Skip to main content

Advertisement

Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Azacitidine and decitabine, two hypomethylating agents, are known to be effective in the treatment of high-risk myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients who cannot endure intensive cytotoxic chemotherapy or are not eligible for transplantation. However, the treatment response rate is low. The molecular mechanisms underlying the resistance to demethylation therapy are unclear. Though a wide range of predictors of treatment response have been investigated, no consensus has been reached. It is imperative to identify certain parameters that can help distinguish between patients who will obtain a favorable outcome from demethylation therapy and those who will not. Here, we describe currently researched potential predictors based on clinical characteristics, DNA methylation, gene mutation, gene expression, microRNAs, and protein expression. Although these parameters are not currently used in clinical practice, this review provides new sights into available clinical and experimental research. Moreover, this paper provides useful information on AML/MDS management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gardin C, Dombret H (2017) Hypomethylating agents as a therapy for AML. Curr Hematol Malig Rep 12(1):1–10. https://doi.org/10.1007/s11899-017-0363-4

    Article  PubMed  Google Scholar 

  2. Garcia-Manero G, Fenaux P (2011) Hypomethylating agents and other novel strategies in myelodysplastic syndromes. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29(5):516–523. https://doi.org/10.1200/jco.2010.31.0854

    Article  CAS  Google Scholar 

  3. Fabiani E, Leone G, Giachelia M, D'Alo F, Greco M, Criscuolo M, Guidi F, Rutella S, Hohaus S, Voso MT (2010) Analysis of genome-wide methylation and gene expression induced by 5-aza-2′-deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia. Leuk Lymphoma 51(12):2275–2284. https://doi.org/10.3109/10428194.2010.528093

    Article  CAS  PubMed  Google Scholar 

  4. van der Helm LH, Veeger NJ, Kooy M, Beeker A, de Weerdt O, de Groot M, Alhan C, Hoogendoorn M, Laterveer L, van de Loosdrecht AA, Koedam J, Vellenga E, Huls G (2013) Azacitidine results in comparable outcome in newly diagnosed AML patients with more or less than 30% bone marrow blasts. Leuk Res 37(8):877–882. https://doi.org/10.1016/j.leukres.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  5. Qin T, Jelinek J, Si J, Shu J, Issa JP (2009) Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 113(3):659–667. https://doi.org/10.1182/blood-2008-02-140038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, Schoch R, Gattermann N, Sanz G, List A, Gore SD, Seymour JF, Bennett JM, Byrd J, Backstrom J, Zimmerman L, McKenzie D, Beach CL, Silverman LR (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10(3):223–232. https://doi.org/10.1016/s1470-2045(09)70003-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahfouz RZ, Jankowska A, Ebrahem Q, Gu X, Visconte V, Tabarroki A, Terse P, Covey J, Chan K, Ling Y, Engelke KJ, Sekeres MA, Tiu R, Maciejewski J, Radivoyevitch T, Saunthararajah Y (2013) Increased CDA expression/activity in males contributes to decreased cytidine analog half-life and likely contributes to worse outcomes with 5-azacytidine or decitabine therapy. Clin Cancer Res 19(4):938–948. https://doi.org/10.1158/1078-0432.CCR-12-1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kantarjian HM, O'Brien S, Shan J, Aribi A, Garcia-Manero G, Jabbour E, Ravandi F, Cortes J, Davisson J, Issa JP (2007) Update of the decitabine experience in higher risk myelodysplastic syndrome and analysis of prognostic factors associated with outcome. Cancer 109(2):265–273. https://doi.org/10.1002/cncr.22376

