Skip to main content

Advertisement

Unleashing the Potential of Biostimulants in Stimulating Pollen Germination and Tube Growth

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The complex processes of pollen germination and pollen tube elongation are important events in the sexual reproduction of flowering plants and are essential to the success of seed formation. However, unfavourable environmental and climatic conditions affect pollen performance negatively. Integrating the application of various biostimulants represents one of the most innovative and promising strategies to improve crop productivity. Biostimulants are known to sustainably improve pollen viability, germination and elongation. However, there is limited information on the effects of biostimulants on pollen grains. The present review investigates the potential of biostimulants (such as seaweed extracts, smoke–water, polyamines, amino acids, melatonin, carbohydrate-based biostimulants and inorganic biostimulants) as signaling molecules that can improve crucial stages of pollen growth in a range of crops, both in optimal and suboptimal environments. Furthermore, this review investigates the stages of pollen development, including uninucleate microspores and different stages of mature pollen, following various biostimulant treatment during the flowering period. Regulation of biostimulant-induced pollen germination and elongation has also been discussed along with recent developments regarding the mechanism of action of biostimulants in various growth aspects of pollen. This review not only summarizes what is known currently, but it also lays the groundwork for future investigations to clarify the complex physiological and molecular processes involved in pollen performance as well as the regulatory systems that are impacted by biostimulants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

(NH4)5[Fe(C6H4O7)2]:

Ammonium ferric citrate

ABA:

Abscisic acid

Al:

Aluminum

APX:

Ascorbate peroxidase

ATG:

Autophagy-related genes

Bas:

Brassinosteroids

BASE:

Bielefeld academic search engine

BWK:

Brewbaker and Kwack’s medium

C12H22O11 :

Sucrose

C18H32O16 :

Raffinose

C5H11NO2Se:

Selenium methionine

C6H12O6 :

Myo-inositol

Ca(NO3)⋅4H2O:

Calcium nitrate tetrahydrate

Ca(NO3)2 :

Calcium nitrate

Ca2 :

Calcium

CaCl2 :

Calcium chloride

CAT:

Catalase

CKs:

Cytokinins

Co:

Cobalt

CORE:

Connecting repositories

DFMA:

α-Difluoromethylarginine

DFMO:

α-Difluoromethylornithine

DHAR:

Dehydroascorbate reductase

DNA:

Deoxyribonucleic acid

Fe-SOD:

Iron superoxide dismutase

GAs:

Gibberellic acids

H2O2 :

Hydrogen peroxide

H2PO2 :

Phosphite

Na2SeO4 :

Sodium selenate

Na2O3Se :

Sodium selenite

H3BO3 :

Boric acid

HSPs:

Heat shock proteins

IKI:

Iodine potassium iodide

IPCC:

Intergovernmental panel on climate change

K+ :

Potassium

KAR1 :

Karrikinolide 1

KCL:

Potassium chloride

KNO3 :

Potassium nitrate

LEA:

Late embryogenesis abundant proteins

MDA:

Malondialdehyde

MgSO4⋅7H2O:

Magnesium sulfate heptahydrate

MGBG:

Methylglyoxal-bis(guanyl-hydrazone)

MgSO4 :

Magnesium sulphate

Na:

Sodium

NADPH:

Nicotinamide adenine dinucleotide phosphate

1O2 :

Singlet oxygen

O2 :

Superoxide anions

OH :

Hydroxyl radicals

PCD:

Programmed cell death

Put:

Putrescine

qRT-PCR:

Real-time quantitative reverse transcription polymerase chain reaction

Rboh:

Respiratory burst oxidase homologs genes

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SB:

Sucrose and boric acid medium

Se:

Selenium

Si:

Silicon

Spd:

Spermidine

Spm:

Spermine

TTC:

2,3,5-Triphenyl tetrazolium chloride

VCL:

Vermicompost leachate

References

  • Abdel Latef AA, Tran LSP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert B, Ressayre A, Dillmann C, Carlson AL, Swanson RJ, Gouyon PH et al (2018) Effect of aperture number on pollen germination, survival and reproductive success in Arabidopsis thaliana. Ann Bot 121:733–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali M, Cheng ZH, Hayat S, Ahmad H, Ghani MI, Liu T (2019) Foliar spraying of aqueous garlic bulb extract stimulates growth and antioxidant enzyme activity in eggplant (Solanum melongena L.). J Integr Agric 18:1001–1013

    Article  Google Scholar 

  • Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S (2016) Polyamines in pollen, from microsporogenesis to fertilization. Front Plant Sci 7:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Aloisi I, Piccini C, Cai G, Del Duca S (2022) Male fertility under environmental stress: do polyamines act as pollen tube growth protectants? Int J Mol Sci 23:1874

    Article  PubMed  PubMed Central  Google Scholar 

  • Althiab-Almasaud R, Sallanon H, Chang C, Chervin C (2021) 1-aminocyclopropane-1-carboxylic acid (ACC) stimulates tomato pollen tube growth independently of ethylene receptors. Physiol Plant 173:2291–2297

    Article  PubMed  Google Scholar 

  • Aremu AO, Stirk WA, Kulkarni MG, Tarkowská D, Turěcková V, Gruz J, Šubrtová M, Pěnčík A, Novák O, Doležal K (2015) Evidence of phytohormones and phenolic acids variability in garden-wastederived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regul 75:483–492

    Article  Google Scholar 

  • Ashraf M (2014) Stress-induced changes in wheat grain composition and quality. Crit Rev Food Sci Nutr 54:1576–1583

    Article  PubMed  Google Scholar 

  • Bagni N, Adamo P, Serafini-Fracassini D (1981) RNA, proteins and polyamines during tube growth in germinating apple pollen. Plant Physiol 68:727–730

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai W, Wang P, Hong J, Kong W, Xiao Y, Yu X, Zheng H, You S, Lu J, Lei D, Wang C, Wang Q, Liu S, Liu X, Tian Y, Chen L, Jiang L, Zhao Z, Wu C, Wan J (2019) Earlier degraded tapetum1 (EDT1) encodes an ATP-citrate lyase required for tapetum programmed cell death. Plant Physiol 181:1223–1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker HG, Baker I (1979) Starch in angiosperm pollen grains and its evolutionary significance. Am J Bot 66:591–600

