Skip to main content

Dynamics and mechanics of social rank reversal

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Stable social relationships are rearranged over time as resources such as favored territorial positions change. We test the hypotheses that social rank relationships are relatively stable, and although social signals influence aggression and rank, they are not as important as memory of an opponent. In addition, we hypothesize that eyespots, aggression and corticosterone influence serotonin and N-methyl-D-aspartate (NMDA) systems in limbic structures involved in learning and memory. In stable adult dominant-subordinate relationships in the lizard Anolis carolinensis, social rank can be reversed by pharmacological elevation of limbic serotonergic activity. Any pair of specific experiences: behaving aggressively, viewing aggression or perceiving sign stimuli indicative of dominant rank also elevate serotonergic activity. Differences in the extent of serotonergic activation may be a discriminating and consolidating factor in attaining superior rank. For instance, socially aggressive encounters lead to increases in plasma corticosterone that stimulate both serotonergic activity and expression of the NMDA receptor subunit 2B (NR2B) within the CA3 region of the lizard hippocampus. Integration of these systems will regulate opponent recognition and memory, motivation to attack or retreat, and behavioral and physiological reactions to stressful social interactions. Contextually appropriate social responses provide a modifiable basis for coping with the flexibility of social relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5-HIAA:

5-Hydroxyindoleacetic acid

5-HT:

Serotonin or 5-hydroxytryptamine

NMDA:

N-Methyl-D-aspartate

NR2A:

NMDA receptor subunit 2A

NR2B:

NMDA receptor subunit 2B

References

  • Bartolomucci A, de Biurrun G, Czeh B, Van Kampen M, Fuchs E (2002) Selective enhancement of spatial learning under chronic psychosocial stress. Eur J Neurosci 15:1863–1866

    Article  PubMed  Google Scholar 

  • Bee MA, Gerhardt HC (2001) Neighbour–stranger discrimination by territorial male bullfrogs (Rana catesbeiana): II. Perceptual basis. Anim Behav 62:1141–1150

    Article  Google Scholar 

  • Bjorkqvist K (2001) Social defeat as a stressor in humans. Physiol Behav 73:435–442

    Article  CAS  PubMed  Google Scholar 

  • Bonson KR, Johnson RG, Fiorella D, Rabin RA, Winter JC (1994) Serotonergic control of androgen-induced dominance. Pharmacol Biochem Behav 49:313–322

    Article  CAS  PubMed  Google Scholar 

  • Burman OHP, Mendl M (1999) The effects of environmental context on laboratory rat social recognition. Anim Behav 58:629–634

    Article  PubMed  Google Scholar 

  • Crews D (1975) Inter- and intraindividual variation in display patterns in the lizard, Anolis carolinensis. Herpetelogica 31:37–47

    Google Scholar 

  • Crews D, Williams EE (1977) Hormones, reproductive behavior, and speciation. Am Zool 17:271–286

    Google Scholar 

  • Davila JC, Megias M, de la CA, Guirado S (1993) Subpopulations of GABA neurons containing somatostatin, neuropeptide Y, and parvalbumin in the dorsomedial cortex of the lizard Psammodromus algirus. J Comp Neurol 336:161–173

    CAS  PubMed  Google Scholar 

  • Davila JC, Megias M, Andreu MJ, Real MA, Guirado S (1995) NADPH diaphorase-positive neurons in the lizard hippocampus: a distinct subpopulation of GABAergic interneurons. Hippocampus 5:60–70

    CAS  PubMed  Google Scholar 

  • DeCourcy KR, Jenssen TA (1994) Structure and use of male territorial headbob signals by the lizard Anolis carolinensis. Anim Behav 47:251–262

    Article  Google Scholar 

  • Evans LT (1936) A study of social hierarchy in the lizard, Anolis carolinensis. J Genet Psychol 48:88–111

    Google Scholar 

  • File SE, James TA, MacLeod NK (1981) Depletion in amygdaloid 5-hydroxytryptamine concentration and changes in social and aggressive behaviour. J Neural Transm 50:1–12

    CAS  PubMed  Google Scholar 

  • Forster GL, Watt MJ, Korzan WJ, Renner KJ, Summers CH (2005) Opponent recognition between male green anoles (Anolis carolinensis). Anim Behav (in press)

