RS, Hall ME, Fox ER, Lindsey ML (2018) LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling. Basic Res Cardiol 113:40. https://doi.org/10.1007/s00395-018-0699-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Leo L, Bodemeyer V, Bosisio FM, Claps G, Carretta M, Rizza S, Faienza F, Frias A, Khan S, Bordi M, Pacheco MP, Di Martino J, Bravo-Cordero JJ, Daniel CJ, Sears RC, Donia M, Madsen DH, Guldberg P, Filomeni G, Sauter T, Robert C, De Zio D, Cecconi F (2021) Loss of Ambra1 promotes melanoma growth and invasion. Nat Commun 12:2550. https://doi.org/10.1038/s41467-021-22772-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diamond MS, Farzan M (2013) The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol 13:46–57. https://doi.org/10.1038/nri3344

    Article  CAS  PubMed  Google Scholar 

  20. Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO, Rosenwaks Z, Mittal V, Kobayashi H, Shido K, Lyden D, Sato TN, Rabbany SY, Rafii S (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468:310–315. https://doi.org/10.1038/nature09493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, Crystal RG, Simons M, Sato TN, Worgall S, Shido K, Rabbany SY, Rafii S (2011) Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147:539–553. https://doi.org/10.1016/j.cell.2011.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ding XB, Wang XX, Xia DH, Liu H, Tian HY, Fu Y, Chen YK, Qin C, Wang JQ, Xiang Z, Zhang ZX, Cao QC, Wang W, Li JY, Wu E, Tang BS, Ma MM, Teng JF, Wang XJ (2021) Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med 27:411–418. https://doi.org/10.1038/s41591-020-01198-1

    Article  CAS  PubMed  Google Scholar 

  23. Dong C, Fu S, Karvas RM, Chew B, Fischer LA, Xing X, Harrison JK, Popli P, Kommagani R, Wang T, Zhang B, Theunissen TW (2022) A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells. Nat Commun 13:2548. https://doi.org/10.1038/s41467-022-30207-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Drury ER, Wu J, Gigliotti JC, Le TH (2024) Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. Physiol Rev 104:199–251. https://doi.org/10.1152/physrev.00041.2022

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Alonso L, Handfield LF, Roberts K, Nikolakopoulou K, Fernando RC, Gardner L, Woodhams B, Arutyunyan A, Polanski K, Hoo R, Sancho-Serra C, Li T, Kwakwa K, Tuck E, Lorenzi V, Massalha H, Prete M, Kleshchevnikov V, Tarkowska A, Porter T, Mazzeo CI, van Dongen S, Dabrowska M, Vaskivskyi V, Mahbubani KT, Park JE, Jimenez-Linan M, Campos L, Kiselev VY, Lindskog C, Ayuk P, Prigmore E, Stratton MR, Saeb-Parsy K, Moffett A, Moore L, Bayraktar OA, Teichmann SA, Turco MY, Vento-Tormo R (2021) Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat Genet 53:1698–1711. https://doi.org/10.1038/s41588-021-00972-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, Bleicher A, Novak G, Liu TT, Newman S, Ricke WA, Matkowskyj KA, Ong IM, Jang C, Simcox J, Lamming DW (2023) Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab 35:1976–1995. https://doi.org/10.1016/j.cmet.2023.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Greene C, Hanley N, Reschke CR, Reddy A, Mäe MA, Connolly R, Behan C, O’Keeffe E, Bolger I, Hudson N, Delaney C, Farrell MA, O’Brien DF, Cryan J, Brett FM, Beausang A, Betsholtz C, Henshall DC, Doherty CP, Campbell M (2022) Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat Commun 13:2003. https://doi.org/10.1038/s41467-022-29657-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gregg EW, Cheng YJ, Cadwell BL, Imperatore G, Williams DE, Flegal KM, Narayan KM, Williamson DF (2005) Secular trends in cardiovascular disease risk factors according to body mass index in US adults. JAMA 293:1868–1874. https://doi.org/10.1001/jama.293.15.1868