    Article  Google Scholar 

  • Benkő P, Jee S, Kaszler N, Fehér A, Gémes K (2020) Polyamines treatment during pollen germination and pollen tube elongation in tobacco modulate reactive oxygen species and nitric oxide homeostasis. J Plant Physiol 244:153085

    Article  PubMed  Google Scholar 

  • Bhattacharyya D, Yu SM, Lee YH (2015) Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues. Plant Growth Regul 75:297–306

    Article  Google Scholar 

  • Bieniasz M, Konieczny A (2021) The effect of titanium organic complex on pollination process and fruit development of apple cv. Topaz. Agronomy 11:2591

    Article  Google Scholar 

  • Bisbis MB, Gruda N, Blanke M (2018) Potential impacts of climate change on vegetable production and product quality—a review. J Clean Prod 170:1602–1620

    Article  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment, scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52:570–582

    Article  PubMed  Google Scholar 

  • Bolat I, Pirlak L (1999) Effects of some chemical substances on pollen germination and tube growth in apricot. Acta Hortic 488:341–344

    Article  Google Scholar 

  • Bonini P, Rouphael Y, Miras-Moreno B, Lee B, Cardarelli M, Erice G, Cirino V, Lucini L, Colla G (2020) A microbial-based biostimulant enhances sweet pepper performance by metabolic reprogramming of phytohormone profile and secondary metabolism. Front Plant Sci 11:567388

    Article  PubMed  PubMed Central  Google Scholar 

  • Borghi M, de Souza LP, Yoshida T, Fernie AR (2019) Flowers and climate change, a metabolic perspective. New Phytol 224:1425–1441

    Article  PubMed  Google Scholar 

  • Bradley RS (2015) Pollen. In: Bradley RS (ed) Paleoclimatology, 3rd edn. Academic Press, New York, pp 405–451

    Chapter  Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:859–865

    Article  Google Scholar 

  • Bulgari R, Trivellini A, Ferrante A (2019) Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Front Plant Sci 9:1870

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmody N, Goñi O, Łangowski Ł, O’Connell S (2020) Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set. Front Plant Sci 11:807

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrizo-Garcia C, Nepi M, Pacini E (2017) It is a matter of timing: asynchrony during pollen development and its consequences on pollen performance in angiosperms—a review. Protoplasma 254:57–73

    Article  PubMed  Google Scholar 

  • Casadesús A, Pérez-Llorca M, Munné-Bosch S, Polo J (2020) An enzymatically hydrolyzed animal protein based biostimulant (pepton) increases salicylic acid and promotes growth of tomato roots under temperature and nutrient stress. Front Plant Sci 11:953

    Article  PubMed  PubMed Central  Google Scholar 

  • Çetin E, Yildirim C, Palavan-Ünsal N, Ünal M (2000) Effect of spermine and cyclohexylamine on in vitro pollen germination and tube growth in Helianthus annuus. Can J Plant Sci 80:241–245

    Article  Google Scholar 

  • Cha JY, Kang SH, Ali I et al (2020) Humic acid enhances heat stress tolerance via transcriptional activation of heat-shock proteins in Arabidopsis. Sci Rep 10:15042

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti B, Singh SD, Nagarajan S, Aggarwal PK (2011) Impact of temperature on phenology and pollen sterility of wheat varieties. Aust J Crop Sci 5:1039–1043

    Google Scholar 

  • Cheng C, McComb JA (1992) In vitro germination of wheat pollen on raffinose medium. New Phytol 120:459–462

    Article  Google Scholar 

  • Cheng Z, Jin R, Cao M, Liu X, Chan Z (2016) Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon). Plant Cell Tissue Organ Cult 125:231–240

    Article  Google Scholar 

  • Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  PubMed  Google Scholar 

  • Chibi F, Matilla AJ, Angosto T, Garrido D (1994) Changes in polyamine synthesis during anther development and pollen germination in tobacco (Nicotiana tabacum). Physiol Plant 92:61–68

    Article  Google Scholar 

  • Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90:708–719

    Article  PubMed  Google Scholar 

  • Cocetta G, Landoni M, Pilu R, Repiso C, Nolasco J, Alajarin M, Ugena L, Levy CCB, Scatolino G, Villa D, Ferrante A (2022) Priming treatments with biostimulants to cope the short-term heat stress response, a transcriptomic profile evaluation. Plants (Basel) 11:1130

    PubMed  Google Scholar 

  • Crisosto CH, Lombard PB, Sugal D, Polito VS (1988) Putrescine influences ovule senescence, fertilization time, and fruit set in ‘Comice’ Pear. J Am Soc Hort Sci 113:708–712

    Article  Google Scholar 

  • Cristofano F, El-Nakhel C, Rouphael Y (2021) Biostimulant substances for sustainable agriculture, origin, operating mechanisms and effects on cucurbits, leafy greens, and nightshade vegetables species. Biomolecules 11:1103

    Article  PubMed  PubMed Central  Google Scholar 

  • Critchley AT, Critchley JSC, Norrie J, Gupta S, Van Staden J (2021) Perspectives on the global biostimulant market, applications, volumes, and values 2016 data and projections to 2022. In: Gupta S, Van Staden J (eds) Biostimulants for crops from seed germination to plant development—a practical approach. Academic Press, New York, pp 289–296

    Chapter  Google Scholar 

  • Cucinotta M, Cavalleri A, Chandler JW, Colombo L (2021) Auxin and flower development, a blossoming field. Cold Spring Harbor Perspect Biol 13:a039974

    Article  Google Scholar 

  • Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Enviroquest Ltd., Cambridge, Ontario, Canada

    Google Scholar 

  • De Storme N, Geelen D (2014a) Callose homeostasis at plasmodesmata, molecular regulators and developmental relevance. Front Plant Sci 5:138

    Article  PubMed  PubMed Central  Google Scholar 

  • De Storme N, Geelen D (2014b) The impact of environmental stress on male reproductive development in plants, biological processes and molecular mechanisms. Plant Cell Environ 37:1–18

    Article  PubMed  Google Scholar 

  • De Storme N, Geelen D (2020) High temperatures alter cross-over distribution and induce male meiotic restitution in Arabidopsis thaliana. Commun Biol 3:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Buono D (2021) Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci Total Environ 751:141763

