Abstract
Sixteen eukaryotic DNA polymerases have been identified and studied so far. Based on the sequence similarity of the catalytic subunits of DNA polymerases, these have been classified into four A, B, X and Y families except PrimPol, which belongs to the AEP family. The quaternary structure of these polymerases also varies depending upon whether they are composed of one or more subunits. Therefore, in this review, we used a quaternary structure-based classification approach to group DNA polymerases as either monomeric or multimeric and highlighted functional significance of their accessory subunits. Additionally, we have briefly summarized various DNA polymerase discoveries from a historical perspective, emphasized unique catalytic mechanism of each DNA polymerase and highlighted recent advances in understanding their cellular functions.
Similar content being viewed by others
Abbreviations
- PAD:
-
Polymerase-associated domain
- PIP:
-
PCNA-interacting protein
- UBZ:
-
Ubiquitin-binding zinc finger
- UBD:
-
Ubiquitin-binding domain
- AEP:
-
Archaeo-eukaryotic primase
- PCNA:
-
Proliferating cell nuclear antigen
- TLS:
-
Translesion synthesis
- BER:
-
Base excision repair
- SHM:
-
Somatic hypermutation
- NHEJ:
-
Non-homologous end joining
- HR:
-
Homologous recombination
- NLS:
-
Nuclear localization signal
- dRPlyase:
-
5′-Deoxyribose-5-phosphate lyase
References
Acharya N, Brahma A, Haracska L, Prakash L, Prakash S (2007a) Mutations in the ubiquitin binding UBZ motif of DNA polymerase eta do not impair its function in translesion synthesis during replication. Mol Cell Biol 27:7266–7272. https://doi.org/10.1128/MCB.01196-07
Acharya N, Haracska L, Johnson RE, Unk I, Prakash S, Prakash L (2005) Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol Cell Biol 25:9734–9740. https://doi.org/10.1128/MCB.25.21.9734-9740.2005
Acharya N, Haracska L, Prakash S, Prakash L (2007b) Complex formation of yeast Rev1 with DNA polymerase eta. Mol Cell Biol 27:8401–8408. https://doi.org/10.1128/MCB.01478-07
Acharya N, Johnson RE, Pages V, Prakash L, Prakash S (2009) Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta. Proc Natl Acad Sci USA 106:9631–9636. https://doi.org/10.1073/pnas.0902175106
Acharya N, Johnson RE, Prakash S, Prakash L (2006) Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 26:9555–9563. https://doi.org/10.1128/MCB.01671-06
Acharya N, Klassen R, Johnson RE, Prakash L, Prakash S (2011) PCNA binding domains in all three subunits of yeast DNA polymerase delta modulate its function in DNA replication. Proc Natl Acad Sci USA 108:17927–17932. https://doi.org/10.1073/pnas.1109981108
Acharya N, Manohar K, Peroumal D, Khandagale P, Patel SK, Sahu SR, Kumari P (2019) Multifaceted activities of DNA polymerase eta: beyond translesion DNA synthesis. Curr Genet 65:649–656. https://doi.org/10.1007/s00294-018-0918-5
Acharya N, Yoon JH, Hurwitz J, Prakash L, Prakash S (2010) DNA polymerase eta lacking the ubiquitin-binding domain promotes replicative lesion bypass in humans cells. Proc Natl Acad Sci USA 107:10401–10405. https://doi.org/10.1073/pnas.1005492107
Akopiants K et al (2009) Requirement for XLF/Cernunnos in alignment-based gap filling by DNA polymerases lambda and mu for nonhomologous end joining in human whole-cell extracts. Nucleic Acids Res 37:4055–4062. https://doi.org/10.1093/nar/gkp283
Aoufouchi S et al (2000) Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res 28:3684–3693. https://doi.org/10.1093/nar/28.18.3684
Arana ME, Takata K-I, Garcia-Diaz M, Wood RD, Kunkel TA (2007) A unique error signature for human DNA polymerase ν. DNA Repair 6:213–222
Aravind L, Koonin EV (1998) The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23:284–286
Arezi B, Kuchta RD (2000) Eukaryotic DNA primase. Trends Biochem Sci 25:572–576
Baltimore D (1974) Is terminal deoxynucleotidyl transferase a somatic mutagen in lymphocytes? Nature 248:409–411. https://doi.org/10.1038/248409a0
Baranovskiy AG et al (2008) X-ray structure of the complex of regulatory subunits of human DNA polymerase delta. Cell Cycle 7:3026–3036. https://doi.org/10.4161/cc.7.19.6720
Baranovskiy AG, Lada AG, Siebler HM, Zhang Y, Pavlov YI, Tahirov TH (2012) DNA polymerase delta and zeta switch by sharing accessory subunits of DNA polymerase delta. J Biol Chem 287:17281–17287. https://doi.org/10.1074/jbc.M112.351122
Baranovskiy AG, Siebler HM, Pavlov YI, Tahirov TH (2018) Iron-sulfur clusters in DNA polymerases and primases of eukaryotes. Methods Enzymol 599:1–20. https://doi.org/10.1016/bs.mie.2017.09.003
Barbari SR, Shcherbakova PV (2017) Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair 56:16–25. https://doi.org/10.1016/j.dnarep.2017.06.003
Baril EF, Brown OE, Jenkins MD, Laszlo J (1971) Deoxyribonucleic acid polymerase with rat liver ribosomes and smooth membranes. Purification and properties of the enzyme. Biochemistry 10:1981–1992