    Article  CAS  PubMed  Google Scholar 

  9. Ramos F, Thepot S, Pleyer L, Maurillo L, Itzykson R, Bargay J, Stauder R, Venditti A, Seegers V, Martinez-Robles V, Burgstaller S, Recher C, Deben G, Gaidano G, Gardin C, Musto P, Greil R, Sanchez-Guijo F, Fenaux P, European AI (2015) Azacitidine frontline therapy for unfit acute myeloid leukemia patients: clinical use and outcome prediction. Leuk Res 39(3):296–306. https://doi.org/10.1016/j.leukres.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  10. Maurillo L, Venditti A, Spagnoli A, Gaidano G, Ferrero D, Oliva E, Lunghi M, D'Arco AM, Levis A, Pastore D, Di Renzo N, Santagostino A, Pavone V, Buccisano F, Musto P (2012) Azacitidine for the treatment of patients with acute myeloid leukemia: report of 82 patients enrolled in an Italian compassionate program. Cancer 118(4):1014–1022. https://doi.org/10.1002/cncr.26354

    Article  CAS  PubMed  Google Scholar 

  11. Jabbour E, Garcia-Manero G, Ravandi F, Faderl S, O'Brien S, Fullmer A, Cortes JE, Wierda W, Kantarjian H (2013) Prognostic factors associated with disease progression and overall survival in patients with myelodysplastic syndromes treated with decitabine. Clin Lymphoma, Myeloma Leuk 13(2):131–138. https://doi.org/10.1016/j.clml.2012.11.001

    Article  CAS  Google Scholar 

  12. van der Helm LH, Alhan C, Wijermans PW, van Marwijk KM, Schaafsma R, Biemond BJ, Beeker A, Hoogendoorn M, van Rees BP, de Weerdt O, Wegman J, Libourel WJ, Luykx-de Bakker SA, Minnema MC, Brouwer RE, Croon-de Boer F, Eefting M, Jie KS, van de Loosdrecht AA, Koedam J, Veeger NJ, Vellenga E, Huls G (2011) Platelet doubling after the first azacitidine cycle is a promising predictor for response in myelodysplastic syndromes (MDS), chronic myelomonocytic leukaemia (CMML) and acute myeloid leukaemia (AML) patients in the Dutch azacitidine compassionate named patient programme. Br J Haematol 155(5):599–606. https://doi.org/10.1111/j.1365-2141.2011.08893.x

    Article  CAS  PubMed  Google Scholar 

  13. Itzykson R, Thepot S, Quesnel B, Dreyfus F, Beyne-Rauzy O, Turlure P, Vey N, Recher C, Dartigeas C, Legros L, Delaunay J, Salanoubat C, Visanica S, Stamatoullas A, Isnard F, Marfaing-Koka A, de Botton S, Chelghoum Y, Taksin AL, Plantier I, Ame S, Boehrer S, Gardin C, Beach CL, Ades L, Fenaux P (2011) Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood 117(2):403–411. https://doi.org/10.1182/blood-2010-06-289280

    Article  CAS  PubMed  Google Scholar 

  14. Alhan C, Westers TM, van der Helm LH, Eeltink C, Huls G, Witte BI, Buchi F, Santini V, Ossenkoppele GJ, van de Loosdrecht AA (2014) Absence of aberrant myeloid progenitors by flow cytometry is associated with favorable response to azacitidine in higher risk myelodysplastic syndromes. Cytometry B Clin Cytom 86(3):207–215. https://doi.org/10.1002/cyto.b.21160

    Article  CAS  PubMed  Google Scholar 

  15. Miltiades P, Lamprianidou E, Vassilakopoulos TP, Papageorgiou SG, Galanopoulos AG, Vakalopoulou S, Garypidou V, Papaioannou M, Hadjiharissi E, Pappa V, Papadaki HA, Spanoudakis E, Tsatalas K, Kotsianidis I (2014) Expression of CD25 antigen on CD34+ cells is an independent predictor of outcome in late-stage MDS patients treated with azacitidine. Blood Cancer J 4:e187. https://doi.org/10.1038/bcj.2014.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Almeida AM, Prebet T, Itzykson R, Ramos F, Al-Ali H, Shammo J, Pinto R, Maurillo L, Wetzel J, Musto P, Van De Loosdrecht AA, Costa MJ, Esteves S, Burgstaller S, Stauder R, Autzinger EM, Lang A, Krippl P, Geissler D, Falantes JF, Pedro C, Bargay J, Deben G, Garrido A, Bonanad S, Diez-Campelo M, Thepot S, Ades L, Sperr WR, Valent P, Fenaux P, Sekeres MA, Greil R, Pleyer L (2017) Clinical outcomes of 217 patients with acute Erythroleukemia according to treatment type and line: a retrospective multinational study. Int J Mol Sci 18(4). https://doi.org/10.3390/ijms18040837