    Article  CAS  PubMed  Google Scholar 

  29. Guan D, Mi J, Chen X, Wu Y, Yao Y, Wang L, Xiao Z, Zhao Y, Chen B, Dai J (2018) Lung endothelial cell-targeted peptide-guided bFGF promotes the regeneration after radiation induced lung injury. Biomaterials 184:10–19. https://doi.org/10.1016/j.biomaterials.2018.08.061

    Article  CAS  PubMed  Google Scholar 

  30. Hajdarovic KH, Yu D, Hassell LA, Evans S, Packer S, Neretti N, Webb AE (2022) Single-cell analysis of the aging female mouse hypothalamus. Nat Aging 2:662–678. https://doi.org/10.1038/s43587-022-00246-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirabayashi Y, Kanamori A, Nomura KH, Nomura K (2004) The acetyl-CoA transporter family SLC33. Pflugers Arch 447:760–762. https://doi.org/10.1007/s00424-003-1071-6

    Article  CAS  PubMed  Google Scholar 

  32. Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, Barros M, Li T, Nie P, Zhai Y, Wang JC, Tcw J, Guo L, McKenzie A, Ming C, Zhou X, Wang M, Sagi Y, Renton AE, Esposito BT, Kim Y, Sadleir KR, Trinh I, Rissman RA, Vassar R, Zhang B, Johnson DS, Masliah E, Greengard P, Goate A, Li YM (2020) The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature 586:735–740. https://doi.org/10.1038/s41586-020-2681-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ji H, Kim A, Ebinger JE, Niiranen TJ, Claggett BL, Bairey Merz CN, Cheng S (2020) Sex differences in blood pressure trajectories over the life course. JAMA Cardiol 5:19–26. https://doi.org/10.1001/jamacardio.2019.5306

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ji H, Kwan AC, Chen MT, Ouyang D, Ebinger JE, Bell SP, Niiranen TJ, Bello NA, Cheng S (2022) Sex differences in myocardial and vascular aging. Circ Res 130:566–577. https://doi.org/10.1161/circresaha.121.319902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jia G, Aroor AR, Jia C, Sowers JR (2019) Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis 1865:1802–1809. https://doi.org/10.1016/j.bbadis.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  36. Jia J, Wang F, Bhujabal Z, Peters R, Mudd M, Duque T, Allers L, Javed R, Salemi M, Behrends C, Phinney B, Johansen T, Deretic V (2022) Stress granules and mTOR are regulated by membrane atg8ylation during lysosomal damage. J Cell Biol. https://doi.org/10.1083/jcb.202207091

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y (2022) Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med 12:e694. https://doi.org/10.1002/ctm2.694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalluri AS, Vellarikkal SK, Edelman ER, Nguyen L, Subramanian A, Ellinor PT, Regev A, Kathiresan S, Gupta RM (2019) Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation 140:147–163. https://doi.org/10.1161/circulationaha.118.038362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kalucka J, de Rooij L, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen LA, Veys K, García-Caballero M, Khan S, Geldhof V, Sokol L, Chen R, Treps L, Borri M, de Zeeuw P, Dubois C, Karakach TK, Falkenberg KD, Parys M, Yin X, Vinckier S, Du Y, Fenton RA, Schoonjans L, Dewerchin M, Eelen G, Thienpont B, Lin L, Bolund L, Li X, Luo Y, Carmeliet P (2020) Single-Cell transcriptome atlas of murine endothelial cells. Cell 180:764–779. https://doi.org/10.1016/j.cell.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  40. Kim J, Jo Y, Cho D, Ryu D (2022) L-threonine promotes healthspan by expediting ferritin-dependent ferroptosis inhibition in C elegans. Nat Commun 13:6554. https://doi.org/10.1038/s41467-022-34265-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee HW, Xu Y, Zhu X, Jang C, Choi W, Bae H, Wang W, He L, Jin SW, Arany Z, Simons M (2022) Endothelium-derived lactate is required for pericyte function and blood-brain barrier maintenance. Embo j 41:e109890. https://doi.org/10.15252/embj.2021109890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, Moran Losada P, Berdnik D, Keller A, Verghese J, Sathyan S, Franceschi C, Milman S, Barzilai N, Wyss-Coray T (2019) Undulating changes in human plasma proteome profiles across the lifespan. Nat Med 25:1843–1850. https://doi.org/10.1038/s41591-019-0673-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Z, Solomonidis EG, Meloni M, Taylor RS, Duffin R, Dobie R, Magalhaes MS, Henderson BEP, Louwe PA, D’Amico G, Hodivala-Dilke KM, Shah AM, Mills NL, Simons BD, Gray GA, Henderson NC, Baker AH, Brittan M (2019) Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. Eur Heart J 40:2507–2520. https://doi.org/10.1093/eurheartj/ehz305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin Y, Dong MQ, Liu ZM, Xu M, Huang ZH, Liu HJ, Gao Y, Zhou WJ (2022) A strategy of vascular-targeted therapy for liver fibrosis. Hepatology 76:660–675. https://doi.org/10.1002/hep.32299