Beard WA, Wilson SH (2000) Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta. Mutat Res 460:231–244. https://doi.org/10.1016/s0921-8777(00)00029-x
Beard WA, Wilson SH (2014) Structure and mechanism of DNA polymerase beta. Biochemistry 53:2768–2780. https://doi.org/10.1021/bi500139h
Beard WA, Wilson SH (2015) Structures of human DNA polymerases ν and θ expose their end game. Nat Struct Mol Biol 22:273
Bebenek K, Garcia-Diaz M, Zhou RZ, Povirk LF, Kunkel TA (2010) Loop 1 modulates the fidelity of DNA polymerase lambda. Nucleic Acids Res 38:5419–5431. https://doi.org/10.1093/nar/gkq261
Bebenek K, Pedersen LC, Kunkel TA (2014) Structure-function studies of DNA polymerase lambda. Biochemistry 53:2781–2792. https://doi.org/10.1021/bi4017236
Bebenek A, Ziuzia-Graczyk I (2018) Fidelity of DNA replication-a matter of proofreading. Curr Genet 64:985–996. https://doi.org/10.1007/s00294-018-0820-1
Berdis AJ (2014) DNA polymerases that perform template-independent DNA synthesis. In: Nucleic acid polymerases. Springer, New York, pp 109–137
Berger H, Huang RCC, Irvin JL (1971) Purification and characterization of a deoxyribonucleic acid polymerase from rat liver. J Biol Chem 246:7275–7283
Bermudez VP, MacNeill SA, Tappin I, Hurwitz J (2002) The influence of the Cdc27 subunit on the properties of the Schizosaccharomyces pombe DNA polymerase delta. J Biol Chem 277:36853–36862. https://doi.org/10.1074/jbc.M202897200
Bertocci B, De Smet A, Berek C, Weill J-C, Reynaud C-A (2003) Immunoglobulin κ light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu. Immunity 19:203–211
Bianchi J et al (2013) PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol Cell 52:566–573
Blanca G, Shevelev I, Ramadan K, Villani G, Spadari S, Hübscher U, Maga G (2003) Human DNA polymerase λ diverged in evolution from DNA polymerase β toward specific Mn++ dependence: a kinetic and thermodynamic study. Biochemistry 42:7467–7476
Blanca G, Villani G, Shevelev I, Ramadan K, Spadari S, Hübscher U, Maga G (2004) Human DNA polymerases λ and β show different efficiencies of translesion DNA synthesis past abasic sites and alternative mechanisms for frameshift generation. Biochemistry 43:11605–11615
Bolden A, Noy GP, Weissbach A (1977) DNA polymerase of mitochondria is a gamma-polymerase. J Biol Chem 252:3351–3356
Bollum FJ (1960) Calf thymus polymerase. J Biol Chem 235:2399–2403
Bollum F, Potter VR (1958) Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues. J Biol Chem 233:478–482
Braithwaite DK, Ito J (1993) Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res 21:787–802. https://doi.org/10.1093/nar/21.4.787
Braun BR et al (2005) A human-curated annotation of the Candida albicans genome. PLoS Genet 1:36–57. https://doi.org/10.1371/journal.pgen.0010001
Burak MJ, Guja KE, Hambardjieva E, Derkunt B, Garcia-Diaz M (2016) A fidelity mechanism in DNA polymerase lambda promotes error-free bypass of 8-oxo-dG. EMBO J 35:2045–2059. https://doi.org/10.15252/embj.201694332
Burgers PM et al (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276:43487–43490. https://doi.org/10.1074/jbc.R100056200
Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA replication fork. Annu Rev Biochem 86:417–438. https://doi.org/10.1146/annurev-biochem-061516-044709
Buttner K, Nehring S, Hopfner KP (2007) Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat Struct Mol Biol 14:647–652. https://doi.org/10.1038/nsmb1246
Byrnes JJ, Downey KM, Black VL, So AG (1976) A new mammalian DNA polymerase with 3'to 5'exonuclease activity: DNA polymerase δ. Biochemistry 15:2817–2823
Carrodeguas JA, Theis K, Bogenhagen DF, Kisker C (2001) Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase γ PolγB, functions as a homodimer. Mol Cell 7:43–54
Ceccaldi R et al (2015) Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature 518:258–262. https://doi.org/10.1038/nature14184
Coloma J, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2016) Human DNA polymerase alpha in binary complex with a DNA:DNA template-primer. Sci Rep 6:23784. https://doi.org/10.1038/srep23784
Crute JJ, Wahl AF, Bambara RA (1986) Purification and characterization of two new high molecular weight forms of DNA polymerase. Biochemistry 25:26–36
Delarue M et al (2002) Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. EMBO J 21:427–439
Dominguez O et al (2000) DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J 19:1731–1742. https://doi.org/10.1093/emboj/19.7.1731
Donnianni RA et al (2019) DNA polymerase delta synthesizes both strands during break-induced replication. Mol Cell 76(371–381):e374. https://doi.org/10.1016/j.molcel.2019.07.033
Downey K, Tan C, Andrews D, Li X, So A (1988) Proposed roles for DNA polymerases alpha and delta at the replication fork. Cancer Cells 6:403–410
Dua R, Edwards S, Levy DL, Campbell JL (2000) Subunit interactions within the Saccharomyces cerevisiae DNA polymerase epsilon (pol epsilon ) complex. Demonstration of a dimeric pol epsilon. J Biol Chem 275:28816–28825. https://doi.org/10.1074/jbc.M002376200
Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274:22283–22288
Esposito G, Godindagger I, Klein U, Yaspo ML, Cumano A, Rajewsky K (2000) Disruption of the Rev3l-encoded catalytic subunit of polymerase zeta in mice results in early embryonic lethality. Curr Biol 10:1221–1224
Fan L, Sanschagrin PC, Kaguni LS, Kuhn LA (1999) The accessory subunit of mtDNA polymerase shares structural homology with aminoacyl-tRNA synthetases: implications for a dual role as a primer recognition factor and processivity clamp. Proc Natl Acad Sci USA 96:9527–9532. https://doi.org/10.1073/pnas.96.17.9527
Feng W, D'Urso G (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol Cell Biol 21:4495–4504. https://doi.org/10.1128/MCB.21.14.4495-4504.2001
Focher F, Gassmann M, Hafkemeyer P, Ferrari E, Spadari S, Hubscher U (1989) Calf thymus DNA polymerase delta independent of proliferating cell nuclear antigen (PCNA). Nucleic Acids Res 17:1805–1821. https://doi.org/10.1093/nar/17.5.1805
Foury F (1989) Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J Biol Chem 264:20552–20560
Frank EG, Woodgate R (2007) Increased catalytic activity and altered fidelity of human DNA polymerase iota in the presence of manganese. J Biol Chem 282:24689–24696. https://doi.org/10.1074/jbc.M702159200
Frechet M, Canitrot Y, Bieth A, Dogliotti E, Cazaux C, Hoffmann JS (2002) Deregulated DNA polymerase beta strengthens ionizing radiation-induced nucleotidic and chromosomal instabilities. Oncogene 21:2320–2327. https://doi.org/10.1038/sj.onc.1205295
Frouin I, Toueille M, Ferrari E, Shevelev I, Hubscher U (2005) Phosphorylation of human DNA polymerase lambda by the cyclin-dependent kinase Cdk2/cyclin A complex is modulated by its association with proliferating cell nuclear antigen. Nucleic Acids Res 33:5354–5361. https://doi.org/10.1093/nar/gki845
Gali VK, Balint E, Serbyn N, Frittmann O, Stutz F, Unk I (2017) Translesion synthesis DNA polymerase eta exhibits a specific RNA extension activity and a transcription-associated function. Sci Rep 7:13055. https://doi.org/10.1038/s41598-017-12915-1
Gao Y, Yang W (2016) Capture of a third Mg2+ is essential for catalyzing DNA synthesis. Science 352:1334–1337
Garbacz MA, Lujan SA, Kunkel TA (2019) Opportunities for new studies of nuclear DNA replication enzymology in budding yeast. Curr Genet. https://doi.org/10.1007/s00294-019-01023-4
Garcia-Diaz M, Bebenek K (2007) Multiple functions of DNA polymerases CRC Crit Rev. Plant Sci 26:105–122. https://doi.org/10.1080/07352680701252817
Garcia-Diaz M, Bebenek K, Krahn JM, Blanco L, Kunkel TA, Pedersen LC (2004) A structural solution for the DNA polymerase lambda-dependent repair of DNA gaps with minimal homology. Mol Cell 13:561–572
Garcia-Gomez S et al (2013) PrimPol, an archaic primase/polymerase operating in human cells. Mol Cell 52:541–553. https://doi.org/10.1016/j.molcel.2013.09.025
García-Gómez S et al (2013) PrimPol, an archaic primase/polymerase operating in human cells. Mol Cell 52:541–553
Garcı́a-Dı́az M, et al (2000) DNA polymerase lambda (Pol λ), a novel eukaryotic DNA polymerase with a potential role in meiosis. J Mol Biol 301:851–867
Garg P, Burgers PM (2005) DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol 40:115–128. https://doi.org/10.1080/10409230590935433
Gerik KJ, Li X, Pautz A, Burgers PM (1998) Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase δ. J Biol Chem 273:19747–19755
Gerlach VL, Aravind L, Gotway G, Schultz RA, Koonin EV, Friedberg EC (1999) Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc Natl Acad Sci USA 96:11922–11927. https://doi.org/10.1073/pnas.96.21.11922
Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW (1998) A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc Natl Acad Sci USA 95:6876–6880
Gomez-Llorente Y et al (2013) The architecture of yeast DNA polymerase zeta. Cell Rep 5:79–86. https://doi.org/10.1016/j.celrep.2013.08.046
Goswami P et al (2018) Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nat Commun 9:5061. https://doi.org/10.1038/s41467-018-07417-1
Gray H, Wong TW (1992) Purification and identification of subunit structure of the human mitochondrial DNA polymerase. J Biol Chem 267:5835–5841
Graziewicz MA, Longley MJ, Copeland WC (2006) DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 106:383–405. https://doi.org/10.1021/cr040463d
Guilliam TA et al (2017) Molecular basis for PrimPol recruitment to replication forks by RPA. Nat Commun 8:15222
Guo C et al (2003) Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J 22:6621–6630. https://doi.org/10.1093/emboj/cdg626
Hara K et al (2010) Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1. J Biol Chem 285:12299–12307. https://doi.org/10.1074/jbc.M109.092403
Haracska L, Acharya N, Unk I, Johnson RE, Hurwitz J, Prakash L, Prakash S (2005) A single domain in human DNA polymerase iota mediates interaction with PCNA: implications for translesion DNA synthesis. Mol Cell Biol 25:1183–1190. https://doi.org/10.1128/MCB.25.3.1183-1190.2005