  • Fowler M, Medina L, Reiner A (1999) Immunohistochemical localization of NMDA- and AMPA-type glutamate receptor subunits in the basal ganglia of red-eared turtles. Brain Behav Evol 54:276–289

    Article  CAS  PubMed  Google Scholar 

  • Fox SF, Baird TA (1992) The dear enemy phenomenon in the collard lizard, Crotaphytus collaris, with a cautionary note on experimental methodology. Anim Behav 44:780–782

    Google Scholar 

  • Fuchs E, Flugge G, Ohl F, Lucassen P, Vollmann-Honsdorf GK, Michaelis T (2001) Psychosocial stress, glucocorticoids, and structural alterations in the tree shrew hippocampus. Physiol Behav 73:285–291

    Article  CAS  PubMed  Google Scholar 

  • Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826:35–43

    Article  CAS  PubMed  Google Scholar 

  • Greenberg N (1977) A neuroethological study of display behavior in the lizard, Anolis carolinensis (Reptilia, Lacertilia, Iguanidae). Am Zool 17:191–201

    Google Scholar 

  • Greenberg N (1982) A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis. J Morphol 174:217–236

    Google Scholar 

  • Greenberg N (2002) Ethological aspects of stress in a model lizard, Anolis carolinensis. Integr Comp Biol 42:526–540

    Google Scholar 

  • Greenberg N, Crews D (1990) Endocrine and behavioral responses to aggression and social dominance in the green anole lizard, Anolis carolinensis. Gen Comp Endocrinol 77:246–255

    CAS  PubMed  Google Scholar 

  • Greenberg B, Noble GK (1944) Social behavior of the American chameleon (Anolis carolinensis). Physiol Zool 17:392–439

    Google Scholar 

  • Greenberg N, Chen T, Crews D (1984) Social status, gonadal state, and the adrenal stress response in the lizard, Anolis carolinensis. Horm Behav 18:1–11

    Article  CAS  PubMed  Google Scholar 

  • Greenwood BN, Foley TE, Day HE, Campisi J, Hammack SH, Campeau S, Maier SF, Fleshner M (2003) Freewheel running prevents learned helplessness/behavioral depression: role of dorsal raphe serotonergic neurons. J Neurosci 23:2889–2898

    CAS  PubMed  Google Scholar 

  • Guirado S, Dávila JC (1994) Immunocytochemical localization of the GABA A receptor in the cerebral cortex of the lizard Psammodromus algirus. J Comp Neurol 344:610–618

    CAS  PubMed  Google Scholar 

  • Hadley ME, Goldman JM (1969) Physiological color changes in reptiles. Am Zool 9:489–504

    CAS  PubMed  Google Scholar 

  • Hammack SE, Hartley CE, Lea SE, Maier SF, Watkins LR, Sutton LC (1999) Inescapable shock-induced potentiation of morphine analgesia in rats: sites of action. Behav Neurosci 113:795–803

    Article  CAS  PubMed  Google Scholar 

  • Hammack SE, Richey KJ, Schmid MJ, LoPresti ML, Watkins LR, Maier SF (2002) The role of corticotropin-releasing hormone in the dorsal raphe nucleus in mediating the behavioral consequences of uncontrollable stress. J Neurosci 22:1020–1026

    CAS  PubMed  Google Scholar 

  • Höglund E, Korzan WJ, Forster GL, Watt MJ, Summers TR, Johannessen HF, Renner KJ, Summers CH (2004) Effects of L-DOPA on aggressive behavior and central monoaminergic activity in the lizard Anolis carolinensis, using a new method for drug delivery. Behav Brain Res (in press)

  • Huber R, Smith K, Delago A, Isaksson K, Kravitz EA (1997) Serotonin and aggressive motivation in crustaceans: altering the decision to retreat. Proc Natl Acad Sci U S A 94:5939–5942

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Panksepp JB, Yue Z, Delago A, Moore P (2001) Dynamic interactions of behavior and amine neurochemistry in acquisition and maintenance of social rank in crayfish. Brain Behav Evol 57:271–282

    Article  CAS  PubMed  Google Scholar 

  • Huhman KL, Solomon MB, Janicki M, Harmon AC, Lin SM, Israel JE, Jasnow AM (2003) Conditioned defeat in male and female Syrian hamsters. Horm Behav 44:293–299