    Article  PubMed Central  Google Scholar 

  17. Raj K, John A, Ho A, Chronis C, Khan S, Samuel J, Pomplun S, Thomas NS, Mufti GJ (2007) CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia 21(9):1937–1944. https://doi.org/10.1038/sj.leu.2404796

    Article  CAS  PubMed  Google Scholar 

  18. Ruter B, Wijermans P, Claus R, Kunzmann R, Lubbert M (2007) Preferential cytogenetic response to continuous intravenous low-dose decitabine (DAC) administration in myelodysplastic syndrome with monosomy 7. Blood 110(3):1080–1082; author reply 1083. https://doi.org/10.1182/blood-2007-03-080630

    Article  CAS  PubMed  Google Scholar 

  19. Lubbert M, Ihorst G, Sander PN, Bogatyreva L, Becker H, Wijermans PW, Suciu S, Bisse E, Claus R (2017) Elevated fetal haemoglobin is a predictor of better outcome in MDS/AML patients receiving 5-aza-2′-deoxycytidine (decitabine). Br J Haematol 176(4):609–617. https://doi.org/10.1111/bjh.14463

    Article  CAS  PubMed  Google Scholar 

  20. Moon JH, Kim SN, Kang BW, Chae YS, Kim JG, Baek JH, Park JH, Song MK, Chung JS, Won JH, Lee SM, Joo YD, Kim YK, Kim HJ, Jo DY, Sohn SK (2010) Predictive value of pretreatment risk group and baseline LDH levels in MDS patients receiving azacitidine treatment. Ann Hematol 89(7):681–689. https://doi.org/10.1007/s00277-010-0921-5

    Article  CAS  PubMed  Google Scholar 

  21. Radujkovic A, Schnitzler P, Ho AD, Dreger P, Luft T (2017) Low serum vitamin D levels are associated with shorter survival after first-line azacitidine treatment in patients with myelodysplastic syndrome and secondary oligoblastic acute myeloid leukemia. Clin Nutr 36(2):542–551. https://doi.org/10.1016/j.clnu.2016.01.021

    Article  CAS  PubMed  Google Scholar 

  22. Voso MT, Niscola P, Piciocchi A, Fianchi L, Maurillo L, Musto P, Pagano L, Mansueto G, Criscuolo M, Aloe-Spiriti MA, Buccisano F, Venditti A, Tendas A, Piccioni AL, Zini G, Latagliata R, Filardi N, Fragasso A, Fenu S, Breccia M, Grom BMDSR (2016) Standard dose and prolonged administration of azacitidine are associated with improved efficacy in a real-world group of patients with myelodysplastic syndrome or low blast count acute myeloid leukemia. Eur J Haematol 96(4):344–351. https://doi.org/10.1111/ejh.12595

    Article  CAS  PubMed  Google Scholar 

  23. Metzeler KH, Walker A, Geyer S, Garzon R, Klisovic RB, Bloomfield CD, Blum W, Marcucci G (2012) DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia 26(5):1106–1107. https://doi.org/10.1038/leu.2011.342

    Article  CAS  PubMed  Google Scholar 

  24. Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O, Quesnel B, Vey N, Gelsi-Boyer V, Raynaud S, Preudhomme C, Ades L, Fenaux P, Fontenay M (2011) Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 25(7):1147–1152. https://doi.org/10.1038/leu.2011.71