Haracska L, Yu SL, Johnson RE, Prakash L, Prakash S (2000) Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta. Nat Genet 25:458–461. https://doi.org/10.1038/78169
Henrikus SS, van Oijen AM, Robinson A (2018) Specialised DNA polymerases in Escherichia coli: roles within multiple pathways. Curr Genet 64:1189–1196. https://doi.org/10.1007/s00294-018-0840-x
Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25:143–147
Insdorf NF, Bogenhagen DF (1989) DNA polymerase gamma from Xenopus laevis. I. The identification of a high molecular weight catalytic subunit by a novel DNA polymerase photolabeling procedure. J Biol Chem 264:21491–21497
Jain R, Aggarwal AK, Rechkoblit O (2018) Eukaryotic DNA polymerases. Curr Opin Struct Biol 53:77–87. https://doi.org/10.1016/j.sbi.2018.06.003
Jamsen JA et al (2017) Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. Nat Commun 8:253
Johansson E, Garg P, Burgers PM (2004) The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J Biol Chem 279:1907–1915. https://doi.org/10.1074/jbc.M310362200
Johansson E, Majka J, Burgers PM (2001) Structure of DNA polymerase δ from Saccharomyces cerevisiae. J Biol Chem 276:43824–43828
Johnson RE, Klassen R, Prakash L, Prakash S (2015) A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands. Mol Cell 59:163–175. https://doi.org/10.1016/j.molcel.2015.05.038
Johnson RE, Kondratick CM, Prakash S, Prakash L (1999) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285:263–265
Johnson RE, Prakash S, Prakash L (2000b) The human DINB1 gene encodes the DNA polymerase Polθ. Proc Natl Acad Sci 97:3838–3843
Johnson RE, Prakash L, Prakash S (2012) Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta. Proc Natl Acad Sci USA 109:12455–12460. https://doi.org/10.1073/pnas.1206052109
Johnson AA, Tsai Y, Graves SW, Johnson KA (2000a) Human mitochondrial DNA polymerase holoenzyme: reconstitution and characterization. Biochemistry 39:1702–1708. https://doi.org/10.1021/bi992104w
Juarez R, Ruiz JF, Nick McElhinny SA, Ramsden D, Blanco L (2006) A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis. Nucleic Acids Res 34:4572–4582. https://doi.org/10.1093/nar/gkl457
Kaguni LS (2004) DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem 73:293–320. https://doi.org/10.1146/annurev.biochem.72.121801.161455
Kannouche P, Broughton BC, Volker M, Hanaoka F, Mullenders LH, Lehmann AR (2001) Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev 15:158–172
Karkow JS, Kamen LHO (1966) DNA synthesis in thymus gland. Fed Proc 2:307
Kato K-I, Gonalves JM, Houts G, Bollum F (1967) Deoxynucleotide-polymerizing enzymes of calf thymus gland II. Properties of the terminal deoxynucleotidyltransferase. J Biol Chem 242:2780–2789
Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT (2015) Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta. Nat Struct Mol Biol 22:230–237. https://doi.org/10.1038/nsmb.2961
Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3:679–685
Khandagale P, Peroumal D, Manohar K, Acharya N (2019) Human DNA polymerase delta is a pentameric holoenzyme with a dimeric p12 subunit. Life Sci Alliance 2:e201900323. https://doi.org/10.26508/lsa.201900323
Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H (2012) Structural basis of recruitment of DNA polymerase zeta by interaction between REV1 and REV7 proteins. J Biol Chem 287:33847–33852. https://doi.org/10.1074/jbc.M112.396838
Klarer AC, Stallons LJ, Burke TJ, Skaggs RL, McGregor WG (2012) DNA polymerase eta participates in the mutagenic bypass of adducts induced by benzo[a]pyrene diol epoxide in mammalian cells. PLoS ONE 7:e39596. https://doi.org/10.1371/journal.pone.0039596
Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L (2009) 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J 28:1978–1987. https://doi.org/10.1038/emboj.2009.150
Kusumoto R, Masutani C, Iwai S, Hanaoka F (2002) Translesion synthesis by human DNA polymerase eta across thymine glycol lesions. Biochemistry 41:6090–6099. https://doi.org/10.1021/bi025549k
Lai Y, Weizmann Y, Liu Y (2018) The deoxyribose phosphate lyase of DNA polymerase β suppresses a processive DNA synthesis to prevent trinucleotide repeat instability. Nucleic Acids Res 46:8940–8952
Lee Y-S, Gao Y, Yang W (2015) How a homolog of high-fidelity replicases conducts mutagenic DNA synthesis. Nat Struct Mol Biol 22:298
Lee YS, Gregory MT, Yang W (2014) Human Pol zeta purified with accessory subunits is active in translesion DNA synthesis and complements Pol eta in cisplatin bypass. Proc Natl Acad Sci USA 111:2954–2959. https://doi.org/10.1073/pnas.1324001111
Lee YS, Kennedy WD, Yin YW (2009) Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 139:312–324. https://doi.org/10.1016/j.cell.2009.07.050
Lehman IR, Bessman MJ, Simms ES, Kornberg A (1958) Enzymatic synthesis of deoxyribonucleic acid I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem 233:163–170
Lemontt JF (1972) Induction of forward mutations in mutationally defective yeast. Mol Gen Genet MGG 119:27–42