    Article  PubMed  Google Scholar 

  • Del Buono D, Regni L, Del Pino AM, Bartucca ML, Palmerini CA, Proietti P (2021) Effects of megafol on the olive cultivar ‘Arbequina’ grown under severe saline stress in terms of physiological traits, oxidative stress, antioxidant defenses, and cytosolic Ca2+. Front Plant Sci 11:603576

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Pino AM, Guiducci M, D’Amato R et al (2019a) Selenium maintains cytosolic Ca2+ homeostasis and preserves germination rates of maize pollen under H2O2-induced oxidative stress. Sci Rep 9:13502

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Pino AM, Regni L, D’Amato R, Tedeschini E, Businelli D, Proietti P, Palmerini CA (2019) Selenium-enriched pollen grains of Olea europaea L., Ca2+ signaling and germination under oxidative stress. Front Plant Sci 10:1611

    Article  PubMed  PubMed Central  Google Scholar 

  • Delph LF, Johannsson MH, Stephenson AG (1997) How environmental factors affect pollen performance, ecological and evolutionary perspectives. Ecology 78:1632–1639

    Article  Google Scholar 

  • Devasirvatham V, Gaur PM, Mallikarjuna N, Tokachichu RN, Trethowan RM, Tan DKY (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39:1009–1018

    Article  PubMed  Google Scholar 

  • Djanaguiraman M, Belliraj N, Bossmann SH, Prasad P (2018a) High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3:2479–2491

    Article  PubMed  PubMed Central  Google Scholar 

  • Djanaguiraman M, Perumal R, Ciampitti IA, Gupta SK, Prasad PVV (2018b) Quantifying pearl millet response to high temperature stress, thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant Cell Environ 41:993–117

    Article  PubMed  Google Scholar 

  • Djanaguiraman M, Perumal R, Jagadish SVK, Ciampitti IA, Welti R, Prasad PVV (2018c) Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant Cell Environ 41:1065–1082

    Article  PubMed  Google Scholar 

  • Dolferus R, Ji X, Richards R (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  PubMed  Google Scholar 

  • Dominguez J, Edwards CA (2010) Relationships between composting and vermicomposting. In: Edwards CA, Arancon NQ, Sherman R (eds) Vermiculture technology earthworms, organic wastes, and environmental management. CRC Press, Boca Raton, pp 11–26

    Chapter  Google Scholar 

  • Dong X, Li Y, Guan Y, Wang S, Luo H, Li X, Li H, Zhang Z (2021) Auxin-induced AUXIN RESPONSE FACTOR4 activates APETALA1 and FRUITFULL to promote flowering in woodland strawberry. Hortic Res 8:115

    Article  PubMed  PubMed Central  Google Scholar 

  • du Jardin P (2015) Plant biostimulants, definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  Google Scholar 

  • Elmongy MS, Zhou H, Cao Y, Liu B, Xia Y (2018) The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Sci Hortic 227:234–243

    Article  Google Scholar 

  • Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M (2009) High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol 50:1911–1922

    Article  PubMed  Google Scholar 

  • Ertani A, Cavani L, Pizzeghello D, Brandellero E, Altissimo A, Ciavatta C, Nardi S (2009) Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J Plant Nutr Soil Sci 172:237–244

    Article  Google Scholar 

  • Ertani A, Pizzeghello D, Baglieri A, Cadili V, Tambone F, Gennari M, Nardi S (2013) Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. J Geochem Explor 129:103–111

    Article  Google Scholar 

  • Ertani A, Nardi S, Francioso O, Sanchez-Cortes S, Foggia MD, Schiavon M (2019) Effects of two protein hydrolysates obtained from chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) plants. Front. Plant Sci. 10:954

    Article  PubMed  PubMed Central  Google Scholar 

  • European Biostimulants Industry Council (2019) EBIC and biostimulants in brief. https://biostimulants.eu/wp-content/uploads/2019/10/EBIC-Brochure-English.pdf. Accessed 20 Jan 2024

  • Fan LM, Wang YF, Wang H, Wu WH (2001) In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J Exp Bot 52:1603–1614

    Article  PubMed  Google Scholar 

  • Fang KF, Du BS, Zhang Q, Xing Y, Cao Q, Qin L (2019) Boron deficiency alters cytosolic Ca2+ concentration and affects the cell wall components of pollen tubes in Malus domestica. Plant Biol 21:343–351

    Article  PubMed  Google Scholar 

  • Ferreira MDS, Soares TL, Costa EMR, da Silva RL, de Jesus ON, Junghans TG, Souza FVD (2021) Optimization of culture medium for the in vitro germination and histochemical analysis of Passiflora spp. pollen grains. Sci Hortic. 288:110298

    Article  Google Scholar 

  • Firon N, Shaked R, Peet MM, Pharr DM, Zamski E, Rosenfeld K et al (2006) Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci Hortic 109:212–217

    Article  Google Scholar 

  • Firon N, Nepi M, Pacini E (2012) Water status and associated processes mark critical stages in pollen development and functioning. Ann Bot 109:1201–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Fragkostefanakis S, Mesihovic A, Simm S, Paupière MJ, Hu Y, Paul P, Mishra SK, Tschiersch B, Theres K, Bovy A, Schleiff E, Scharf KD (2016) HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiol 170:2461–2477

    Article  PubMed  PubMed Central  Google Scholar 

  • Francesca S, Cirillo V, Raimondi G, Maggio A, Barone A, Rigano MM (2021) A novel protein hydrolysate-based biostimulant improves tomato performances under drought stress. Plants 10:783

    Article  PubMed  PubMed Central  Google Scholar 

  • Gammans M, Mérel P, Ortiz-Bobea A (2017) Negative impacts of climate change on cereal yields, statistical evidence from France. Environ Res Lett 12:054007

    Article  Google Scholar 

  • García AC, Santos LA, Izquierdo FG, Sperandio MVL, Castro RN, Berbara RLL (2012) Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecol Eng 47:203–208

