Skip to main content

Advertisement

CARD9 promotes autophagy in cardiomyocytes in myocardial ischemia/reperfusion injury via interacting with Rubicon directly

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Autophagy in cardiomyocyte is involved in myocardial ischemia/reperfusion (M-I/R) injury. Caspase recruitment domain-containing protein 9 (CARD9) plays a critical role in cardiovascular diseases (CVDs) such as hypertension and cardiac fibrosis. However, its role in autophagy following M-I/R injury is yet to be fully elucidated. Here, we found that CARD9 expression increased in M-I/R mouse hearts, and in H9c2 or neonatal rat ventricular myocytes (NRVMs) in response to hypoxia/reoxygenation (H/R) or H2O2. CARD9−/− mice exhibited a significant cardiac dysfunction following M-I/R injury (30 min of left ascending coronary (LAD) ischemia and 12 h of reperfusion) compared to wild-type (WT) mice. CARD9 deletion impaired autophagy during M-I/R in vivo and in vitro, evidenced by decrease of microtubule-associated protein 1 light chain 3 (LC3) lipidation and p62 accumulation. Conversely, CARD9 overexpression increased autophagic flux as indicated by enhanced expression of LC3 II/LC3 I and a reduction in p62. The protective effect of CARD9 on cardiomyocytes against H/R-induced oxidative stress was abolished by treatment with autophagy inhibitors, 3-methyladenine (3-MA) or Bafilomycin A1(BafA1). CARD9 interacted with RUN domain Beclin-1-interacting cysteine-rich-containing (Rubicon), a negative regulator of autophagy, and enhanced UV-irradiation-resistance-associated gene (UVRAG)-Beclin1-phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3) interaction and UVRAG-Vps16-mediated Rab7 activation to promote autophagosome formation, maturation, and endocytosis. Ablation of Rubicon by siRNA effectively prevented the detrimental effect of CARD9 knockdown on cardiomyocytes. These results suggest that CARD9 has protective effects on the myocardium against M-I/R injury by activating autophagy and restoring autophagic flux in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cao Z, Conway KL, Heath RJ, Rush JS, Leshchiner ES, Ramirez-Ortiz ZG, Nedelsky NB, Huang H, Ng A, Gardet A, Cheng SC, Shamji AF, Rioux JD, Wijmenga C, Netea MG, Means TK, Daly MJ, Xavier RJ (2015) Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity 43:715–726. https://doi.org/10.1016/j.immuni.2015.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol 20:355–362. https://doi.org/10.1016/j.tcb.2010.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gedik N, Thielmann M, Kottenberg E, Peters J, Jakob H, Heusch G, Kleinbongard P (2014) No evidence for activated autophagy in left ventricular myocardium at early reperfusion with protection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting. PLoS ONE 9:e96567. https://doi.org/10.1371/journal.pone.0096567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gottlieb RA, Finley KD, Mentzer RM (2009) Cardioprotection requires taking out the trash. Basic Res Cardiol 104:169–180. https://doi.org/10.1007/s00395-009-0011-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gustafsson AB, Gottlieb RA (2009) Autophagy in ischemic heart disease. Circ Res 104:150–158. https://doi.org/10.1161/CIRCRESAHA.108.187427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hausenloy D, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, Kloner RA, Ovize M, Yellon DM, Garcia-Dorado D (2017) Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 38:935–941. https://doi.org/10.1093/eurheartj/ehw145

    Article  CAS  PubMed  Google Scholar 

  8. Hsu YM, Zhang Y, You Y, Wang D, Li H, Duramad O, Qin XF, Dong C, Lin X (2007) The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immuno l 8:198–205. https://doi.org/10.1038/ni1426

    Article  CAS  Google Scholar 

  9. Jahania SM, Sengstock D, Vaitkevicius P, Andres A, Ito BR, Gottlieb RA, Mentzer RM (2013) Activation of the homeostatic intracellular repair response during cardiac surgery. J Am Coll Surg 216:719–726. https://doi.org/10.1016/j.jamcollsurg.2012.12.034

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jiang B, Liu Y, Liang P, Li Y, Liu Z, Tong Z, Lv Q, Liu M, Xiao X (2017) MicroRNA-126a-5p enhances myocardial ischemia-reperfusion injury through suppressing Hspb8 expression. Oncotarget 8:94172–94187. https://doi.org/10.18632/oncotarget.21613