Li H et al (2006) Functional roles of p12, the fourth subunit of human DNA polymerase delta. J Biol Chem 281:14748–14755. https://doi.org/10.1074/jbc.M600322200
Lim SE, Longley MJ, Copeland WC (1999) The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 274:38197–38203. https://doi.org/10.1074/jbc.274.53.38197
Lone S et al (2007) Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell 25:601–614. https://doi.org/10.1016/j.molcel.2007.01.018
Longley MJ, Mosbaugh DW (1991) Properties of the 3' to 5' exonuclease associated with porcine liver DNA polymerase gamma. Substrate specificity, product analysis, inhibition, and kinetics of terminal excision. J Biol Chem 266:24702–24711
Maga G, Ramadan K, Locatelli GA, Shevelev I, Spadari S, Hubscher U (2005) DNA elongation by the human DNA polymerase lambda polymerase and terminal transferase activities are differentially coordinated by proliferating cell nuclear antigen and replication protein A. J Biol Chem 280:1971–1981. https://doi.org/10.1074/jbc.M411650200
Makarova AV, Stodola JL, Burgers PM (2012) A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res 40:11618–11626. https://doi.org/10.1093/nar/gks948
Makridakis NM, Reichardt JK (2012) Translesion DNA polymerases and cancer. Front Genet 3:174. https://doi.org/10.3389/fgene.2012.00174
Manohar K, Acharya N (2015) Characterization of proliferating cell nuclear antigen (PCNA) from pathogenic yeast Candida albicans and its functional analyses in S. cerevisiae. BMC Microbiol 15:257. https://doi.org/10.1186/s12866-015-0582-6
Manohar K, Peroumal D, Acharya N (2018) TLS dependent and independent functions of DNA polymerase eta (Poleta/Rad30) from Pathogenic Yeast Candida albicans. Mol Microbiol 110:707–727. https://doi.org/10.1111/mmi.14004
Marini F, Kim N, Schuffert A, Wood RD (2003) POLN, a nuclear PolA family DNA polymerase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem 278:32014–32019
Marini F, Pellicioli A, Paciotti V, Lucchini G, Plevani P, Stern DF, Foiani M (1997) A role for DNA primase in coupling DNA replication to DNA damage response. EMBO J 16:639–650. https://doi.org/10.1093/emboj/16.3.639
Martin MJ, Garcia-Ortiz MV, Gomez-Bedoya A, Esteban V, Guerra S, Blanco L (2013) A specific N-terminal extension of the 8 kDa domain is required for DNA end-bridging by human Polmu and Pollambda. Nucleic Acids Res 41:9105–9116. https://doi.org/10.1093/nar/gkt681
Masaoka A et al (2013) Interaction between DNA polymerase β and BRCA1. PLoS ONE 8:e66801
Masuda K, Ouchida R, Yokoi M, Hanaoka F, Azuma T, Wang JY (2008) DNA polymerase eta is a limiting factor for A: T mutations in Ig genes and contributes to antibody affinity maturation. Eur J Immunol 38:2796–2805. https://doi.org/10.1002/eji.200838502
Masutani C et al (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399:700–704. https://doi.org/10.1038/21447
Matsumoto Y, Kim K, Katz DS, Feng JA (1998) Catalytic center of DNA polymerase beta for excision of deoxyribose phosphate groups. Biochemistry 37:6456–6464. https://doi.org/10.1021/bi9727545
Mazina OM, Rossi MJ, Deakyne JS, Huang F, Mazin AV (2012) Polarity and bypass of DNA heterology during branch migration of Holliday junctions by human RAD54, BLM, and RECQ1 proteins. J Biol Chem 287:11820–11832. https://doi.org/10.1074/jbc.M112.341347
McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC (2005) Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20:783–792. https://doi.org/10.1016/j.molcel.2005.10.001
Meng X, Zhou Y, Lee EY, Lee MY, Frick DN (2010) The p12 subunit of human polymerase delta modulates the rate and fidelity of DNA synthesis. Biochemistry 49:3545–3554. https://doi.org/10.1021/bi100042b
Michael WM, Ott R, Fanning E, Newport J (2000) Activation of the DNA replication checkpoint through RNA synthesis by primase. Science 289:2133–2137. https://doi.org/10.1126/science.289.5487.2133
Miyabe I, Kunkel TA, Carr AM (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 7:e1002407. https://doi.org/10.1371/journal.pgen.1002407
Mizuno T, Ito N, Yokoi M, Kobayashi A, Tamai K, Miyazawa H, Hanaoka F (1998) The second-largest subunit of the mouse DNA polymerase alpha-primase complex facilitates both production and nuclear translocation of the catalytic subunit of DNA polymerase alpha. Mol Cell Biol 18:3552–3562. https://doi.org/10.1128/mcb.18.6.3552
Moldovan G-L, Madhavan MV, Mirchandani KD, McCaffrey RM, Vinciguerra P, D'Andrea AD (2010) DNA polymerase POLN participates in cross-link repair and homologous recombination. Mol Cell Biol 30:1088–1096
Moon AF et al (2007a) The X family portrait: structural insights into biological functions of X family polymerases. DNA Repair 6:1709–1725. https://doi.org/10.1016/j.dnarep.2007.05.009
Moon AF et al (2007b) Structural insight into the substrate specificity of DNA polymerase μ. Nat Struct Mol Biol 14:45