    Article  Google Scholar 

  • Garcia-Gil JC, Ceppi SB, Velasco MI et al (2004) Long-term effects of amendment with municipal solid waste compost on the elemental and acidic functional group composition and pH-buffer capacity of soil humic acids. Geoderma 121:135–142

    Article  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  PubMed  Google Scholar 

  • Gitau MM, Shetty P, Maróti G (2023) Transcriptional analysis reveals induction of systemic resistance in tomato treated with Chlorella microalgae. Algal Res 72:103106

    Article  Google Scholar 

  • Golan-Goldhirsh A, Schmidhalter U, Müller M, Oertli JJ (1991) Germination of Pistacia vera L. pollen in liquid medium. Sexual Plant Reprod 4:182–187

    Article  Google Scholar 

  • Gómez AH, Vargas AR, Guerra LS, Gamboa OM, Calvo LS (2020) Effect of bioactive products on the germination of cryopreserved teak pollen grains. Cult Trop 41:e03

    Google Scholar 

  • Gorantla M, Babu P, Lachagari VBR, Reddy A, Wusirika R, Bennetzen JL et al (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot 58:253–265

    Article  PubMed  Google Scholar 

  • Gupta S, Plačková L, Kulkarni MG, Doležal K, Van Staden J (2019) Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of Lactuca sativa. Plant Physiol 181:458–470

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Stirk WA, Plačková L, Kulkarni MG, Doležal K, Van Staden J (2021a) Interactive effects of plant growth-promoting rhizobacteria and a seaweed extract on the growth and physiology of Allium cepa L. (onion). J. Plant Physiol. 262:153437

    Article  PubMed  Google Scholar 

  • Gupta S, Kulkarni MG, White JF, Stirk WA, Papenfus HB, Doležal K, Ördög V, Norrie J, Critchley AT, Van Staden J (2021b) Categories of various plant biostimulants—mode of application and shelf-life. In: Gupta S, Van Staden J (eds) Biostimulants for crops from seed germination to plant development—a practical approach. Elsevier Inc, Amsterdam, pp 1–60

    Google Scholar 

  • Gupta S, Doležal K, Kulkarni MG, Baláz E, Van Staden J (2022) Role of non-microbial biostimulants in regulation of seed germination and seedling establishment. Plant Growth Regul 97:271–313

    Article  Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. In: Sparks DL (ed) Advances in agronomy, vol 129. Elsevier, Amsterdam, pp 141–174

    Google Scholar 

  • Hamid B, Zaman M, Farooq S, Fatima S, Sayyed RZ, Baba ZA, Sheikh TA, Reddy MS, El Enshasy H, Gafur A, Suriani NL (2021) Bacterial plant biostimulants, a sustainable way towards improving growth, productivity, and health of crops. Sustainability 13:2856

    Article  Google Scholar 

  • Harsant J, Pavlovic L, Chiu G, Sultmanis S, Sage TL (2013) High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J Exp Bot 64:2971–2983

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI, Masud AAC, Fotopoulos V (2021) Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells 10:2537

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe DW (2011) Climate impacts on agriculture, implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Hayat S, Ahmad H, Nasir M, Khan MN, Ali M, Hayat K, Khan MA, Khan F, Ma Y, Cheng Z (2020) Some physiological and biochemical mechanisms during seed-to-seedling transition in tomato as influenced by garlic allelochemicals. Antioxidants 9:235

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2005) The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol 7:476–483

    Article  PubMed  Google Scholar 

  • Heslop-Harrison J (1979) Aspect of the structure cytochemistry and germination of the pollen of rye (Secale cereale L.). Ann Bot 44:2–65

    Google Scholar 

  • Hill AE, Shachar-Hill B, Skepper JN, Powell J, Shachar-Hill Y (2012) An osmotic model of the growing pollen tube. PLoS ONE 7:e36585

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodgkin T (1983) A medium for germinating Brassica pollen in vitro. Crucif Newsl 8:62

    Google Scholar 

  • Hong-Qi Z, Croes AF (1982) A new medium for pollen germination in vitro. Acta Bot Neerl 31:113–119

    Article  Google Scholar 

  • Hu X, Li Y, Li C, Yang H, Wang W, Lu M (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29:455–464

    Article  Google Scholar 

  • Imin N, Kerim T, Rolfe BG, Weinman JJ (2004) Effect of early cold stress on the maturation of rice anthers. Proteomics 4:1873–1882.

    Article  Google Scholar 

  • Iovane M, Cirillo A, Izzo LG, Di Vaio C, Aronne G (2022) High temperature and humidity affect pollen viability and longevity in Olea europaea L. Agronomy 12:1

    Article  Google Scholar 

  • IPCC (2014) In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014, synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, p 151

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    Article  PubMed  Google Scholar 

  • Jain N, Stirk WA, Van Staden J (2008) Cytokinin-and auxin-like activity of a butenolide isolated from plant derived smoke. S Afr J Bot 74:327–331

    Article  Google Scholar 

  • Jayaprakash P (2018) Pollen germination in vitro. In: Mokwala PW (ed) Pollination in plants. InTech, Chennai

    Google Scholar 

  • Ji XM, Dong BD, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156:647–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Bueckert RA, Warkentin TD, Davis AR (2018) High temperature effects on in vitro pollen germination and seed set in field pea. Can J Plant Sci 98:1

    Google Scholar 

  • Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PVV, Reddy VR et al (2005) Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96:59–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Karapanos IC, Mahmood S, Thanopoulos C (2008) Fruit set in solanaceous vegetable crops as affected by floral and environmental factors. Eur J Plant Sci Biotechnol 2:88–105

    Google Scholar 

  • Kew SF, Philip SY, Jan van Oldenborgh G, van der Schrier G, Otto FE, Vautard R (2019) The exceptional summer heat wave in southern Europe 2017. Bull Am Meteorol Soc 100:S49–S53

    Article  Google Scholar 

  • Khan SI, Satam S (2003) Seaweed mariculture: scope and potential in India. Aquacult Asia 8:26–29

    Google Scholar 

  • King AD, Harrington J (2018) The inequality of climate change from 1.5 °C to 2 °C of global warming. Geophys Res Lett 45:5030–5033

    Article  Google Scholar 

  • Koti S, Reddy KR, Reddy VR, Kakani VG, Zhao D (2005) Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. J Exp Bot 56:725–736

