Skip to main content

Advertisement

Log in

Effects of tumor selective replication-competent herpes viruses in combination with gemcitabine on pancreatic cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic cancer still has a poor prognosis, even if aggressive therapy is pursued. Currently, new modalities of oncolytic virus therapy are being tested against this cancer. The combination of one of two representative mutant herpes simplex viruses (R3616: γ134.5 inactivated, hrR3: UL39 inactivated) with a standard anti-pancreatic cancer chemotherapy drug (gemcitabine), was investigated in this study.

Experimental design

The intracellular concentration of ribonucleotide reductase was estimated by Western blotting. The effect of gemcitabine on viral replication and the total cytotoxic effect of the combination therapy were investigated on pancreatic cancer cell lines. We compared the results of two oncolytic viruses, R3616 and hrR3. A mouse model of pancreatic cancer with peritoneal dissemination was used to evaluate the in vivo effect of the combination therapy.

Results

Although the replication of both viruses was inhibited by gemcitabine, the combination caused more tumor cell cytotoxicity than did virus alone in vitro. The results with R3616 were more striking. Although the difference was not statistically significant, R3616 with gemcitabine had a greater effect than did R3616 alone, while hrR3 with gemcitabine had a weaker effect than did hrR3 alone in vivo experiments.

Conclusion

The combination of oncolytic virus with gemcitabine is a promising new strategy against advanced pancreatic cancer. Each virus has different functional characteristics, and can affect the results of the combination of viruses and chemotherapy drugs. The results indicate that there is a complicated interaction among viruses, cells, and chemotherapy drugs and that the best combination of oncolytic virus and chemotherapeutic agents should be studied more extensively before embarking on a clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Warshaw AL, Fernandez-del Castillo C (1992) Pancreatic carcinoma. N Engl J Med 326:455–464

    Article  PubMed  CAS  Google Scholar 

  2. Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    PubMed  CAS  Google Scholar 

  3. Kasuya H, Takeda S, Nomoto S, Nakao A (2005) The potential of oncolytic virus therapy for pancreatic cancer. Cancer Gene Ther 12(9):725–736

    Article  PubMed  CAS  Google Scholar 

  4. Germano IM, Fable J, Gultekin SH, Silvers A (2003) Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas. J Neuro oncol 65:279–289

    Article  Google Scholar 

  5. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R, et al (2004) AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomized, controlled study. Mol Ther 10:967–972

    Article  PubMed  CAS  Google Scholar 

  6. Teh BS, Ayala G, Aguilar L, Mai WY, Timme TL, Vlachaki MT, et al (2004) Phase I-II trial evaluating combined intensity-modulated radiotherapy and in situ gene therapy with or without hormonal therapy in treatment of prostate cancer- interim report on PSA response and biopsy data. Int J Radiat Oncol Biol Phys 58:1520–1529

    Article  PubMed  CAS  Google Scholar 

  7. Kubo H, Gardner TA, Wada Y, Koeneman KS, Gotoh A, Yang L, et al (2003) Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum Gene Ther 14:227–241

    Article  PubMed  CAS  Google Scholar 

  8. Mulvihill S, Warren R, Venook A, Adler A, Randlev B, Heise C, et al (2001) Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinoma of the pancreas: a phase I trial. Gene Ther 8:308–315

    Article  PubMed  CAS  Google Scholar 

  9. Nakao A, Kimata H, Imai T, Kikumori T, Teshigahara O, Nagasaka T, et al (2004) Intratumoral injection of herpes simplex virus HF10 in recurrent breast cancer. Ann Oncol 15:987–991

    Article  Google Scholar 

  10. Lamont JP, Nemunaitis J, Kuhn JA, Landers SA, McCarty TM (2000) A prospective phase II trial of ONXY-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience). Ann Surg Oncol 7:588–592

    PubMed  CAS  Google Scholar 

  11. Neumunaitis J, Cunningham C, Buchnan A, Edelman G, Maples P, Netto G, et al (2001) Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 8:746–759

    Article  CAS  Google Scholar 

  12. Heinemann V, Hertel LW, Grindey GB, Plunkett W (1988) Comparison of the cellular pharmacokinetics and toxicity of 2’,2’-difluorodeoxycytidine and 1-β-d–arabinofuranosylcytosine. Cancer Res 48:4024–4031