    Article  CAS  PubMed  Google Scholar 

  45. Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA (2020) Cells of the adult human heart. Nature 588:466–472. https://doi.org/10.1038/s41586-020-2797-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo J, Luo Y, Cheng X, Liu X, Wang F, Fang F, Cao J, Liu W, Xu R (2023) Prediction of biological nutrients removal in full-scale wastewater treatment plants using H(2)O automated machine learning and back propagation artificial neural network model: Optimization and comparison. Bioresour Technol 390:129842. https://doi.org/10.1016/j.biortech.2023.129842

    Article  CAS  PubMed  Google Scholar 

  47. Maher AC, Fu MH, Isfort RJ, Varbanov AR, Qu XA, Tarnopolsky MA (2009) Sex differences in global mRNA content of human skeletal muscle. PLoS ONE 4:e6335. https://doi.org/10.1371/journal.pone.0006335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Majdoul S, Compton AA (2022) Lessons in self-defence: inhibition of virus entry by intrinsic immunity. Nat Rev Immunol 22:339–352. https://doi.org/10.1038/s41577-021-00626-8

    Article  CAS  PubMed  Google Scholar 

  49. Martín-Peña A, Tansey MG (2023) The Alzheimer’s risk gene APOE modulates the gut-brain axis. Nature 614:629–630. https://doi.org/10.1038/d41586-023-00261-4

    Article  CAS  PubMed  Google Scholar 

  50. McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y (2023) The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 78:649–669. https://doi.org/10.1097/hep.0000000000000207

    Article  PubMed  Google Scholar 

  51. Mesev EV, LeDesma RA, Ploss A (2019) Decoding type I and III interferon signalling during viral infection. Nat Microbiol 4:914–924. https://doi.org/10.1038/s41564-019-0421-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Munji RN, Soung AL, Weiner GA, Sohet F, Semple BD, Trivedi A, Gimlin K, Kotoda M, Korai M, Aydin S, Batugal A, Cabangcala AC, Schupp PG, Oldham MC, Hashimoto T, Noble-Haeusslein LJ, Daneman R (2019) Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat Neurosci 22:1892–1902. https://doi.org/10.1038/s41593-019-0497-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nigam SK (2015) What do drug transporters really do? Nat Rev Drug Discov 14:29–44. https://doi.org/10.1038/nrd4461

    Article  CAS  PubMed  Google Scholar 

  54. Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding BS, Schachterle W, Liu Y, Rosenwaks Z, Butler JM, Xiang J, Rafii A, Shido K, Rabbany SY, Elemento O, Rafii S (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26:204–219. https://doi.org/10.1016/j.devcel.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  55. Osorio D, Zhong Y, Li G, Xu Q, Yang Y, Tian Y, Chapkin RS, Huang JZ, Cai JJ (2022) scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation. Patterns (N Y) 3:100434. https://doi.org/10.1016/j.patter.2022.100434

    Article  CAS  PubMed  Google Scholar 

  56. Paik DT, Tian L, Williams IM, Rhee S, Zhang H, Liu C, Mishra R, Wu SM, Red-Horse K, Wu JC (2020) Single-Cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells. Circulation 142:1848–1862. https://doi.org/10.1161/circulationaha.119.041433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Panyard DJ, Yu B,Snyder MP (2022) The metabolomics of human aging: Advances, challenges, and opportunities. Sci Adv, 8: eadd6155. https://doi.org/10.1126/sciadv.add6155