    Article  PubMed  Google Scholar 

  • Ku S, Yoon H, Suh HS, Chung YY (2003) Male-sterility of thermo-sensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 217:559–565

    Article  PubMed  Google Scholar 

  • Kulkarni MG, Rengasamy KRR, Pendota SC, Gruz J, Plačková L, Novák O, Doležal K, Van Staden J (2019) Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotech 48:83–89

    Article  Google Scholar 

  • Kulkarni MG, Gupta S, Ngoroyemoto N, Stirk WA, Van Staden J (2021) Smoke, seaweed extracts, and vermicompost leachates—classical natural plant biostimulants. In: Gupta S, Van Staden J (eds) Biostimulants for crops from seed germination to plant development—a practical approach. Elsevier Inc, pp 73–86

    Chapter  Google Scholar 

  • Kumar RR, Goswami S, Gadpayle KA, Singh K, Sharma SK, Singh GP, Pathak H, Rai RD (2014) Ascorbic acid at pre‐anthesis modulate the thermotolerance level of wheat (Triticum aestivum) pollen under heat stress. J Plant Biochem Biotech 23:293–306

    Article  Google Scholar 

  • Kumar S, Kaushal N, Nayyar H, Gaur P (2012) Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol Plant 34:1651–1658

    Article  Google Scholar 

  • Kumari A, Papenfus HB, Kulkarni MG, Pošta M, Van Staden J (2015) Effect of smoke derivatives on in vitro pollen germination and pollen tube elongation of species from different plant families. Plant Biol 17:825–830

    Article  PubMed  Google Scholar 

  • Labouche AM, Richards SA, Pannell JR (2017) Effects of pollination intensity on offspring number and quality in a wind-pollinated herb. J Ecol 105:197–208

    Article  Google Scholar 

  • Laggoun F, Ali N, Tourneur S, Prudent G, Gügi B, Kiefer-Meyer MC, Mareck A, Cruz F, Yvin JC, Nguema-Ona E, Mollet JC, Jamois F, Lehner A (2021) Two carbohydrate-based natural extracts stimulate in vitro pollen germination and pollen tube growth of tomato under cold temperatures. Front Plant Sci 12:552515

    Article  PubMed  PubMed Central  Google Scholar 

  • Lau TC, Stephenson AG (1994) Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sex Plant Reprod 7:215–220

    Article  Google Scholar 

  • Lau SE, Teo WFA, Teoh EY, Tan BC (2022) Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discover Food 2:9

    Article  Google Scholar 

  • Li J, Li Y, Chen S, An L (2010) Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot 61:4221–4230

    Article  PubMed  Google Scholar 

  • Li Z, Palmer WM, Martin AP, Wang R, Rainsford F, Jin Y, Patrick JW, Yang Y, Ruan YL (2012) High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot 63:1155–1166

    Article  PubMed  Google Scholar 

  • Linskens HF, Stanley RG (1974) Pollen: biology, biochemistry, management. Springer-Verlag, New York, NY

    Google Scholar 

  • Liu L, Huang L, Li Y (2013) Influence of boric acid and sucrose on the germination and growth of areca pollen. Am J Plant Sci 4:35476

    Article  Google Scholar 

  • Liu S, Li Z, Wu S, Wan X (2021) The essential roles of sugar metabolism for pollen development and male fertility in plants. Crop J 9:1223–1236

    Article  Google Scholar 

  • Liu Y, Ogle K, Lichstein JW, Jackson ST (2022) Estimation of pollen productivity and dispersal: how pollen assemblages in small lakes represent vegetation. Ecol Monogr 92:e1513

    Article  Google Scholar 

  • López-Bucio J, Millán-Godınez M, Méndez-Bravo A, Morquecho-Contreras A, Ramírez-Chávez E, Molina-Torres J, Pérez-Torres A, Higuchi M, Kakimoto T, Herrera-Estrella L (2007) Cytokinin receptors are involved in alkamide regulation of root and shoot development in Arabidopsis. Plant Physiol 145:1703–1713

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant, exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123

    Article  Google Scholar 

  • Lun F, Liu J, Ciais P, Nesme T, Chang J, Wang R, Obersteiner M (2018) Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst Sci Data 10:1–18

    Article  Google Scholar 

  • Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N et al (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577

    Article  PubMed  Google Scholar 

  • Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80

    Article  Google Scholar 

  • Mailloux RJ (2020) An update on mitochondrial reactive oxygen species production. Antioxidants 9:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Masoomi-Aladizgeh F, Najeeb U, Hamzelou S, Pascovici D, Amirkhani A, Tan DKY, Mirzaei M, Haynes PA, Atwell BJ (2021) Pollen development in cotton (Gossypium hirsutum) is highly sensitive to heat exposure during the tetrad stage. Plant, Cell Environ 44:2150–2166

    Article  PubMed  Google Scholar 

  • Mercier L, Lafitte C, Borderies G, Briand X, Esquerré-Tugayé MT, Fournier J (2001) The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol 6:66–87

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  Google Scholar 

  • Mofokeng MM, Araya HT, Araya NA, Makgato MJ, Mokgehle SN, Masemola MC, Mudau FN, du Plooy I, Amoo SO (2020) Assimilation of biostimulants to promote soil health and plant growth. In: Gupta S, Van Staden J (eds) Biostimulants for crops from seed germination to plant development—a practical approach. Elsevier Inc, Amsterdam, pp 87–102

    Google Scholar 

  • Mondal S, Ghanta R (2012) Effect of sucrose and boric acid on in vitro pollen germination of Solanum macranthum Dunal. Indian J Fundam Appl Life Sci 2:202–206

    Google Scholar 

  • Montaner C, Floris E, Alvarez JM (2003) Study of pollen cytology and evaluation of pollen viability using in vivo and in vitro test, in borage (Borago officinalis L.). Grana 42:33–37

    Article  Google Scholar 

  • Muengkaew R, Chaiprasart P, Wongsawad P (2017) Calcium-boron addition promotes pollen germination and fruit set of mango. Int J Fruit Sci 17:147–158