    PubMed  CAS  Google Scholar 

  13. Huang P, Chubb S, Hertel LW, Plunkett W (1991) Action of 2’,2’-difluorodeoxycytidine on DNA synthesis. Cancer Res 51:6110–6117

    PubMed  CAS  Google Scholar 

  14. Heinemann V, Xu Y, Chubb S, Sen A, Hertel LW, Grindey GB, et al (1990) Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2’, 2’-difluorodeoxycytidine. Mol Pharmacol 38:567–572

    PubMed  CAS  Google Scholar 

  15. Rosell R, Felip E, Taron M, Majo J, Mendez P, Sanchez-Ronco M, et al (2004) Gene expression as a predictive marker of outcome in stage ((B-IIIA-IIIB non- small cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery. Clin Cancer Res 10:4215s–4219s

    Article  PubMed  CAS  Google Scholar 

  16. Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA (2004) An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res 64:3761–3766

    Article  PubMed  CAS  Google Scholar 

  17. Rosell R, Danenberg KD, Alberola V, Bepler G, Sanchez JJ, Camps C, et al (2004) Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res 10:1318–1325

    Article  PubMed  CAS  Google Scholar 

  18. Goan YG, Zhou B, Hu E, Mi S, Yen Y (1999) Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line. Cancer Res 59:4204–4207

    PubMed  CAS  Google Scholar 

  19. Jung CP, Motwani MV, Schwartz GK (2001) Flavopiridol increases sensitization to gemcitabine in human gastrointestinal cancer cell lines and correlates with down-regulation of ribonucleotide reductase M2 subunit. Clin Cancer Res 7:2527–2536

    PubMed  CAS  Google Scholar 

  20. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene 23:1539–1548

    Article  PubMed  CAS  Google Scholar 

  21. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE (2004) Retrovirally mediated RNA interference targeting the M2 subunit of ribonucleotide reductase: a novel therapeutic strategy in pancreatic cancer. Surgery 136:261–269

    Article  PubMed  Google Scholar 

  22. Andreansky SS, He B, Gillespie GY, Soroceanu L, Markert J, Chou J, et al (1996) The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci USA 93:11313–11318

    Article  PubMed  CAS  Google Scholar 

  23. Pyles RB, Warnick RE, Chalk CL, Szanti BE, Parysek LM (1997) A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors. Hum Gene Ther 8:533–544

    Article  PubMed  CAS  Google Scholar 

  24. Coukos G, Makrigiannakis A, Kang EH, Rubin SC, Albelda SM, Molnar-Kimber KL (2004) Oncolytic herpes simplex virus-1 lacking ICP34.5 induces p53-independent death and is efficacious against chemotherapy-resistant ovarian cancer. Clin Cancer Res 6:3342–3353

    Google Scholar 

  25. Kasuya H, Nishiyama Y, Nomoto S, Hosono J, Takeda S, Nakao A (1999) Intraperitoneal delivery of hrR3 and ganciclovir prolongs survival in mice with disseminated pancreatic cancer. J Surg Oncol 72:136–141

    Article  PubMed  CAS  Google Scholar 

  26. Kasuya H, Mizuno M, Yoshida J, Nishiyama Y, Nomoto S, Nakao A (2000) Combined effects of adeno-associated virus vector and a herpes simplex virus mutant as neoplastic therapy. J Surg Oncol 74:214–218

    Article  PubMed  CAS  Google Scholar 

  27. Carroll NM, Chiocca EA, Takahashi K, Tanabe KK (1996) Enhancement of gene therapy specificity for diffuse colon carcinoma liver metastases with recombinant herpes simplex virus. Ann Surg 224:323–330

    Article  PubMed  CAS  Google Scholar 

  28. Kasuya H, Pawlik TM, Mullen JT, Donahue JM, Nakamura H, Chandrasekhar S, et al (2004) Selectivity of an oncolytic herpes simplex virus for cells expressing the DF3/MUC1 antigen. Cancer Res 64:2561–2567