    Article  CAS  PubMed  Google Scholar 

  25. Emadi A, Faramand R, Carter-Cooper B, Tolu S, Ford LA, Lapidus RG, Wetzler M, Wang ES, Etemadi A, Griffiths EA (2015) Presence of isocitrate dehydrogenase mutations may predict clinical response to hypomethylating agents in patients with acute myeloid leukemia. Am J Hematol 90(5):E77–E79. https://doi.org/10.1002/ajh.23965

    Article  CAS  PubMed  Google Scholar 

  26. Welch JS, Petti AA, Miller CA, Fronick CC, O'Laughlin M, Fulton RS, Wilson RK, Baty JD, Duncavage EJ, Tandon B, Lee YS, Wartman LD, Uy GL, Ghobadi A, Tomasson MH, Pusic I, Romee R, Fehniger TA, Stockerl-Goldstein KE, Vij R, Oh ST, Abboud CN, Cashen AF, Schroeder MA, Jacoby MA, Heath SE, Luber K, Janke MR, Hantel A, Khan N, Sukhanova MJ, Knoebel RW, Stock W, Graubert TA, Walter MJ, Westervelt P, Link DC, DiPersio JF, Ley TJ (2016) TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med 375(21):2023–2036. https://doi.org/10.1056/NEJMoa1605949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Galm O, Herman JG, Baylin SB (2006) The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 20(1):1–13. https://doi.org/10.1016/j.blre.2005.01.006

    Article  CAS  PubMed  Google Scholar 

  28. Voso MT, Fabiani E, Piciocchi A, Matteucci C, Brandimarte L, Finelli C, Pogliani E, Angelucci E, Fioritoni G, Musto P, Greco M, Criscuolo M, Fianchi L, Vignetti M, Santini V, Hohaus S, Mecucci C, Leone G (2011) Role of BCL2L10 methylation and TET2 mutations in higher risk myelodysplastic syndromes treated with 5-azacytidine. Leukemia 25(12):1910–1913. https://doi.org/10.1038/leu.2011.170

    Article  CAS  PubMed  Google Scholar 

  29. Quesnel B, Fenaux P (1999) P15INK4b gene methylation and myelodysplastic syndromes. Leuk Lymphoma 35(5–6):437–443. https://doi.org/10.1080/10428199909169608

    Article  CAS  PubMed  Google Scholar 

  30. Cocco L, Finelli C, Mongiorgi S, Clissa C, Russo D, Bosi C, Quaranta M, Malagola M, Parisi S, Stanzani M, Ramazzotti G, Mariani GA, Billi AM, Manzoli L, Follo MY (2015) An increased expression of PI-PLCbeta1 is associated with myeloid differentiation and a longer response to azacitidine in myelodysplastic syndromes. J Leukoc Biol 98(5):769–780. https://doi.org/10.1189/jlb.2MA1114-541R

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Novera W, Zhang Y, Deng L-W (2017) MLL5 (KMT2E): structure, function, and clinical relevance. Cell Mol Life Sci 74:2333–2344. https://doi.org/10.1007/s00018-017-2470-8

    Article  CAS  PubMed  Google Scholar 

  32. Liu H, Westergard TD, Hsieh JJ (2009) MLL5 governs hematopoiesis: a step closer. Blood 113(7):1395–1396. https://doi.org/10.1182/blood-2008-11-185801

    Article  CAS  PubMed  Google Scholar 

  33. Brondfield S, Umesh S, Corella A, Zuber J, Rappaport AR, Gaillard C, Lowe SW, Goga A, Kogan SC (2015) Direct and indirect targeting of MYC to treat acute myeloid leukemia. Cancer Chemother Pharmacol 76(1):35–46. https://doi.org/10.1007/s00280-015-2766-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR, Fang Z, Nguyen M, Pierce S, Wei Y, Parmar S, Cortes J, Kantarjian H, Garcia-Manero G (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28(6):1280–1288. https://doi.org/10.1038/leu.2013.355