Morrison A, Christensen R, Alley J, Beck A, Bernstine E, Lemontt J, Lawrence C (1989) REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J Bacteriol 171:5659–5667
Motea EA, Berdis AJ (2010) Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochem Biophys Acta 1804:1151–1166. https://doi.org/10.1016/j.bbapap.2009.06.030
Nagasawa K et al (2000) Identification and characterization of human DNA polymerase beta 2, a DNA polymerase beta-related enzyme. J Biol Chem 275:31233–31238. https://doi.org/10.1074/jbc.M004263200
Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK (2004) Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nature 430:377–380. https://doi.org/10.1038/nature02692
Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2005a) Human DNA polymerase iota incorporates dCTP opposite template G via a G.C + Hoogsteen base pair. Structure 13:1569–1577. https://doi.org/10.1016/j.str.2005.08.010
Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2005b) Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309:2219–2222. https://doi.org/10.1126/science.1116336
Nelson JR, Lawrence CW, Hinkle DC (1996a) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382:729
Nelson JR, Lawrence CW, Hinkle DC (1996b) Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272:1646–1649. https://doi.org/10.1126/science.272.5268.1646
Newman JA, Cooper CDO, Aitkenhead H, Gileadi O (2015) Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology-mediated end-joining pathway. Structure 23:2319–2330. https://doi.org/10.1016/j.str.2015.10.014
Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30:137–144. https://doi.org/10.1016/j.molcel.2008.02.022
Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H (2000) Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev 14:1589–1594
Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA (1985) Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–766. https://doi.org/10.1038/313762a0
Ozdemir AY, Rusanov T, Kent T, Siddique LA, Pomerantz RT (2018) Polymerase theta-helicase efficiently unwinds DNA and RNA-DNA hybrids. J Biol Chem 293:5259–5269. https://doi.org/10.1074/jbc.RA117.000565
Pages V, Bresson A, Acharya N, Prakash S, Fuchs RP, Prakash L (2008) Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180:73–82. https://doi.org/10.1534/genetics.108.091066
Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J (1994) Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 264:1891–1903
Peroumal D, Manohar K, Patel SK, Kumari P, Sahu SR, Acharya N (2019) Virulence and pathogenicity of a Candida albicans mutant with reduced filamentation. Cell Microbiol 1:e13103. https://doi.org/10.1111/cmi.13103
Plevani P, Foiani M, Valsasnini P, Badaracco G, Cheriathundam E, Chang LM (1985) Polypeptide structure of DNA primase from a yeast DNA polymerase-primase complex. J Biol Chem 260:7102–7107
Plosky BS, Frank EG, Berry DA, Vennall GP, McDonald JP, Woodgate R (2008) Eukaryotic Y-family polymerases bypass a 3-methyl-2'-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo. Nucleic Acids Res 36:2152–2162. https://doi.org/10.1093/nar/gkn058
Poot RA et al (2000) HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J 19:3377–3387. https://doi.org/10.1093/emboj/19.13.3377
Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353. https://doi.org/10.1146/annurev.biochem.74.082803.133250
Pryor JM et al (2015) Essential role for polymerase specialization in cellular nonhomologous end joining. Proc Natl Acad Sci 112:E4537–E4545
Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317:127–130. https://doi.org/10.1126/science.1144067
Pustovalova Y, Bezsonova I, Korzhnev DM (2012) The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase eta and Rev7 subunit of polymerase zeta. FEBS Lett 586:3051–3056. https://doi.org/10.1016/j.febslet.2012.07.021
Pustovalova Y, Magalhaes MT, D'Souza S, Rizzo AA, Korza G, Walker GC, Korzhnev DM (2016) Interaction between the Rev1 C-terminal domain and the PolD3 subunit of polzeta suggests a mechanism of polymerase exchange upon Rev1/Polzeta-dependent translesion synthesis. Biochemistry 55:2043–2053. https://doi.org/10.1021/acs.biochem.5b01282
Quinet A et al (2020) PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells. Mol Cell 77(461–474):e469. https://doi.org/10.1016/j.molcel.2019.10.008
Ramadan K, Shevelev I, Hubscher U (2004) The DNA-polymerase-X family: controllers of DNA quality? Nat Rev Mol Cell Biol 5:1038–1043. https://doi.org/10.1038/nrm1530
Ray S, Menezes MR, Senejani A, Sweasy JB (2013) Cellular roles of DNA polymerase beta. Yale J Biol Med 86:463–469
Rechkoblit O et al (2002) trans-Lesion synthesis past bulky benzo[a]pyrene diol epoxide N2-dG and N6-dA lesions catalyzed by DNA bypass polymerases. J Biol Chem 277:30488–30494. https://doi.org/10.1074/jbc.M201167200
Rechkoblit O et al (2016) Structure and mechanism of human PrimPol, a DNA polymerase with primase activity. Sci Adv 2:e1601317. https://doi.org/10.1126/sciadv.1601317
