Abstract
Purpose
Lipid intakes such as saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids have been widely studied regarding cardiovascular health, but their relevance to cancer is unclear. Inconsistent epidemiological results may be explained by varied mechanisms involving PUFAs and redox balance, inflammatory status and cell signalling, along with interactions with other dietary components such as antioxidants, dietary fibre and more generally fruits and vegetable intakes. Therefore, this study aimed to investigate the associations between lipid intakes and cancer risk, and their potential modulation by vitamin C, vitamin E, dietary fibre and fruit and vegetable intakes.
Methods
This prospective study included 44,039 participants aged ≥ 45 years from the NutriNet-Santé cohort (2009–2017). Dietary data were collected using repeated 24 h-dietary records. Multivariable Cox models were performed to characterize associations.
Results
SFA intake was associated with increased overall [n = 1722 cases, HRQ5vsQ1 = 1.44 (1.10–1.87), p-trend = 0.008] and breast [n = 545 cases, HRQ5vsQ1 = 1.98 (1.24–3.17), p-trend = 0.01] cancer risks. n-6 PUFA [HRQ5vsQ1 = 0.56 (0.32–0.97), p-trend = 0.01] and MUFA (HRQ5vsQ1 = 0.41 [0.18-0.0.95), p-trend = 0.009] intakes were associated with a decreased risk of digestive cancers (n = 190 cases). Associations between n-6 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intakes and digestive cancer risk were modulated by dietary fibre, vitamin C and fruit and vegetable intakes.
Conclusion
These findings suggested that SFA intake could increase overall and breast cancer risks while some unsaturated fatty acids could decrease digestive cancer risk. However, in line with mechanistic hypotheses, our results suggest that intakes of fruits and vegetables and their constituents (antioxidants, fibre) may interact with PUFAs to modulate these associations.
Similar content being viewed by others
Abbreviations
- DHA:
-
Docosahexaenoic acid
- DPA:
-
Docosapentaenoic acid
- EPA:
-
Eicosapentaenoic acid
- PUFAs:
-
Polyunsaturated fatty acids
- MUFAs:
-
Monounsaturated fatty acids
- SFAs:
-
Saturated fatty acids
- HR:
-
Hazard ratio
- CI:
-
Confidence interval
References
WHO, IARC (2012) All Cancers: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Geneva, Switzerland
Bray F, Jemal A, Grey N et al (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol 13:790–801. https://doi.org/10.1016/S1470-2045(12)70211-5
World Cancer Research Fund, American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington DC
WCRF/AICR (2017) Continuous Update Project findings and reports
Sieri S, Chiodini P, Agnoli C et al (2014) Dietary fat intake and development of specific breast cancer subtypes. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju068
Gonzalez CA, Riboli E (2010) Diet and cancer prevention: contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Cancer Oxf Engl 1990 46:2555–2562. https://doi.org/10.1016/j.ejca.2010.07.025
Zheng J-S, Hu X-J, Zhao Y-M et al (2013) Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 346:f3706
Yang B, Ren X-L, Fu Y-Q et al (2014) Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies. BMC Cancer 14:105. https://doi.org/10.1186/1471-2407-14-105
Kiyabu GY, Inoue M, Saito E et al (2015) Fish, n-3 polyunsaturated fatty acids and n-6 polyunsaturated fatty acids intake and breast cancer risk: the Japan Public Health Center-based prospective study. Int J Cancer 137:2915–2926. https://doi.org/10.1002/ijc.29672
Bassett JK, Hodge AM, English DR et al (2016) Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk. Cancer Causes Control CCC 27:759–773. https://doi.org/10.1007/s10552-016-0753-2