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Z, Chang CK, He Q, Guo J, Tao Y, Wu LY, Xu F, Wu D, Zhou LY, Su JY, Song LX, Xiao C, Li X (2017) Increased PD-1/STAT1 ratio may account for the survival benefit in decitabine therapy for lower risk myelodysplastic syndrome. Leuk Lymphoma 58(4):969–978. https://doi.org/10.1080/10428194.2016.1219903

    Article  CAS  PubMed  Google Scholar 

  36. Zhao S, Kurenbekova L, Gao Y, Roos A, Creighton CJ, Rao P, Hicks J, Man TK, Lau C, Brown AM, Jones SN, Lazar AJ, Ingram D, Lev D, Donehower LA, Yustein JT (2015) NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma. Oncogene 34(39):5069–5079. https://doi.org/10.1038/onc.2014.429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vasagiri N, Kutala VK (2014) Structure, function, and epigenetic regulation of BNIP3: a pathophysiological relevance. Mol Biol Rep 41(11):7705–7714. https://doi.org/10.1007/s11033-014-3664-x

    Article  CAS  PubMed  Google Scholar 

  38. Solly F, Koering C, Mohamed AM, Maucort-Boulch D, Robert G, Auberger P, Flandrin-Gresta P, Ades L, Fenaux P, Kosmider O, Tavernier-Tardy E, Cornillon J, Guyotat D, Campos L, Mortreux F, Wattel E (2016) An miRNA-DNMT1 Axis is involved in azacitidine resistance and predicts survival in higher-risk myelodysplastic syndrome and low blast count acute myeloid leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 23:3025–3034. https://doi.org/10.1158/1078-0432.CCR-16-2304

    Article  CAS  Google Scholar 

  39. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S, Liu S, Havelange V, Becker H, Schaaf L, Mickle J, Devine H, Kefauver C, Devine SM, Chan KK, Heerema NA, Bloomfield CD, Grever MR, Byrd JC, Villalona-Calero M, Croce CM, Marcucci G (2010) Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci 107(16):7473–7478. https://doi.org/10.1073/pnas.1002650107

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim Y, Cheong JW, Kim YK, Eom JI, Jeung HK, Kim SJ, Hwang D, Kim JS, Kim HJ, Min YH (2014) Serum microRNA-21 as a potential biomarker for response to hypomethylating agents in myelodysplastic syndromes. PLoS One 9(2):e86933. https://doi.org/10.1371/journal.pone.0086933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Butrym A, Rybka J, Baczynska D, Poreba R, Mazur G, Kuliczkowski K (2016) Expression of microRNA-181 determines response to treatment with azacitidine and predicts survival in elderly patients with acute myeloid leukaemia. Oncol Lett 12(4):2296–2300. https://doi.org/10.3892/ol.2016.4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Butrym A, Rybka J, Baczynska D, Tukiendorf A, Kuliczkowski K, Mazur G (2015) Expression of microRNA-331 can be used as a predictor for response to therapy and survival in acute myeloid leukemia patients. Biomark Med 9(5):453–460. https://doi.org/10.2217/bmm.14.112

    Article  CAS  PubMed  Google Scholar 

  43. Butrym A, Rybka J, Baczynska D, Poreba R, Kuliczkowski K, Mazur G (2016) Clinical response to azacitidine therapy depends on microRNA-29c (miR-29c) expression in older acute myeloid leukemia (AML) patients. Oncotarget 7(21):30250–30257. https://doi.org/10.18632/oncotarget.7172

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rius M, Stresemann C, Keller D, Brom M, Schirrmacher E, Keppler D, Lyko F (2009) Human concentrative nucleoside transporter 1-mediated uptake of 5-azacytidine enhances DNA demethylation. Mol Cancer Ther 8(1):225–231. https://doi.org/10.1158/1535-7163.MCT-08-0743