    Article  PubMed  Google Scholar 

  • Husak JF, Fox SF (2003) Adult male collared lizards, Crotaphytus collaris, increase aggression towards displaced neighbours. Anim Behav 65:391–396

    Article  Google Scholar 

  • Jasnow AM, Banks MC, Owens EC, Huhman KL (1999) Differential effects of two corticotropin-releasing factor antagonists on conditioned defeat in male Syrian hamsters (Mesocricetus auratus). Brain Res 846:122–128

    Article  CAS  PubMed  Google Scholar 

  • Jenssen TA, Greenberg N, Hovde KA (1995) Seasonal shifts in the activity of male Anolis carolinensis in the field. Herpetol Monogr 9:41–62

    Google Scholar 

  • Johnsson JI (1997) Individual recognition affects aggression and dominance relations in rainbow trout, Oncorhynchus mykiss. Ethology 103:267–282

    Google Scholar 

  • Johnsson JI, Akerman A (1998) Watch and learn: preview of the fighting ability of opponents alters contest behaviour in rainbow trout. Anim Behav 56:771–776

    Article  PubMed  Google Scholar 

  • Kampen MM, Kramer M, Hiemke C, Flugge G, Fuchs E (2002) The chronic psychosocial stress paradigm in male tree shrews: evaluation of a novel animal model for depressive disorders. Stress 5:37–46

    Article  PubMed  Google Scholar 

  • Keifer J (2001) In vitro eye-blink classical conditioning is NMDA receptor dependent and involves redistribution of AMPA receptor subunit GluR4. J Neurosci 21:2434–2441

    CAS  PubMed  Google Scholar 

  • Keifer J, Carr MT (2000) Immunocytochemical localization of glutamate receptor subunits in the brain stem and cerebellum of the turtle Chrysemys picta. J Comp Neurol 427:455–468

    Article  CAS  PubMed  Google Scholar 

  • Korzan WJ, Summers CH (2004) Serotonergic response to social stress and artificial social sign stimuli during paired interactions between male Anolis carolinensis. Neuroscience 123:835–845

    Article  CAS  PubMed  Google Scholar 

  • Korzan WJ, Summers TR, Ronan PJ, Summers CH (2000a) Visible sympathetic activity as a social signal in Anolis carolinensis: changes in aggression and plasma catecholamines. Horm Behav 38:193–199

    Article  CAS  PubMed  Google Scholar 

  • Korzan WJ, Summers TR, Summers CH (2000b) Monoaminergic activities of limbic regions are elevated during aggression: influence of sympathetic social signaling. Brain Res 870:170–178

    Article  CAS  PubMed  Google Scholar 

  • Korzan WJ, Summers TR, Summers CH (2002) Manipulation of visual sympathetic sign stimulus modifies social status and plasma catecholamines. Gen Comp Endocrinol 128:153–161

    Article  CAS  PubMed  Google Scholar 

  • Larson ET, Summers CH (2001) Serotonin reverses dominant social status. Behav Brain Res 121:95–102

    Article  CAS  PubMed  Google Scholar 

  • Larson ET, Norris DO, Grau EG, Summers CH (2003a) Monoamines stimulate sex reversal in the saddleback wrasse. Gen Comp Endocrinol 130:289–298

    Article  CAS  PubMed  Google Scholar 

  • Larson ET, Norris DO, Summers CH (2003b) Monoaminergic changes associated with socially induced sex reversal in the saddleback wrasse. Neuroscience 119:251–263

    Article  CAS  PubMed  Google Scholar 

  • Licht P (1971) Regulation of the annual testis cycle by photoperiod and temperature in the lizard, Anolis carolinensis. Ecology 52:240–252

    Google Scholar 

  • Lopez KH, Jones RE, Seufert DW, Rand MS, Dores RM (1992) Catecholaminergic cells and fibers in the brain of the lizard Anolis carolinensis identified by traditional as well as whole-mount immunohistochemistry. Cell Tissue Res 270:319–337

    CAS  PubMed  Google Scholar 

  • Lopez-Garcia C, Nacher J, Castellano B, Luis de la Iglesia JA, Molowny A (1994) Transitory disappearance of microglia during the regeneration of the lizard medial cortex. Glia 12:52–61