Fu Y-Q, Zheng J-S, Yang B, Li D (2015) Effect of individual omega-3 fatty acids on the risk of prostate cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. J Epidemiol 25:261–274. https://doi.org/10.2188/jea.JE20140120
Vieira AR, Abar L, Chan D et al (2017) Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR continuous update project. Ann Oncol Off J Eur Soc Med Oncol. https://doi.org/10.1093/annonc/mdx171
Bartsch H, Nair J, Owen RW (1999) Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers. Carcinogenesis 20:2209–2218
Richard D, Kefi K, Barbe U et al (2008) Polyunsaturated fatty acids as antioxidants. Pharmacol Res 57:451–455. https://doi.org/10.1016/j.phrs.2008.05.002
Marion-Letellier R, Savoye G, Ghosh S (2015) Polyunsaturated fatty acids and inflammation. IUBMB Life 67:659–667. https://doi.org/10.1002/iub.1428
Latino-Martel P, Cottet V, Druesne-Pecollo N et al (2016) Alcoholic beverages, obesity, physical activity and other nutritional factors, and cancer risk: a review of the evidence. Crit Rev Oncol Hematol 99:308–323. https://doi.org/10.1016/j.critrevonc.2016.01.002
Narayanankutty A, Kottekkat A, Mathew SE et al (2017) Vitamin E supplementation modulates the biological effects of omega-3 fatty acids in naturally aged rats. Toxicol Mech Methods 27:207–214. https://doi.org/10.1080/15376516.2016.1273431
Vulcain E, Goupy P, Caris-Veyrat C, Dangles O (2005) Inhibition of the metmyoglobin-induced peroxidation of linoleic acid by dietary antioxidants: action in the aqueous vs. lipid phase. Free Radic Res 39:547–563. https://doi.org/10.1080/10715760500073865
Bo L, Jiang S, Xie Y et al (2016) Effect of vitamin E and omega-3 fatty acids on protecting ambient PM2.5-induced inflammatory response and oxidative stress in vascular endothelial cells. PLoS One 11:e0152216. https://doi.org/10.1371/journal.pone.0152216
Pouchieu C, Chajès V, Laporte F et al (2014) Prospective associations between plasma saturated, monounsaturated and polyunsaturated fatty acids and overall and breast cancer risk—modulation by antioxidants: a nested case-control study. PLoS One 9:e90442. https://doi.org/10.1371/journal.pone.0090442
Männistö S, Pietinen P, Virtanen MJ et al (2003) Fatty acids and risk of prostate cancer in a nested case–control study in male smokers. Cancer Epidemiol Prev Biomark 12:1422–1428
Pierre FHF, Martin OCB, Santarelli RL et al (2013) Calcium and α-tocopherol suppress cured-meat promotion of chemically induced colon carcinogenesis in rats and reduce associated biomarkers in human volunteers. Am J Clin Nutr 98:1255–1262. https://doi.org/10.3945/ajcn.113.061069
Chang WC, Chapkin RS, Lupton JR (1997) Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis 18:721–730
Navarro SL, Neuhouser ML, Cheng T-YD et al (2016) The interaction between dietary fiber and fat and risk of colorectal cancer in the women’s health initiative. Nutrients. https://doi.org/10.3390/nu8120779
Kraja B, Muka T, Ruiter R et al (2015) Dietary fiber intake modifies the positive association between n-3 PUFA intake and colorectal cancer risk in a caucasian population. J Nutr 145:1709–1716. https://doi.org/10.3945/jn.114.208462
de Sousa Moraes LF, Sun X, Peluzio M, do CG, Zhu M-J (2017) Anthocyanins/anthocyanidins and colorectal cancer: what is behind the scenes?. Crit Rev Food Sci Nutr 1–13. https://doi.org/10.1080/10408398.2017.1357533
Chen H-M, Yu Y-N, Wang J-L et al (2013) Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr 97:1044–1052. https://doi.org/10.3945/ajcn.112.046607
Hercberg S, Castetbon K, Czernichow S et al (2010) The Nutrinet-Santé Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health 10:242. https://doi.org/10.1186/1471-2458-10-242
Vergnaud A-C, Touvier M, Méjean C et al (2011) Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Santé study. Int J Public Health 56:407–417. https://doi.org/10.1007/s00038-011-0257-5