    Article  PubMed  CAS  Google Scholar 

  29. Yoon SS, Nakamura H, Carroll NM, Bode BP, Chiocca EA, Tanabe KK (2000) An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB J 14:301–311

    PubMed  CAS  Google Scholar 

  30. Goldstein DJ, Weller S (1988) Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology 166:41–51

    Article  PubMed  CAS  Google Scholar 

  31. Ogg PD, McDonell PJ, Ryckman BJ, Knudson CM, Roller RJ (2004) The HSV-1 Us3 protein kinase is sufficient to block apotosis induced by overexpression of a variety of Bcl-2 family members. Virology 319:212–224

    Article  PubMed  CAS  Google Scholar 

  32. Benetti L, Roizman B (2004) Herpes simplex virus protein kinase Us3 activates and functionally overlaps protein kinase A to block apotosis. Proc Natl Acad Sci USA 101:9411–9416

    Article  PubMed  CAS  Google Scholar 

  33. Huang DC, Cory S, Strasser A (1997) Bcl-2, Bcl-XL and adenovirus protein E1B19kD are functionally equivalent in their ability to inhibit cell death. Oncogene 14:405–414

    Article  PubMed  CAS  Google Scholar 

  34. Teodoro JG, Branton PE (1997) Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol 71:3620–3627

    PubMed  CAS  Google Scholar 

  35. Teodoro JG, Branton PE (1997) Regulation of apoptosis by viral gene products. J Virol 71:1739–1746

    PubMed  CAS  Google Scholar 

  36. Tschopp J, Thome M, Hofmann K, Meinl E (1998) The fight of viruses against apoptosis. Curr Opin Genet Dev 8:82–87

    Article  PubMed  CAS  Google Scholar 

  37. Cinatl J Jr, Michaelis M, Driever PH, Cinatl J, Hrabeta J, Suhan T, et al (2004) Multimutated herpes simplex virus g207 is a potent inhibitor of angiogenesis. Neoplasis 6:725–735

    Article  Google Scholar 

  38. Nakamura H, Kasuya H, Mullen JT, Yoon SS, Pawlik TM, Chandrasekhar S, et al (2002) Regulation of herpes simplex virus g1 34.5 expression and oncolysis of diffuse liver metastases by Myb34.5. J Clin Invest 109:871–882

    PubMed  CAS  Google Scholar 

  39. Chung RY, Saeki Y, Chioca EA (1999) β-myb promoter retargeting of herpes simplex virus gamma 34.5 gene-mediated virulence toward tumor and cycling cells. J Virol 73:7556–7564

    PubMed  CAS  Google Scholar 

  40. Teshigahara O, Goshima F, Takao K, Kohno S, Kimata H, Nakao A, et al (2004) Oncolytic viral therapy for breast cancer with herpes simplex virus type 1 mutant HF10. J Surg Oncol 85:42–47

    Article  PubMed  CAS  Google Scholar 

  41. Kimata H, Takakuwa H, Goshima F, Teshigahara O, Nakao A, Kurata T, et al (2003) Effective treatment of disseminated peritoneal colon cancer with new replication-competent herpes simplex viruses. Hepatogastroenterology 50:961–966

    PubMed  Google Scholar 

  42. Nilaver G, Muldoon LL, Kroll RA, Pagel MA, Breakefield XO, Davidson BL, et al (1995) Delivery of herpesvirus and adenovirus to nude rat intracerebral tumors after osmotic blood-brain barrier disruption. Proc Natl Acad Sci USA 92:9829–9833

    Article  PubMed  CAS  Google Scholar 

  43. Kasuya H, Pawlik TM, Mullen JT, Donahue JM, Nakamura H, Chandrasekhar S, et al (2004) Selectivity of an oncolytic herpes simplex virus for cells expressing the DF3/MUC1 antigen. Cancer Res 64:2561–2567

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kasuya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, I., Kasuya, H., Nomura, N. et al. Effects of tumor selective replication-competent herpes viruses in combination with gemcitabine on pancreatic cancer. Cancer Chemother Pharmacol 61, 875–882 (2008). https://doi.org/10.1007/s00280-007-0567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0567-8

Keywords

Navigation