Rechkoblit O, Kolbanovskiy A, Landes H, Geacintov NE, Aggarwal AK (2017) Mechanism of error-free replication across benzo[a]pyrene stereoisomers by Rev1 DNA polymerase. Nat Commun 8:965. https://doi.org/10.1038/s41467-017-01013-5
Reid JE, Fischer T (2019) Revealing the superpowers of PrimPol: rescuing replicating microsatellites. EMBO J. https://doi.org/10.15252/embj.2018101298
Santocanale C, Foiani M, Lucchini G, Plevani P (1993) The isolated 48,000-dalton subunit of yeast DNA primase is sufficient for RNA primer synthesis. J Biol Chem 268:1343–1348
Sastre-Moreno G, Pryor JM, Díaz-Talavera A, Ruiz JF, Ramsden DA, Blanco L (2017) Polμ tumor variants decrease the efficiency and accuracy of NHEJ. Nucleic Acids Res 45:10018–10031
Satpati S, Manohar K, Acharya N, Dixit A (2017) Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (eta) in pathogenic yeast Candida albicans. Sci Rep 7:41087. https://doi.org/10.1038/srep41087
Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J (1994) Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science 264:1930–1935. https://doi.org/10.1126/science.7516581
Schneider A, Smith RW, Kautz AR, Weisshart K, Grosse F, Nasheuer HP (1998) Primase activity of human DNA polymerase alpha-primase. Divalent cations stabilize the enzyme activity of the p48 subunit. J Biol Chem 273:21608–21615. https://doi.org/10.1074/jbc.273.34.21608
Seki M, Marini F, Wood RD (2003) POLQ (Pol θ), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res 31:6117–6126
Shcherbakova PV, Pavlov YI (1996) 3'–%3e5' exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142:717–726
Shock DD, Freudenthal BD, Beard WA, Wilson SH (2017) Modulating the DNA polymerase beta reaction equilibrium to dissect the reverse reaction. Nat Chem Biol 13:1074–1080. https://doi.org/10.1038/nchembio.2450
Silverstein TD, Johnson RE, Jain R, Prakash L, Prakash S, Aggarwal AK (2010) Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature 465:1039–1043. https://doi.org/10.1038/nature09104
Spadari S, Weissbach A (1974) HeLa cell R-deoxyribonucleic acid polymerases separation and characterization of two enzymatic activities. J Biol Chem 249:5809–5815
Stephenson AA, Taggart DJ, Suo Z (2017) Noncatalytic, N-terminal domains of DNA polymerase lambda affect its cellular localization and DNA damage response. Chem Res Toxicol 30:1240–1249. https://doi.org/10.1021/acs.chemrestox.7b00067
Stillman B (2015) Reconsidering DNA polymerases at the replication fork in eukaryotes. Mol Cell 59:139–141. https://doi.org/10.1016/j.molcel.2015.07.004
Su Y, Patra A, Harp JM, Egli M, Guengerich FP (2015) Roles of residues Arg-61 and Gln-38 of human DNA polymerase eta in bypass of deoxyguanosine and 7,8-dihydro-8-oxo-2'-deoxyguanosine. J Biol Chem 290:15921–15933. https://doi.org/10.1074/jbc.M115.653691
Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat Struct Mol Biol 16:979–986. https://doi.org/10.1038/nsmb.1663
Sykora P et al (2017) DNA polymerase beta participates in mitochondrial DNA repair. Mol Cell Biol. https://doi.org/10.1128/MCB.00237-17
Syvaoja J, Linn S (1989) Characterization of a large form of DNA polymerase delta from HeLa cells that is insensitive to proliferating cell nuclear antigen. J Biol Chem 264:2489–2497
Syväoja J, Suomensaari S, Nishida C, Goldsmith JS, Chui G, Jain S, Linn S (1990) DNA polymerases alpha, delta, and epsilon: three distinct enzymes from HeLa cells. Proc Natl Acad Sci 87:6664–6668
Szwajczak E, Fijalkowska IJ, Suski C (2018) The importance of an interaction network for proper DNA polymerase zeta heterotetramer activity. Curr Genet 64:575–580. https://doi.org/10.1007/s00294-017-0789-1
Takata K-I, Shimizu T, Iwai S, Wood RD (2006) Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. J Biol Chem 281:23445–23455
Tissier A, Frank EG, McDonald JP, Iwai S, Hanaoka F, Woodgate R (2000a) Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase iota. EMBO J 19:5259–5266. https://doi.org/10.1093/emboj/19.19.5259
Tissier A, McDonald JP, Frank EG, Woodgate R (2000b) polι, a remarkably error-prone human DNA polymerase. Genes Dev 14:1642–1650
Toueille M et al (2004) The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase β and increases its DNA substrate utilisation efficiency: implications for DNA repair. Nucleic Acids Res 32:3316–3324
Vaisman A, Masutani C, Hanaoka F, Chaney SG (2000) Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta. Biochemistry 39:4575–4580
Vaisman A, Woodgate R (2017) Translesion DNA polymerases in eukaryotes: what makes them tick? Crit Rev Biochem Mol Biol 52:274–303. https://doi.org/10.1080/10409238.2017.1291576
Vanderstraeten S, Van den Brule S, Hu J, Foury F (1998) The role of 3'–5' exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance. J Biol Chem 273:23690–23697. https://doi.org/10.1074/jbc.273.37.23690
Wan L et al (2013) hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep 14:1104–1112
Wang TS (1991) Eukaryotic DNA polymerases. Annu Rev Biochem 60:513–552. https://doi.org/10.1146/annurev.bi.60.070191.002501