  58. Piskovatska V, Strilbytska O, Koliada A, Vaiserman A, Lushchak O (2019) Health benefits of anti-aging drugs. Subcell Biochem 91:339–392. https://doi.org/10.1007/978-981-13-3681-2_13

    Article  CAS  PubMed  Google Scholar 

  59. Potente M, Mäkinen T (2017) Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 18:477–494. https://doi.org/10.1038/nrm.2017.36

    Article  CAS  PubMed  Google Scholar 

  60. Qu J, Yang F, Zhu T, Wang Y, Fang W, Ding Y, Zhao X, Qi X, Xie Q, Chen M, Xu Q, Xie Y, Sun Y, Chen D (2022) A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys. Nat Commun 13:4069. https://doi.org/10.1038/s41467-022-31770-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rana JS, Arsenault BJ, Després JP, Côté M, Talmud PJ, Ninio E, Wouter Jukema J, Wareham NJ, Kastelein JJ, Khaw KT, Boekholdt SM (2011) Inflammatory biomarkers, physical activity, waist circumference, and risk of future coronary heart disease in healthy men and women. Eur Heart J 32:336–344. https://doi.org/10.1093/eurheartj/ehp010

    Article  CAS  PubMed  Google Scholar 

  62. Rassoulzadegan M, Paquis-Flucklinger V, Bertino B, Sage J, Jasin M, Miyagawa K, van Heyningen V, Besmer P, Cuzin F (1993) Transmeiotic differentiation of male germ cells in culture. Cell 75:997–1006. https://doi.org/10.1016/0092-8674(93)90543-y

    Article  CAS  PubMed  Google Scholar 

  63. Regitz-Zagrosek V, Kararigas G (2017) Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev 97:1–37. https://doi.org/10.1152/physrev.00021.2015

    Article  PubMed  Google Scholar 

  64. Rhee C, Edwards M, Dang C, Harris J, Brown M, Kim J, Tucker HO (2017) ARID3A is required for mammalian placenta development. Dev Biol 422:83–91. https://doi.org/10.1016/j.ydbio.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  65. Rhee C, Lee BK, Beck S, Anjum A, Cook KR, Popowski M, Tucker HO, Kim J (2014) Arid3a is essential to execution of the first cell fate decision via direct embryonic and extraembryonic transcriptional regulation. Genes Dev 28:2219–2232. https://doi.org/10.1101/gad.247163.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, Vistnes S, Stockley JH, Young A, Steindel M, Tung B, Goyal N, Bhaduri A, Mayer S, Engler JB, Bayraktar OA, Franklin RJM, Haeussler M, Reynolds R, Schafer DP, Friese MA, Shiow LR, Kriegstein AR, Rowitch DH (2019) Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573:75–82. https://doi.org/10.1038/s41586-019-1404-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schupp JC, Adams TS, Cosme C Jr, Raredon MSB, Yuan Y, Omote N, Poli S, Chioccioli M, Rose KA, Manning EP, Sauler M, DeIuliis G, Ahangari F, Neumark N, Habermann AC, Gutierrez AJ, Bui LT, Lafyatis R, Pierce RW, Meyer KB, Nawijn MC, Teichmann SA, Banovich NE, Kropski JA, Niklason LE, Pe’er D, Yan X, Homer RJ, Rosas IO, Kaminski N (2021) Integrated single-cell atlas of endothelial cells of the human lung. Circulation 144:286–302. https://doi.org/10.1161/circulationaha.120.052318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shabani P, Ohanyan V, Alghadeer A, Gavazzi D, Dong F, Yin L, Kolz C, Shockling L, Enrick M, Zhang P, Shi X, Chilian W (2024) Bone marrow cells contribute to seven different endothelial cell populations in the heart. Basic Res Cardiol 119:699–715. https://doi.org/10.1007/s00395-024-01065-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13:206–218. https://doi.org/10.1038/nri3391