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang B, Zhang B, Liang P, Chen G, Zhou B, Lv C, Tu Z, Xiao X (2013) Nucleolin protects the heart from ischemia-reperfusion injury by up-regulating heat shock protein 32. Cardiovasc Res 99:92–101. https://doi.org/10.1093/cvr/cvt085

    Article  CAS  PubMed  Google Scholar 

  12. Jiang B, Zhang B, Liang P, Song J, Deng H, Tu Z, Deng G, Xiao X (2010) Nucleolin/C23 mediates the antiapoptotic effect of heat shock protein 70 during oxidative stress. FEBSJ 277:642–652. https://doi.org/10.1111/j.1742-4658.2009.07510.x

    Article  CAS  Google Scholar 

  13. Johansson ME, Zhang XY, Edfeldt K, Lundberg AM, Levin MC, Boren J, Li W, Yuan XM, Folkersen L, Eriksson P, Hedin U, Low H, Sviridov D, Rios FJ, Hansson GK, Yan ZQ (2014) Innate immune receptor NOD2 promotes vascular inflammation and formation of lipid-rich necrotic cores in hypercholesterolemic mice. Eur J Immunol 44:3081–3092. https://doi.org/10.1002/eji.201444755

    Article  CAS  PubMed  Google Scholar 

  14. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721. https://doi.org/10.1126/science.290.5497.1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010. https://doi.org/10.1038/nrm2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levin MC, Jirholt P, Wramstedt A, Johansson ME, Lundberg AM, Trajkovska MG, Stahlman M, Fogelstrand P, Brisslert M, Fogelstrand L, Yan ZQ, Hansson GK, Bjorkbacka H, Olofsson SO, Boren J (2011) Rip2 deficiency leads to increased atherosclerosis despite decreased inflammation. Circ Res 109:1210–1218. https://doi.org/10.1161/CIRCRESAHA.111.246702

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Cai SX, He Q, Zhang H, Friedberg D, Wang F, Redington AN (2018) Intravenous miR-144 reduces left ventricular remodeling after myocardial infarction. Basic Res Cardiol 113:36. https://doi.org/10.1007/s00395-018-0694-x

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Liang P, Jiang B, Tang Y, Lv Q, Hao H, Liu Z, Xiao X (2019) CARD9 inhibits mitochondria-dependent apoptosis of cardiomyocytes under oxidative stress via interacting with Apaf-1. Free Radic Biol Med 141:172–181. https://doi.org/10.1016/j.freeradbiomed.2019.06.017

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Jiang B, Liang P, Tong Z, Liu M, Lv Q, Liu Y, Liu X, Tang Y, Xiao X (2017) Nucleolin protects macrophages from oxLDL-induced foam cell formation through up-regulating ABCA1 expression. Biochem Biophys Res Commun 486:364–371. https://doi.org/10.1016/j.bbrc.2017.03.047

    Article  CAS  PubMed  Google Scholar 

  20. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699. https://doi.org/10.1038/ncb1426

    Article  CAS  PubMed  Google Scholar 

  21. Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C, Jung JU (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10:776–787. https://doi.org/10.1038/ncb1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812–H838. https://doi.org/10.1152/ajpheart.00335.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX (2017) Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem 43:52–68. https://doi.org/10.1159/000480317

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Wang Y, Shi H, Jia L, Cheng J, Cui W, Li H, Li P, Du J (2015) CARD9 mediates necrotic smooth muscle cell-induced inflammation in macrophages contributing to neointima formation of vein grafts. Cardiovasc Res 108:148–158. https://doi.org/10.1093/cvr/cvv211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma B, Cao W, Li W, Gao C, Qi Z, Zhao Y, Du J, Xue H, Peng J, Wen J, Chen H, Ning Y, Huang L, Zhang H, Gao X, Yu L, Chen YG (2014) Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation. Cell Res 24:912–924. https://doi.org/10.1038/cr.2014.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma S, Wang Y, Chen Y, Cao F (2015) The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta 1852:271–276. https://doi.org/10.1016/j.bbadis.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  27. Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Diwan A (2012) Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy 8:1394–1396. https://doi.org/10.4161/auto.21036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, Diwan A (2012) Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125:3170–3181. https://doi.org/10.1161/CIRCULATIONAHA.111.041814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922. https://doi.org/10.1161/01.RES.0000261924.706669.36

    Article  CAS  PubMed  Google Scholar 

  30. Matsunaga K, Noda T, Yoshimori T (2009) Binding Rubicon to cross the Rubicon. Autophagy 5:876–877. https://doi.org/10.4161/auto.9098

    Article  PubMed  Google Scholar 

  31. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11:385–396. https://doi.org/10.1038/ncb1846