Washington MT, Carlson KD, Freudenthal BD, Pryor JM (2010) Variations on a theme: eukaryotic Y-family DNA polymerases. Biochim Biophys Acta 1804:1113–1123. https://doi.org/10.1016/j.bbapap.2009.07.004
Washington MT, Johnson RE, Prakash L, Prakash S (2002) Human DINB1-encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini. Proc Natl Acad Sci USA 99:1910–1914. https://doi.org/10.1073/pnas.032594399
Weissbach A, Schlabach A, Fridlender B, Bolden A (1971) DNA polymerases from human cells. Nat New Biol 231:167–170
Wernette CM, Kaguni LS (1986) A mitochondrial DNA polymerase from embryos of Drosophila melanogaster. Purification, subunit structure, and partial characterization. J Biol Chem 261:14764–14770
Wiederhold L et al (2004) AP endonuclease-independent DNA base excision repair in human cells. Mol Cell 15:209–220. https://doi.org/10.1016/j.molcel.2004.06.003
Witkin EM (1969) The mutability toward ultraviolet light of recombination-deficient strains of Escherichia coli. Mutat Res 8:9–14. https://doi.org/10.1016/0027-5107(69)90135-3
Witkin EM (1971) Ultraviolet mutagenesis in strains of E. coli deficient in DNA polymerase. Nat New Biol 229:81–82. https://doi.org/10.1038/newbio229081a0
Wittschieben J et al (2000) Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr Biol 10:1217–1220
Wojtaszek J et al (2012) Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) zeta, and Pol kappa. J Biol Chem 287:33836–33846. https://doi.org/10.1074/jbc.M112.394841
Wojtaszek JL et al (2019) A small molecule targeting mutagenic translesion synthesis improves chemotherapy. Cell 178(152–159):e111. https://doi.org/10.1016/j.cell.2019.05.028
Wolfle WT, Johnson RE, Minko IG, Lloyd RS, Prakash S, Prakash L (2005) Human DNA polymerase iota promotes replication through a ring-closed minor-groove adduct that adopts a syn conformation in DNA. Mol Cell Biol 25:8748–8754. https://doi.org/10.1128/MCB.25.19.8748-8754.2005
Yakubovskaya E et al (2007) The EM structure of human DNA polymerase gamma reveals a localized contact between the catalytic and accessory subunits. EMBO J 26:4283–4291. https://doi.org/10.1038/sj.emboj.7601843
Yang W (2005) Portraits of a Y-family DNA polymerase. FEBS Lett 579:868–872. https://doi.org/10.1016/j.febslet.2004.11.047
Yang W, Gao Y (2018) Translesion and repair DNA polymerases: diverse structure and mechanism. Annu Rev Biochem 87:239–261. https://doi.org/10.1146/annurev-biochem-062917-012405
Yoneda M, Bollum F (1965) Deoxynucleotide-polymerizing enzymes of calf thymus gland I. Large scale purification of terminal and replicative deoxynucleotidyl transferases. J Biol Chem 240:3385–3391
Yoon JH, Acharya N, Park J, Basu D, Prakash S, Prakash L (2014) Identification of two functional PCNA-binding domains in human DNA polymerase kappa. Genes Cells Devot Mol Cell Mech 19:594–601. https://doi.org/10.1111/gtc.12156
Yoon JH, McArthur MJ, Park J, Basu D, Wakamiya M, Prakash L, Prakash S (2019) Error-prone replication through UV lesions by DNA polymerase theta protects against skin cancers. Cell 176(1295–1309):e1215. https://doi.org/10.1016/j.cell.2019.01.023
Zahn KE, Averill AM, Aller P, Wood RD, Doublie S (2015) Human DNA polymerase theta grasps the primer terminus to mediate DNA repair. Nat Struct Mol Biol 22:304–311. https://doi.org/10.1038/nsmb.2993
Zhou ZX, Lujan SA, Burkholder AB, Garbacz MA, Kunkel TA (2019) Roles for DNA polymerase delta in initiating and terminating leading strand DNA replication. Nat Commun 10:3992. https://doi.org/10.1038/s41467-019-11995-z
Zietlow L, Smith LA, Bessho M, Bessho T (2009) Evidence for the involvement of human DNA polymerase N in the repair of DNA interstrand cross-links. Biochemistry 48:11817–11824
Zou S et al (2016) DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma. Oncotarget 7:32274
Zuo S, Bermudez V, Zhang G, Kelman Z, Hurwitz J (2000) Structure and activity associated with multiple forms of Schizosaccharomyces pombe DNA polymerase delta. J Biol Chem 275:5153–5162
Zuo S, Gibbs E, Kelman Z, Wang TS-F, O’Donnell M, MacNeill SA, Hurwitz J (1997) DNA polymerase δ isolated from Schizosaccharomyces pombe contains five subunits. Proc Natl Acad Sci 94:11244–11249
Acknowledgements
We thank our laboratory colleagues for their helpful discussions and critical comments. Work in NA’s laboratory is supported by institutional core support, DBT (BT/PR15470/MED/29/997/2015), and SERB (EMR-2016-000640). Shweta is a N-PDF fellow. We apologize that due to space limitation, not all of the work related to this field could be discussed or cited.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Kupiec.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
About this article
Cite this article
Acharya, N., Khandagale, P., Thakur, S. et al. Quaternary structural diversity in eukaryotic DNA polymerases: monomeric to multimeric form. Curr Genet 66, 635–655 (2020). https://doi.org/10.1007/s00294-020-01071-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00294-020-01071-1