    Article  CAS  PubMed  Google Scholar 

  70. Smith JR, Thomas RJ, Bonikowske AR, Hammer SM, Olson TP (2022) Sex differences in cardiac rehabilitation outcomes. Circ Res 130:552–565. https://doi.org/10.1161/circresaha.121.319894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Spadoni I, Fornasa G, Rescigno M (2017) Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol 17:761–773. https://doi.org/10.1038/nri.2017.100

    Article  CAS  PubMed  Google Scholar 

  72. Stefulj J, Panzenboeck U, Becker T, Hirschmugl B, Schweinzer C, Lang I, Marsche G, Sadjak A, Lang U, Desoye G, Wadsack C (2009) Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ Res 104:600–608. https://doi.org/10.1161/circresaha.108.185066

    Article  CAS  PubMed  Google Scholar 

  73. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell Data. Cell 177:1888–1902. https://doi.org/10.1016/j.cell.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Su Y, Zhou Y, Bennett ML, Li S, Carceles-Cordon M, Lu L, Huh S, Jimenez-Cyrus D, Kennedy BC, Kessler SK, Viaene AN, Helbig I, Gu X, Kleinman JE, Hyde TM, Weinberger DR, Nauen DW, Song H, Ming GL (2022) A single-cell transcriptome atlas of glial diversity in the human hippocampus across the postnatal lifespan. Cell Stem Cell 29:1594–1610. https://doi.org/10.1016/j.stem.2022.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun Z, Zhao H, Fang D, Davis CT, Shi DS, Lei K, Rich BE, Winter JM, Guo L, Sorensen LK, Pryor RJ, Zhu N, Lu S, Dickey LL, Doty DJ, Tong Z, Thomas KR, Mueller AL, Grossmann AH, Zhang B, Lane TE, Fujinami RS, Odelberg SJ, Zhu W (2022) Neuroinflammatory disease disrupts the blood-CNS barrier via crosstalk between proinflammatory and endothelial-to-mesenchymal-transition signaling. Neuron 110:3106–3120. https://doi.org/10.1016/j.neuron.2022.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150. https://doi.org/10.1038/nrneurol.2017.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78. https://doi.org/10.1152/physrev.00050.2017

    Article  CAS  PubMed  Google Scholar 

  78. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607-d613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  79. Wagner JUG, Tombor LS, Malacarne PF, Kettenhausen LM, Panthel J, Kujundzic H, Manickam N, Schmitz K, Cipca M, Stilz KA, Fischer A, Muhly-Reinholz M, Abplanalp WT, John D, Mohanta SK, Weber C, Habenicht AJR, Buchmann GK, Angendohr S, Amin E, Scherschel K, Klöcker N, Kelm M, Schüttler D, Clauss S, Günther S, Boettger T, Braun T, Bär C, Pham MD, Krishnan J, Hille S, Müller OJ, Bozoglu T, Kupatt C, Nardini E, Osmanagic-Myers S, Meyer C, Zeiher AM, Brandes RP, Luxán G, Dimmeler S (2023) Aging impairs the neurovascular interface in the heart. Science 381:897–906. https://doi.org/10.1126/science.ade4961

    Article  CAS  PubMed  Google Scholar 

  80. Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U (2021) Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 70:101397. https://doi.org/10.1016/j.arr.2021.101397

    Article  CAS  PubMed  Google Scholar 

  81. Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J (2021) Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev 73:924–967. https://doi.org/10.1124/pharmrev.120.000096

    Article  CAS  PubMed  Google Scholar 

  82. Yadav A, Matson KJE, Li L, Hua I, Petrescu J, Kang K, Alkaslasi MR, Lee DI, Hasan S, Galuta A, Dedek A, Ameri S, Parnell J, Alshardan MM, Qumqumji FA, Alhamad SM, Wang AP, Poulen G, Lonjon N, Vachiery-Lahaye F, Gaur P, Nalls MA, Qi YA, Maric D, Ward ME, Hildebrand ME, Mery PF, Bourinet E, Bauchet L, Tsai EC, Phatnani H, Le Pichon CE, Menon V, Levine AJ (2023) A cellular taxonomy of the adult human spinal cord. Neuron 111:328–344. https://doi.org/10.1016/j.neuron.2023.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang Q, Liu X, Chen J, Wen Y, Liu H, Peng Z, Yeerken R, Wang L, Li X (2020) Lead-mediated inhibition of lysine acetylation and succinylation causes reproductive injury of the mouse testis during development. Toxicol Lett 318:30–43. https://doi.org/10.1016/j.toxlet.2019.10.012