    Article  CAS  PubMed  Google Scholar 

  32. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609. https://doi.org/10.1152/physrev.00024.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peterson MR, Haller SE, Ren J, Nair S, He G (2016) CARD9 as a potential target in cardiovascular disease. Drug Des Devel Ther 10:3799–3804. https://doi.org/10.2147/DDDT.S122508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Przyklenk K, Dong Y, Undyala VV, Whittaker P (2012) Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res 94:197–205. https://doi.org/10.1093/cvr/cvr358

    Article  CAS  PubMed  Google Scholar 

  35. Santin Y, Sicard P, Vigneron F, Guilbeau-Frugier C, Dutaur M, Lairez O, Couderc B, Manni D, Korolchuk VI, Lezoualc'h F, Parini A, Mialet-Perez J (2016) Oxidative stress by monoamine oxidase-A impairs transcription factor EB activation and autophagosome clearance, leading to cardiomyocyte necrosis and heart failure. Antioxid Redox Signal 25:10–27. https://doi.org/10.1089/ars.2015.6522

    Article  CAS  PubMed  Google Scholar 

  36. Song H, Yan C, Tian X, Zhu N, Li Y, Liu D, Liu Y, Liu M, Peng C, Zhang Q, Gao E, Han Y (2017) CREG protects from myocardial ischemia/reperfusion injury by regulating myocardial autophagy and apoptosis. Biochim Biophys Acta 1(863):1893–1903. https://doi.org/10.1016/j.bbadis.2016.11.015

    Article  CAS  Google Scholar 

  37. Song Z, An L, Ye Y, Wu J, Zou Y, He L, Zhu H (2014) Essential role for UVRAG in autophagy and maintenance of cardiac function. Cardiovasc Res 101:48–56. https://doi.org/10.1093/cvr/cvt223

    Article  CAS  PubMed  Google Scholar 

  38. Sun Q, Westphal W, Wong KN, Tan I, Zhong Q (2010) Rubicon controls endosome maturation as a Rab7 effector. Proc Natl Acad Sci USA 107:19338–19343. https://doi.org/10.1073/pnas.1010554107

    Article  PubMed  Google Scholar 

  39. Sun Q, Zhang J, Fan W, Wong KN, Ding X, Chen S, Zhong Q (2011) The RUN domain of rubicon is important for hVps34 binding, lipid kinase inhibition, and autophagy suppression. J Biol Chem 286:185–191. https://doi.org/10.1074/jbc.M110.126425

    Article  CAS  PubMed  Google Scholar 

  40. Tong Z, Tang Y, Jiang B, Wu Y, Liu Y, Li Y, Xiao X (2019) Phosphorylation of nucleolin is indispensable to upregulate miR-21 and inhibit apoptosis in cardiomyocytes. J Cell Physiol 234:4044–4053. https://doi.org/10.1002/jcp.27191

    Article  CAS  PubMed  Google Scholar 

  41. Yang CS, Rodgers M, Min CK, Lee JS, Kingeter L, Lee JY, Jong A, Kramnik I, Lin X, Jung JU (2012) The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity. Cell Host Microbe 11:277–289. https://doi.org/10.1016/j.chom.2012.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. https://doi.org/10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  43. Zheng Y, Gu S, Li X, Tan J, Liu S, Jiang Y, Zhang C, Gao L, Yang HT (2017) Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis 8:e2577. https://doi.org/10.1038/cddis.2017.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong X, Chen B, Yang L, Yang Z (2018) Molecular and physiological roles of the adaptor protein CARD9 in immunity. Cell Death Dis 9:52. https://doi.org/10.1038/s41419-017-0084-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11:468–476. https://doi.org/10.1038/ncb1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zi Z, Song Z, Zhang S, Ye Y, Li C, Xu M, Zou Y, He L, Zhu H (2015) Rubicon deficiency enhances cardiac autophagy and protects mice from lipopolysaccharide-induced lethality and reduction in stroke volume. J Cardiovasc Pharmacol 65:252–261. https://doi.org/10.1097/FJC.0000000000000188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (81170113; 81770306; 81471868; 81671895), and the Province Natural Science Foundation of Hunan (2018JJ2547).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bimei Jiang or Zhenguo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liang, P., Jiang, B. et al. CARD9 promotes autophagy in cardiomyocytes in myocardial ischemia/reperfusion injury via interacting with Rubicon directly. Basic Res Cardiol 115, 29 (2020). https://doi.org/10.1007/s00395-020-0790-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-020-0790-6

Keywords