    Article  Google Scholar 

  • Müller F, Rieu I (2016) Acclimation to high temperature during pollen development. Plant Reprod 29:107–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems, part 1, fundamentals and impact of mineral-organic biota interactions on the formation, transformation, turnover, and storage of natural nonliving organic matter (NOM), vol 2. Wiley, Hoboken, pp 305–339

  • Nelson WR, Van Staden J (1985) 1-Aminocyclopropane-1-carboxylic acid in seaweed concentrate. Bot Mar 28:415–418

    Google Scholar 

  • Nemahunguni NK, Gupta S, Kulkarni MG, Finnie JF, Van Staden J (2020) The effect of biostimulants and light wavelengths on the physiology of Cleome gynandra seeds. Plant Growth Regul 90:467–474

    Article  Google Scholar 

  • Ngoroyemoto N, Gupta S, Kulkarni MG, Finnie JF, Van Staden J (2019) Effect of organic biostimulants on the growth and biochemical composition of Amaranthus hybridus L. S Afr J Bot 124:87–93

    Article  Google Scholar 

  • Nie SS, Zheng SJ, Lyu CS, Cui SN, Huo JY, Zhang LG (2023) Calcium/calmodulin modulates pollen germination and pollen tube growth and self-incompatibility response in Chinese cabbage (Brassica rapa L.). Sci Hortic 308:111607

    Article  Google Scholar 

  • Norton DJ (1966) Testing of plum pollen viability with tetrazolium salts. J Am Soc Hortic Sci 89:132–134

    Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  PubMed  Google Scholar 

  • Pacini E (2008) Pollination. In: Fath B (ed) Encyclopedia of Ecology, vol II. Elsevier, Amsterdam, pp 562–565

    Chapter  Google Scholar 

  • Pacini E, Dolferus R (2019) Pollen developmental arrest, maintaining pollen fertility in a world with a changing climate. Front Plant Sci 10:679

    Article  PubMed  PubMed Central  Google Scholar 

  • Padilla F, Soria N, Oleas A, Rueda D, Manjunatha B, Kundapur RR, Maddela NR, Rajeswari B (2017) The effects of pesticides on morphology, viability, and germination of Blackberry (Rubus glaucus Benth.) and Tree tomato (Solanum betaceum Cav.) pollen grains. 3 Biotech 7:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Papenfus HB, Kumari A, Kulkarni MG, Finnie JF, Van Staden J (2014) Smoke-water enhances in vitro pollen germination and tube elongation of three species of Amaryllidaceae. S Afr J Bot 90:87–92

    Article  Google Scholar 

  • Parish RW, Phan HA, Iacuone S, Li SF (2013) Tapetal development and abiotic stress, a centre of vulnerability. Funct Plant Biol 39:553–559

    Article  Google Scholar 

  • Parrotta L, Faleri C, Cresti M, Cai G (2016) Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. Planta 243:43–63

    Article  PubMed  Google Scholar 

  • Patil BS, Ravikumar RL (2011) Osmotic adjustment in pollen grains, a measure of drought adaptation in sorghum? Curr Sci 100:377–382

    Google Scholar 

  • Peng WX, Li FL, Yang WL (1999) Determination and comparison of the viability of various Xanthoceras sorbifolia pollen. Hebei J For Orc Res 14:51–53

    Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975

    Article  PubMed  PubMed Central  Google Scholar 

  • Perkins-Kirkpatrick SE, Lewis SC (2020) Increasing trends in regional heatwaves. Nat Commun 11:3357

    Article  PubMed  PubMed Central  Google Scholar 

  • Pers-Kamczyc E, Iszkuło G, Rabska M, Wrońska-Pilarek D, Kamczyc J (2019) More isn’t always better—the effect of environmental nutritional richness on male reproduction of Taxus baccata L. Environ Exp Bot 162:468–478

    Article  Google Scholar 

  • Pers-Kamczyc E, Tyrała-Wierucka E, Rabska M, Wrońska-Pilarek D, Kamczyc J (2020) The higher availability of nutrients increases the production but decreases the quality of pollen grains in Juniperus communis L. J Plant Physiol 248:153156

    Article  PubMed  Google Scholar 

  • Pohl A, Grabowska A, Kalisz A, Sękara A (2019) Biostimulant application enhances fruit setting in eggplant—an insight into the biology of flowering. Agronomy 9:482

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Powell N, Ji X, Ravash R, Edlington J, Dolferus R (2012) Yield stability for cereals in a changing climate. Funct Plant Biol 39:539–552

    Article  PubMed  Google Scholar 

  • Pradhan GP, Prasad PVV, Fritz AK, Kirkham MB, Gill BS (2012) Effects of drought and high temperature stress on synthetic hexaploid wheat. Funct Plant Biol 39:190–198

    Article  PubMed  Google Scholar 

  • Prakash L, John P, Nair GM, Prathapasenan G (1988) Effect of spermidine and methylglyoxal-bis (guanyl-hydrazone) (MGBG) on in vitro pollen germination and tube growth in Catharanthus roseus. Ann Bot 61:373–375

    Article  Google Scholar 

  • Prasad PVV, Djanaguiraman M (2011) High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Funct Plant Biol 38:993–1003

    Article  PubMed  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH et al (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Article  Google Scholar 

  • Pressman E, Peet MM, Pharr DM (2002) The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann Bot 90:631–636

    Article  PubMed  PubMed Central  Google Scholar 

  • Punt W, Hoen PP, Blackmore S, Nilsson S, Thomas AL (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143:1–81

    Article  Google Scholar 

  • Qi ZY, Wang KX, Yan MY, Kanwar MK, Li DY, Wijaya L, Alyemeni MN, Ahmad P, Zhou J (2018) Melatonin alleviates high temperature-induced pollen abortion in Solanum lycopersicum. Molecules (Basel, Switzerland) 23:386

    Article  PubMed  Google Scholar 

  • Rajam MV (1989) Restriction of pollen germination and tube growth in lily pollen by inhibitors of polyamine metabolism. Plant Sci 59:53–56

    Article  Google Scholar 

  • Rengasamy KRR, Aderogba MA, Ndhlala AR, Stirk WA, Van Staden J (2013) Acetylcholinesterase inhibitory activity of phlorotannins isolated from the brown alga, Ecklonia maxima (Osbeck) Papenfuss. Food Res Int 54:1250–1254