    Article  CAS  PubMed  Google Scholar 

  45. Wu L, Shi W, Li X, Chang C, Xu F, He Q, Wu D, Su J, Zhou L, Song L, Xiao C, Zhang Z (2016) High expression of the human equilibrative nucleoside transporter 1 gene predicts a good response to decitabine in patients with myelodysplastic syndrome. J Transl Med 14:66. https://doi.org/10.1186/s12967-016-0817-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu P, Geng S, Weng J, Deng C, Lu Z, Luo C, Du X (2015) The hENT1 and DCK genes underlie the decitabine response in patients with myelodysplastic syndrome. Leuk Res 39(2):216–220. https://doi.org/10.1016/j.leukres.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  47. Valencia A, Masala E, Rossi A, Martino A, Sanna A, Buchi F, Canzian F, Cilloni D, Gaidano V, Voso MT, Kosmider O, Fontenay M, Gozzini A, Bosi A, Santini V (2014) Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia 28(3):621–628. https://doi.org/10.1038/leu.2013.330

    Article  CAS  PubMed  Google Scholar 

  48. Qin T, Castoro R, El Ahdab S, Jelinek J, Wang X, Si J, Shu J, He R, Zhang N, Chung W, Kantarjian HM, Issa JP (2011) Mechanisms of resistance to decitabine in the myelodysplastic syndrome. PLoS One 6(8):e23372. https://doi.org/10.1371/journal.pone.0023372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pordzik S, Petrovici K, Schmid C, Kroell T, Schweiger C, Kohne CH, Schmetzer H (2011) Expression and prognostic value of FAS receptor/FAS ligand and TrailR1/TrailR2 in acute myeloid leukemia. Hematology 16(6):341–350. https://doi.org/10.1179/102453311X13127324303353

    Article  PubMed  Google Scholar 

  50. Nieto M, Samper E, Fraga MF, Gonzalez de Buitrago G, Esteller M, Serrano M (2004) The absence of p53 is critical for the induction of apoptosis by 5-aza-2′-deoxycytidine. Oncogene 23(3):735–743. https://doi.org/10.1038/sj.onc.1207175

    Article  CAS  PubMed  Google Scholar 

  51. Miltiades P, Lamprianidou E, Vassilakopoulos TP, Papageorgiou SG, Galanopoulos AG, Kontos CK, Adamopoulos PG, Nakou E, Vakalopoulou S, Garypidou V, Papaioannou M, Hatjiharissi E, Papadaki HA, Spanoudakis E, Pappa V, Scorilas A, Tsatalas C, Kotsianidis I, Hellenic MDSSG (2016) The Stat3/5 signaling biosignature in hematopoietic stem/progenitor cells predicts response and outcome in myelodysplastic syndrome patients treated with azacitidine. Clin Cancer Res 22(8):1958–1968. https://doi.org/10.1158/1078-0432.CCR-15-1288

    Article  CAS  PubMed  Google Scholar 

  52. DeZern AE, Zeidan AM, Barnard J, Hand W, Al Ali N, Brown F, Zimmerman C, Roboz GJ, Garcia-Manero G, Steensma DP, Komrokji RS, Sekeres MA (2016) Differential response to hypomethylating agents based on sex: a report on behalf of the MDS clinical research consortium (MDS CRC)*. Leuk Lymphoma 58(6):1325–1331. https://doi.org/10.1080/10428194.2016.1246726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Falantes J, Pleyer L, Thepot S, Almeida AM, Maurillo L, Martinez-Robles V, Stauder R, Itzykson R, Pinto R, Venditti A, Bargay J, Burgstaller S, Martinez MP, Seegers V, Cortesao E, Foncillas MA, Gardin C, Montesinos P, Musto P, Fenaux P, Greil R, Sanz MA, Ramos F, European AI (2017) Real life experience with frontline azacitidine in a large series of older adults with acute myeloid leukemia stratified by MRC/LRF score: results from the expanded international E-ALMA series (E-ALMA+). Leuk lymphoma:1–8. https://doi.org/10.1080/10428194.2017.1365854