Lassale C, Péneau S, Touvier M et al (2013) Validity of web-based self-reported weight and height: results of the Nutrinet-Santé study. J Med Internet Res 15:e152. https://doi.org/10.2196/jmir.2575
Touvier M, Méjean C, Kesse-Guyot E et al (2010) Comparison between web-based and paper versions of a self-administered anthropometric questionnaire. Eur J Epidemiol 25:287–296. https://doi.org/10.1007/s10654-010-9433-9
The IPAQ Group (2005) Guidelines for data processing and analysis of the International Physical Activity Questionnaire. http://www.ipaq.ki.se
Touvier M, Kesse-Guyot E, Méjean C et al (2011) Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br J Nutr 105:1055–1064. https://doi.org/10.1017/S0007114510004617
Lassale C, Castetbon K, Laporte F et al (2015) Validation of a Web-based, self-administered, non-consecutive-day dietary record tool against urinary biomarkers. Br J Nutr 113:953–962. https://doi.org/10.1017/S0007114515000057
Lassale C, Castetbon K, Laporte F et al (2016) Correlations between fruit, vegetables, fish, vitamins, and fatty acids estimated by web-based nonconsecutive dietary records and respective biomarkers of nutritional status. J Acad Nutr Diet 116:427–438.e5. https://doi.org/10.1016/j.jand.2015.09.017
Le Moullec N, Deheeger M, Preziosi P et al (1996) Validation du manuel photo utilisé pour l’enquête alimentaire de l’étude SU.VI.MAX (Validation of the food portion size booklet used in the SU.VI.MAX study). Cah Nutr Diététique 31:158–164
Arnault N, Caillot L, Castetbon K et al (2013) Table De composition des aliments, étude NutriNet-Santé. [Food composition table, NutriNet-Santé study]. Les éditions INSERM/Economica, Paris (in French)
Black AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord J Int Assoc Study Obes 24:1119–1130
Pouchieu C, Andreeva VA, Péneau S et al (2013) Sociodemographic, lifestyle and dietary correlates of dietary supplement use in a large sample of French adults: results from the NutriNet-Santé cohort study. Br J Nutr 110:1480–1491. https://doi.org/10.1017/S0007114513000615
INCa (2016) Les cancers en France. [Cancers in France]. http://www.e-cancer.fr/ressources/cancers_en_france/ (in French)
Magaki M, Ishii H, Yamasaki A et al (2017) A high-fat diet increases the incidence of mammary cancer inc-Ha-ras proto-oncogene transgenic rats. J Toxicol Pathol 30:145–152. https://doi.org/10.1293/tox.2016-0052
Han J, Jiang Y, Liu X et al (2015) Dietary fat intake and risk of gastric cancer: a meta-analysis of observational studies. PLoS One 10:e0138580. https://doi.org/10.1371/journal.pone.0138580
Yao X, Tian Z (2015) Saturated, monounsaturated and polyunsaturated fatty acids intake and risk of pancreatic cancer: evidence from observational studies. PLoS One 10:e0130870. https://doi.org/10.1371/journal.pone.0130870
Koh W-P, Dan YY, Goh GB-B et al (2016) Dietary fatty acids and risk of hepatocellular carcinoma in the Singapore Chinese health study. Liver Int Off J Int Assoc Study Liver 36:893–901. https://doi.org/10.1111/liv.12978
Duarte-Salles T, Fedirko V, Stepien M et al (2015) Dietary fat, fat subtypes and hepatocellular carcinoma in a large European cohort. Int J Cancer 137:2715–2728. https://doi.org/10.1002/ijc.29643
Hodge AM, Williamson EJ, Bassett JK et al (2015) Dietary and biomarker estimates of fatty acids and risk of colorectal cancer. Int J Cancer 137:1224–1234. https://doi.org/10.1002/ijc.29479
Bamia C, Lagiou P, Buckland G et al (2013) Mediterranean diet and colorectal cancer risk: results from a European cohort. Eur J Epidemiol 28:317–328. https://doi.org/10.1007/s10654-013-9795-x
