Skip to main content

Spatial sequestration of misfolded proteins as an active chaperone-mediated process during heat stress

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Under thermal stress, different protein quality control (PQC) strategies are activated to maintain an intact proteome, which may vary from one model system to another. Hence thermo-sensitive proteins that lose their active conformation might be refolded with the aid of chaperones or removed by the ubiquitin–proteasome system or the process of autophagy. We have recently developed thermo-sensitive reporters to study PQC in fission yeast and shown the relevance of a third adaptation strategy: the sequestration of misfolded proteins into inclusions which will prevent a rapid degradation and allow the refolding once stress ends. These protein inclusions, protein aggregate centers (PACs), contain a broad spectrum of misfolding/aggregation-prone proteins and chaperones involved in their assembly or dissolution. The chaperone couple Mas5/Ssa2 plays a crucial role in PAC formation, whereas the Hsp104 chaperone promotes their disassembly. The absence of aggregates observed in cells lacking Mas5 could be also explained by the activation of the transcription factor Hsf1 and the induction of chaperone genes, we have excluded this possibility here demonstrating that increased Hsf1 activity and the subsequent overexpression of chaperones do not prevent the assembly of protein aggregates. Protein deposition at certain locations also constitutes a tactic to inactivate proteins temporally. This is the case of Pyp1, the main phosphatase of the stress response kinase Sty1. Upon stress imposition, misfolded Pyp1 is sequestered into cytosolic protein foci while active Sty1 at the nucleus switches on the transcriptional response. In conclusion, we propose that the assembly of aggregation-like foci, PACs in fission yeast, is a crucial PQC strategy during heat stress, and that the Hsp40 chaperone Mas5 is required for PAC assembly and connects physiological and heat-shock triggered PQC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgements

This work is supported by the Ministerio de Ciencia, Innovación y Universidades (Spain), PLAN E and FEDER (BFU2016-75116-P to M.C. and PGC2018-093920-B-I00 to E.H.). The Oxidative Stress and Cell Cycle group is also supported by Generalitat de Catalunya (Spain) (2017-SGR-539) and by Unidad de Excelencia María de Maeztu, funded by the AEI (CEX2018-000792-M) (Spain). M.C. is funded by the Ramon y Cajal program (MINECO-RYC2013-12858). E.H. is recipient of an ICREA Academia Award (Generalitat de Catalunya, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Hidalgo.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boronat, S., Cabrera, M. & Hidalgo, E. Spatial sequestration of misfolded proteins as an active chaperone-mediated process during heat stress. Curr Genet 67, 237–243 (2021). https://doi.org/10.1007/s00294-020-01135-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-020-01135-2

Keywords