    Article  Google Scholar 

  • Rieu I, Twell D, Firon N (2017) Pollen development at high temperature, from acclimation to collapse. Plant Physiol 173:1967–1976

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts IN, Gaude TC, Harrod G, Dickinson HG (1983) Pollen-stigma interactions in Brassica oleracea: a new pollen germination medium and its use in elucidating the mechanism of self incompatibility. Theor Appl Genet 65:231–238

    Article  PubMed  Google Scholar 

  • Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG, Grant-Downton RT (2013) A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytol 197:668–679

    Article  PubMed  Google Scholar 

  • Rouphael Y, Colla G (2020) Biostimulants in agriculture. Front Plant Sci 11:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutley N, Miller G, Wang F, Harper JF, Miller G, Lieberman-Lazarovich M (2021) Enhanced reproductive thermotolerance of the tomato high pigment 2 mutant is associated with increased accumulation of flavonols in pollen. Front Plant Sci 12:672368

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabir A (2015) Improvement of the pollen quality and germination levels in grapes (Vitis vinifera L.) by leaf pulverizations with nanosized calcite and seaweed extract (Ascophyllum nodosum). J Anim Plant Sci 25:1599–1605

    Google Scholar 

  • Samarakoon K, Jeon YJ (2012) Bio-functionalities of proteins derived from marine algae—a review. Food Res Int 48:948–960

    Article  Google Scholar 

  • Sanjeewa KKA, Kim EA, Son KT, Jeon YJ (2016) Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: a review. J Photochem Photobiol B Biol 162:100–105

    Article  Google Scholar 

  • Scaven VL, Rafferty NE (2013) Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr Zool 59:418–426

    Article  PubMed  Google Scholar 

  • Schlichting CD (1986) Environmental stress reduces pollen quality in Phlox, compounding the fitness deficit. In: Mulcahy DL, Mulcahy GB, Ottaviano EM (eds) Biotechnology and ecology of pollen. Springer-Verlag, New York, USA, pp 483–488

    Chapter  Google Scholar 

  • Sengupta A, Chakraborty M, Saha J, Gupta B, Gupta K (2016) Polyamines, osmoprotectants in plant abiotic stress adaptation. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment, emerging omics technologies. Springer, New Delhi, pp 97–127

    Chapter  Google Scholar 

  • Sharma KD, Nayyar H (2016) Regulatory networks in pollen development under cold stress. Front Plant Sci 7:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng ZH, Tang LQ, Shao GN, Xie LH, Jiao GA, Tang SQ, Hu PS (2015) The rice thermo-sensitive genic male sterility gene tms9, pollen abortion and gene isolation. Euphytica 203:145–152

    Article  Google Scholar 

  • Sheoran IS, Saini HS (1996) Drought-induced male sterility in rice, changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex Plant Reprod 9:161–169

    Article  Google Scholar 

  • Shi J, Cui M, Yang L, Kim YJ, Zhang D (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–753

    Article  PubMed  Google Scholar 

  • Shimono H, Abe A, Aoki N, Koumoto T, Sato M, Yokoi S et al (2016) Combining mapping of physiological quantitative trait loci and transcriptome for cold tolerance for counteracting male sterility induced by low temperatures during reproductive stage in rice. Physiol Plant 157:175–192

    Article  PubMed  Google Scholar 

  • Shivanna KR, Johri BM (1985) The angiosperm pollen structure and function. Wiley Eastern Ltd, New Delhi, India, p 374

    Google Scholar 

  • Shivanna KR, Rangaswamy NS (1992) Pollen biology: a laboratory manual. Springer-Verlag, Heidelberg, Berlin, p 119

    Book  Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  PubMed  PubMed Central  Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235:283–303

    Article  PubMed  Google Scholar 

  • Soares TL, Jesus ON, Santos-Serejo JA, Oliveira EJ (2013) In vitro pollen germination and pollen viability in passion fruit (Passiflora spp.) Rev. Bras Frut 35:1116–1126

    Article  Google Scholar 

  • Song C, An G, Cao GS, Du ZL, Zhu ZQ, Wang XC, Yen LF (1998) Involvement of Ca2+ in 1-Aminocyclopropane-1-carboxylic acid-stimulated pollen germination. J Plant Growth Regul 17:95–99

    Article  Google Scholar 

  • Song J, Nada K, Tachibana S (1999) Ameliorative effect of polyamines on the high temperature inhibition of in vitro pollen germination in tomato (Lycopersicon esculentum Mill.). Sci Hortic. 80:203–212

    Article  Google Scholar 

  • Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Wolukau JN, Ercisli S (2011) Response of in vitro pollen germination and pollen tube growth of almond (Prunus dulcis Mill.) to temperature, polyamines and polyamine synthesis inhibitor. Biochem Syst Ecol 39:749–757

    Article  Google Scholar 

  • Sotomayor C, Castro J, Velasco N, Toro R (2012) Influence of seven growth regulators on fruit set, pollen germination and pollen tube growth of almonds. J Agric Sci Technol B 2:1051–1056

    Google Scholar 

  • Srinivasan A, Saxena NP, Johansen C (1999) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.), genetic variation in gamete development and function. Field Crops Res 60:209–222

    Article  Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry, management. Springer, New York, NY, USA

    Book  Google Scholar 

  • Steinhors L, Kudla J (2013) Calcium—a central regulator of pollen germination and tube growth. Biochim Biophys Acta Mol Cell Res 1833:1573–1581

    Article  Google Scholar 

  • Stirk WA, Van Staden J (2014) Plant growth regulators in seaweeds, occurrence, regulation and functions. Adv Bot Res 71:125–159

    Article  Google Scholar 

  • Stirk WA, Arthur GD, Lourens AF, Novak O, Strnad M, Van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16:31–39

    Article  Google Scholar 

  • Sul KO, Hyuck YC (2004) An agent for enhancing pollination and its method of use. Republic of Korea Examined Patent Application KR20040118467

  • Swain S, Singh D (2005) Tall tales from sly dwarves, novel functions of gibberellins in plant development. Trends Plant Sci 10:123–129

    Article  PubMed  Google Scholar 

  • Tang RS, Zheng JC, Jin ZQ, Zhang DD, Huang YH, Chen LG (2008) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul 54:37–43