Arem H, Mayne ST, Sampson J et al (2013) Dietary fat intake and risk of pancreatic cancer in the prostate, lung, colorectal and ovarian cancer screening trial. Ann Epidemiol 23:571–575. https://doi.org/10.1016/j.annepidem.2013.06.006
Lu X, He G, Yu H et al (2010) Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes. J Zhejiang Univ Sci B 11:923–930. https://doi.org/10.1631/jzus.B1000125
Zhang C, Yu H, Ni X et al (2015) Growth inhibitory effect of polyunsaturated fatty acids (PUFAs) on colon cancer cells via their growth inhibitory metabolites and fatty acid composition changes. PLoS One 10:e0123256. https://doi.org/10.1371/journal.pone.0123256
Thiébaut ACM, Chajès V, Gerber M et al (2009) Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer 124:924–931. https://doi.org/10.1002/ijc.23980
Shen W, Gaskins HR, McIntosh MK (2014) Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J Nutr Biochem 25:270–280. https://doi.org/10.1016/j.jnutbio.2013.09.009
Andreeva VA, Salanave B, Castetbon K et al (2015) Comparison of the sociodemographic characteristics of the large NutriNet-Santé e-cohort with French census data: the issue of volunteer bias revisited. J Epidemiol Community Health 69:893–898. https://doi.org/10.1136/jech-2014-205263
ANSES, Comité d’Experts Spécialisé Nutrition Humaine, Groupe de travail ANC acides gras (2011) Actualisation des apports nutritionnels conseillés pour les acides gras, rapport d’expertise collective. [Update of recommended dietary fatty acid intakes, collective expert report]. Anses editions (in French)
Acknowledgements
The authors thank all the volunteers of the NutriNet-Santé cohort. We also thank Frédéric Coffinieres, Thi Hong Van Duong, Younes Esseddik (IT manager), Paul Flanzy, Régis Gatibelza, Jagatjit Mohinder and Maithyly Sivapalan (computer scientists); and Julien Allegre, Nathalie Arnault, Laurent Bourhis, Véronique Gourlet, PhD and Fabien Szabo de Edelenyi, PhD (manager) (data-manager/biostatisticians) for their technical contribution to the NutriNet-Santé study and Nathalie Druesne-Pecollo, PhD (operational coordination).
Funding
The NutriNet-Santé study was supported by the following public institutions: Ministère de la Santé, Institut de Veille Sanitaire (InVS), Institut National de la Prévention et de l’Education pour la Santé (INPES), Région Ile-de-France (CORDDIM), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Conservatoire National des Arts et Métiers (CNAM) and Université Paris 13. Mélanie Deschasaux and Philippine Fassier were funded by a PhD Grant from the Cancéropôle Ile de France/Région Ile de France (public funding). Bernard Srour was funded by the French National Cancer Institute (grant number INCa_8085).
Author information
Authors and Affiliations
Contributions
LS and MT: designed the research; SH, PG, EKG, MT: conducted the research; LS: performed statistical analysis; MT: supervised statistical analysis; LS and MT: wrote the paper; LS, BS, FG, FP, EKG, TF, CL, ME, PLM, PF, SH, PG, MD, and MT: contributed to the data interpretation and revised each draft for important intellectual content. All authors read and approved the final manuscript. MT had primary responsibility for the final content. None of the authors reported a conflict of interest related to the study. The funders had no role in the design, implementation, analysis, or interpretation of the data. This research was performed in the framework of the French network for Nutrition And Cancer Research (NACRe network).
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sellem, L., Srour, B., Guéraud, F. et al. Saturated, mono- and polyunsaturated fatty acid intake and cancer risk: results from the French prospective cohort NutriNet-Santé. Eur J Nutr 58, 1515–1527 (2019). https://doi.org/10.1007/s00394-018-1682-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00394-018-1682-5