    CAS  PubMed  Google Scholar 

  • Lovern MB, McNabb FM, Jenssen TA (2001) Developmental effects of testosterone on behavior in male and female green anoles (Anolis carolinensis). Horm Behav 39:131–143

    Article  CAS  PubMed  Google Scholar 

  • Luine VN, Spencer RL, McEwen BS (1993) Effects of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res 616:65–70

    Article  CAS  PubMed  Google Scholar 

  • Luine V, Villegas M, Martinez C, McEwen BS (1994) Stress-dependent impairments of spatial memory. Role of 5-HT. Ann N Y Acad Sci 746:403–404

    CAS  PubMed  Google Scholar 

  • Matter JM, Ronan PJ, Summers CH (1998) Central monoamines in free-ranging lizards: differences associated with social roles and territoriality. Brain Behav Evol 51:23–32

    Article  CAS  PubMed  Google Scholar 

  • Meyer WN, Keifer J, Korzan WJ, Summers CH (2004) Regionally specific hippocampal NR2A and NR2B subunit expression is modified by social stress and corticosterone. Neuroscience (in press)

  • Miklosi A, Haller J, Csanyi V (1995) The influence of opponent and outcome-related memory on repeated aggressive encounders in the paradise fish (Macropodus opercularis L.). Biol Bull 188:83–88

    Google Scholar 

  • Miklosi A, Haller J, Csanyi V (1997) Learning about the opponent during aggressive encounters in paradise fish (Macropodus opercularis L.): when it takes place? Behav Process 40:97–105

    Article  Google Scholar 

  • Oliveira RF, McGregor PK, Latruffe C (1998) Know thine enemy: fighting fish gather information from observing conspecific interactions. Proc R Soc Lond B Biol Sci 265:1045–1049

    Article  Google Scholar 

  • Oliveira RF, Lopes M, Carneiro LA, Canario AV (2001) Watching fights raises fish hormone levels. Nature 409:475

    Article  CAS  PubMed  Google Scholar 

  • Olsson M (1994) Rival recognition affects male contest behavior in sand lizards (Lacerta agilis). Behav Ecol Sociobiol 35:249–252

    Article  Google Scholar 

  • Ouyang Y, Rosenstein A, Kreiman G, Schuman EM, Kennedy MB (1999) Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J Neurosci 19:7823–7833

    CAS  PubMed  Google Scholar 

  • Øverli Ø, Harris CA, Winberg S (1999) Short-term effects of fights for social dominance and the establishment of dominant–subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain Behav Evol 54:263–275

    Article  PubMed  Google Scholar 

  • Panksepp JB, Huber R (2002) Chronic alterations in serotonin function: dynamic neurochemical properties in agonistic behavior of the crayfish, Orconectes rusticus. J Neurobiol 50:276–290

    Article  CAS  PubMed  Google Scholar 

  • Potegal M, Huhman K, Moore T, Meyerhoff J (1993) Conditioned defeat in the Syrian golden hamster (Mesocricetus auratus). Behav Neural Biol 60:93–102

    CAS  PubMed  Google Scholar 

  • Qualls CP, Jaeger RG (1991) Dear enemy recognition in Anolis carolinensis. J Herpetol 25:361–363

    Google Scholar 

  • Raleigh MJ, McGuire MT, Brammer GL, Pollack DB, Yuwiler A (1991) Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. Brain Res 559:181–190

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Tsuzuki K, Yamada N, Okado H, Miwa A, Goto F, Ozawa S (2003) Transfer of NMDAR2 cDNAs increases endogenous NMDAR1 protein and induces expression of functional NMDA receptors in PC12 cells. Mol Brain Res 110:159–168

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Hyttel J (1994) Isolation-induced aggression in mice: effects of 5-hydroxytryptamine uptake inhibitors and involvement of postsynaptic 5-HT1A receptors. Eur J Pharmacol 264:241–247

    Article  CAS  PubMed  Google Scholar 

  • Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M (2000) Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin1A receptors. Proc Natl Acad Sci U S A 97:14731–14736