    Article  CAS  PubMed  Google Scholar 

  84. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang F, Michaelson JE, Moshiach S, Sachs N, Zhao W, Sun Y, Sonnenberg A, Lahti JM, Huang H, Zhang XA (2011) Tetraspanin CD151 maintains vascular stability by balancing the forces of cell adhesion and cytoskeletal tension. Blood 118:4274–4284. https://doi.org/10.1182/blood-2011-03-339531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang MJ, Hou K, Dey KK, Sakaue S, Jagadeesh KA, Weinand K, Taychameekiatchai A, Rao P, Pisco AO, Zou J, Wang B, Gandal M, Raychaudhuri S, Pasaniuc B, Price AL (2022) Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat Genet 54:1572–1580. https://doi.org/10.1038/s41588-022-01167-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhong S, Zhang S, Fan X, Wu Q, Yan L, Dong J, Zhang H, Li L, Sun L, Pan N, Xu X, Tang F, Zhang J, Qiao J, Wang X (2018) A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555:524–528. https://doi.org/10.1038/nature25980

    Article  CAS  PubMed  Google Scholar 

  88. Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, Stojanovic K, Sagare A, Boillee S, Cleveland DW, Zlokovic BV (2008) ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11:420–422. https://doi.org/10.1038/nn2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zou F, Liu M, Sui Y, Liu J (2023) Comprehensive overview of the role of PBX1 in mammalian kidneys. Front Mol Biosci 10:1106370. https://doi.org/10.3389/fmolb.2023.1106370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zou Y, Xie J, Zheng S, Liu W, Tang Y, Tian W, Deng X, Wu L, Zhang Y, Wong CW, Tan D, Liu Q, Xie X (2022) Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int J Surg 107:106936. https://doi.org/10.1016/j.ijsu.2022.106936

    Article  PubMed  Google Scholar 

  91. Zuchero YJ, Chen X, Bien-Ly N, Bumbaca D, Tong RK, Gao X, Zhang S, Hoyte K, Luk W, Huntley MA, Phu L, Tan C, Kallop D, Weimer RM, Lu Y, Kirkpatrick DS, Ernst JA, Chih B, Dennis MS, Watts RJ (2016) Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron 89:70–82. https://doi.org/10.1016/j.neuron.2015.11.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Li Chen and Yi-Fei Sun for technical assistance. We are also grateful to Yi-Hang Li for initial help with data analysis. We are also grateful to xiyoucloud for providing computational infrastructure.

Funding

This study was supported by Doctoral Research Fund of the Second Affiliated Hospital of Kunming Medical University (Grant number 2023BS14), 535 Talent Project of First Affiliated Hospital of Kunming Medical University (Grant number 2024535Q09), Yunnan Fundamental Research Projects—Youth Project (Grant number 202401AU070009), Yunnan Provincial Department of Education Science Research Fund Project (Grant number 2023Y0644), and Doctoral research Fund of the First Affiliated Hospital of Kunming Medical University (Grant number 2022BS005).

Author information

Authors and Affiliations

Authors

Contributions

RZN, JH, and YYL conceptualized, acquired funding, and supervised this study. Data were processed, analyzed and visualized by HYX, HT, and CYH. The manuscript was drafted by NRZ, XLL and HYX, and was reviewed and edited by XLL, DZ, and JH. All authors discussed results and commented on the manuscript.

Corresponding authors

Correspondence to Xiao-Lan Li, Yu-Ye Li or Juan He.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10260 KB)

Supplementary file2 (XLSX 9207 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, RZ., Xu, HY., Tian, H. et al. Single-cell transcriptome unveils unique transcriptomic signatures of human organ-specific endothelial cells. Basic Res Cardiol 119, 973–999 (2024). https://doi.org/10.1007/s00395-024-01087-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-024-01087-5

Keywords