    Article  Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  PubMed  Google Scholar 

  • Tedeschini E, Proietti P, Timorato V, D’Amato R, Nasini L, Dei Buono D, Businelli D, Frenguelli G (2015) Selenium as stressor and antioxidant affects pollen performance in Olea europaea. Flora: Morphol Distrib Funct Ecol Plants 215:16–22

    Article  Google Scholar 

  • Trevisan S, Pizzeghello D, Ruperti B, Francioso O, Sassi A, Palme K, Quaggiotti S, Nardi S (2010) Humic substances induce lateral root formation and the expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol 12:604–614

    PubMed  Google Scholar 

  • Trivellini A, Cocetta G, Vernieri P, Mensuali-Sodi A, Ferrante A (2015) Effect of cytokinins on delaying petunia flower senescence, a transcriptome study approach. Plant Mol Biol 87:169–180

    Article  PubMed  Google Scholar 

  • Tunur Ç, Çetinbaş-Genç A (2023) Spermidine modulates pollen tube growth by affecting the factors involved in pollen tube elongation. J Plant Growth Regul. https://doi.org/10.1007/s00344-023-11174-x

    Article  Google Scholar 

  • Tushabe D, Rosbakh S (2021) A Compendium of in vitro germination media for pollen research. Front Plant Sci 12:709945

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hautegem T, Waters AJ, Goodrich J, Nowack MK (2015) Only in dying, life, programmed cell death during plant development. Trends Plant Sci 20:102–113

    Article  PubMed  Google Scholar 

  • Van Ryn DM, Lassoie JP, Jacobson JS (1988) Effects of acid mist on in vitro pollen tube growth in red maple. Can J For Res 18:1049–1052

    Article  Google Scholar 

  • Viti R, Bartolini S, Vitagliano C (1990) Growth regulators on pollen germination in olive. Acta Hortic 286:227–230

    Article  Google Scholar 

  • Volkov RA, Panchuk II, Schöffl F (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol 57:487–502

    Article  PubMed  Google Scholar 

  • Wang Q, Lu L, Wu X, Li Y, Lin J (2003) Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol 23:345–351

    Article  PubMed  Google Scholar 

  • Wang L, Wang X, Wu H, Liu R (2014) Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Mar Drugs 12:4984–5020

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang G, Song Q, Zhang Y, Li Z, Guo J, Niu N, Ma S, Wang J (2015) Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat. PLoS ONE 10:e0119557

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li DL, Shang FN, Kang XY (2017a) High temperature-induced production of unreduced pollen and its cytological effects in Populus. Sci Rep 7:5281

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhou J, Yu JQ (2017b) The critical role of autophagy in plant responses to abiotic stresses. Front Agric Sci Eng 4:28–36

    Article  Google Scholar 

  • Wang XW, Wu YL, Lombardini L (2021) In vitro viability and germination of Carya illinoinensis pollen under different storage conditions. Sci Hortic 275:109662

    Article  Google Scholar 

  • Winsor JA, Davis LE, Stephenson AG (1987) The relationship between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucurbita pepo. Am Nat 129:643–656

    Article  Google Scholar 

  • Wolters JHB, Martens MJM (1987) Effects of air pollutants on pollen. Bot Rev 53:372–414

    Article  Google Scholar 

  • Wolukau JN, Zhang SL, Xu GH, Chen D (2004) The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Sci Hortic 99:289–299

    Article  Google Scholar 

  • Wu J, Shang Z, Wu J, Jiang X, Moschou P, Sun W, Roubelakis-Angelakis K, Zhang S (2010) Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J 63:1042–1053

    Article  PubMed  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science, a global perspective. Front Plant Sci 7:2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi J, Moon S, Lee YS, Zhu L, Liang W, Zhang D, Jung KH, An G (2016) Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration. Plant Physiol 170:1611–1623

    Article  PubMed  Google Scholar 

  • Yu J, Wang B, Fan W, Fan S, Xu Y, Liu C, Lv T, Liu W, Wu L, Xian L, Li T (2021) Polyamines involved in regulating self-incompatibility in apple. Genes 12:1797

    Article  PubMed  PubMed Central  Google Scholar 

  • Zandonadi DB, Matos CRR, Castro RN, Spaccini R, Olivares FL, Canellas LP (2019) Alkamides, a new class of plant growth regulators linked to humic acid bioactivity. Chem Biol Technol Agric 6:23

    Article  Google Scholar 

  • Zhang L, Yan C, Guo Q, Zhang Ruiz-Menjivar J (2018) The impact of agricultural chemical inputs on environment, global evidence from informetrics analysis and visualization. Int J Low Carbon Technol 13:338–352

    Google Scholar 

  • Zheng RH, Su SD, Xiao H, Tian HQ (2019) Calcium, A critical factor in pollen germination and tube elongation. Int J Mol Sci 20:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang J, Yu JQ, Chen ZX (2014) Role and regulation of autophagy in heat stress responses of tomato plants. Front Plant Sci 5:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction, uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Technology Agency of the Czech Republic via the project “Biorefining and circular economy for sustainability” (TN02000044) are thanked for financial support. This work was also supported by project MZE-RO0423 funded by the Ministry of Agriculture, Czech Republic; University of KwaZulu-Natal and National Research Foundation, South Africa (Grant No. CSRP2204041882).

Author information

Authors and Affiliations

Authors

Contributions

Gupta S: conceptualization, data curation, investigation, writing—original draft, illustration, and editing; visualization and funding acquisition. Kulkarni MG and Doležalova I: Review, editing and helpful discussions; Novak O: supervision and funding acquisition; Doležal K and Van Staden J: supervision, project administration, review and editing and funding acquisition.

Corresponding author

Correspondence to Shubhpriya Gupta.

Ethics declarations

Conflict of Interest

All authors declare no competing interests.

Additional information

Handling Editor: M. Iqbal R. Khan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Novák, O., Kulkarni, M.G. et al. Unleashing the Potential of Biostimulants in Stimulating Pollen Germination and Tube Growth. J Plant Growth Regul 43, 3392–3423 (2024). https://doi.org/10.1007/s00344-024-11346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-024-11346-3

Keywords