    Article  CAS  PubMed  Google Scholar 

  • Shannon NJ, Gunnet JW, Moore KE (1986) A comparison of biochemical indices of 5-hydroxytryptaminergic neuronal activity following electrical stimulation of the dorsal raphe nucleus. J Neurochem 47:958–965

    CAS  PubMed  Google Scholar 

  • Siegfried B, Frischknecht HR, Waser PG (1984) Vasopressin impairs or enhances retention of learned submissive behavior in mice depending on the time of application. Behav Brain Res 11:259–269

    Article  CAS  PubMed  Google Scholar 

  • Sugerman RA (1990) Observer effects in Anolis sagrei. J Herpetol 24:316–317

    Google Scholar 

  • Summers CH (2001) Mechanisms for quick and variable responses. Brain Behav Evol 57:283–292

    Article  CAS  PubMed  Google Scholar 

  • Summers CH (2002) Social interaction over time, implications for stress responsiveness. Integr Comp Biol 42:591–599

    Google Scholar 

  • Summers CH, Greenberg N (1994) Somatic correlates of adrenergic activity during aggression in the lizard, Anolis carolinensis. Horm Behav 28:29–40

    Article  CAS  PubMed  Google Scholar 

  • Summers CH, Larson ET, Summers TR, Renner KJ, Greenberg N (1998) Regional and temporal separation of serotonergic activity mediating social stress. Neuroscience 87:489–496

    Article  CAS  PubMed  Google Scholar 

  • Summers CH, Larson ET, Ronan PJ, Hofmann PM, Emerson AJ, Renner KJ (2000) Serotonergic responses to corticosterone and testosterone in the limbic system. Gen Comp Endocrinol 117:151–159

    Article  CAS  PubMed  Google Scholar 

  • Summers CH, Summers TR, Moore MC, Korzan WJ, Woodley SK, Ronan PJ, Höglund E, Watt MJ, Greenberg N (2003) Temporal patterns of limbic monoamine and plasma corticosterone response during social stress. Neuroscience 116:553–563

    Article  CAS  PubMed  Google Scholar 

  • Summers CH, Korzan WJ, Lukkes JL, Øverli Ø, Höglund E, Watt MJ, Larson ET, Forster GL, Ronan PJ, Summers TR, Renner KJ, Greenberg N (2005) Does serotonin influence aggression? Physiol Biochem Zool (in press)

  • Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69

    Article  CAS  PubMed  Google Scholar 

  • Tokarz RR (1985) Body size as a factor determining dominance in staged agonistic encounters between male brown anoles (Anolis sagrei). Anim Behav 33:746–753

    Google Scholar 

  • Wallen K, Wojciechowski-Metzlar CI (1985) Social conditioning and dominance in male Betta splendens. Behav Process 11:181–188

    Article  Google Scholar 

  • Winberg S, Nilsson GE (1992) Induction of social dominance by L-dopa treatment in Arctic charr. Neuroreport 3:243–246

    CAS  PubMed  Google Scholar 

  • Winberg S, Nilsson GE (1993) Roles of brain monoamine transmitters in agonistic behaviour and stress reactions, with particular reference to fish. Comp Biochem Physiol 106C:597–614

    CAS  Google Scholar 

  • Yodyingyuad U, de la Riva C, Abbott DH, Herbert J, Keverne EB (1985) Relationship between dominance hierarchy, cerebrospinal fluid levels of amine transmitter metabolites (5-hydroxyindole acetic acid and homovanillic acid) and plasma cortisol in monkeys. Neuroscience 16:851–858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

From the symposium Mechanisms of Behavioral Switching presented at the annual meeting of the Animal Behavior Society, 19–23 July 2003, at Boise State University, Idaho. We would like to thank Zen Faulkes for organizing and leading this symposium. Additionally, we thank Buddy Whitman for critical review of this manuscript, and Karen F. Gaines for help with statistical analyses. This research was funded by NIH grants P20 RR15567, R03 MH068303 (G.L.F.), R03 MH068364 (M.J.W.), 1 F31 MH64983 (W.J.K.) and a grant from the USD Office of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cliff H. Summers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summers, C.H., Forster, G.L., Korzan, W.J. et al. Dynamics and mechanics of social rank reversal. J Comp Physiol A 191, 241–252 (2005). https://doi.org/10.1007/s00359-004-0554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0554-z

Keywords