    Article  Google Scholar 

  54. Lamarque M, Raynaud S, Itzykson R, Thepot S, Quesnel B, Dreyfus F, Rauzy OB, Turlure P, Vey N, Recher C, Dartigeas C, Legros L, Delaunay J, Visanica S, Stamatoullas A, Fenaux P, Ades L (2012) The revised IPSS is a powerful tool to evaluate the outcome of MDS patients treated with azacitidine: the GFM experience. Blood 120(25):5084–5085. https://doi.org/10.1182/blood-2012-09-453555

    Article  CAS  PubMed  Google Scholar 

  55. Furlan I, Batz C, Flotho C, Mohr B, Lubbert M, Suttorp M, Niemeyer CM (2009) Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood 113(12):2867–2868. https://doi.org/10.1182/blood-2008-12-195693

    Article  PubMed  Google Scholar 

  56. Cashen AF, Schiller GJ, O'Donnell MR, DiPersio JF (2010) Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28(4):556–561. https://doi.org/10.1200/JCO.2009.23.9178

    Article  CAS  Google Scholar 

  57. Ravandi F, Issa JP, Garcia-Manero G, O'Brien S, Pierce S, Shan J, Borthakur G, Verstovsek S, Faderl S, Cortes J, Kantarjian H (2009) Superior outcome with hypomethylating therapy in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome and chromosome 5 and 7 abnormalities. Cancer 115(24):5746–5751. https://doi.org/10.1002/cncr.24661

    Article  CAS  PubMed  Google Scholar 

  58. Woo J, Deeg HJ, Storer B, Yeung C, Fang M, Mielcarek M, Scott BL (2017) Factors determining responses to azacitidine in patients with myelodysplastic syndromes and acute myeloid leukemia with early post-transplantation relapse: a prospective trial. Biol Blood Marrow transplant 23(1):176–179. https://doi.org/10.1016/j.bbmt.2016.10.016

    Article  CAS  PubMed  Google Scholar 

  59. Yang B, Yu R, Cai L, Chi X, Liu C, Yang L, Wang X, He P, Lu X (2017) A comparison of therapeutic dosages of decitabine in treating myelodysplastic syndrome: a meta-analysis. Ann Hematol 96(11):1811–1823. https://doi.org/10.1007/s00277-017-3102-y

    Article  CAS  PubMed  Google Scholar 

  60. Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, Sugimoto Y, Szpurka H, Makishima H, O'Keefe CL, Sekeres MA, Advani AS, Kalaycio M, Copelan EA, Saunthararajah Y, Olalla Saad ST, Maciejewski JP, Tiu RV (2014) Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia 28(1):78–87. https://doi.org/10.1038/leu.2013.269

    Article  CAS  PubMed  Google Scholar 

  61. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468(7325):839–843. https://doi.org/10.1038/nature09586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schoofs T, Berdel WE, Muller-Tidow C (2014) Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia 28(1):1–14. https://doi.org/10.1038/leu.2013.242

    Article  CAS  PubMed  Google Scholar 

  63. Yuan XQ, Peng L, Zeng WJ, Jiang BY, Li GC, Chen XP (2016) DNMT3A R882 mutations predict a poor prognosis in AML: a meta-analysis from 4474 patients. Medicine 95(18):e3519. https://doi.org/10.1097/md.0000000000003519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. DiNardo CD, Patel KP, Garcia-Manero G, Luthra R, Pierce S, Borthakur G, Jabbour E, Kadia T, Pemmaraju N, Konopleva M, Faderl S, Cortes J, Kantarjian HM, Ravandi F (2014) Lack of association of IDH1, IDH2 and DNMT3A mutations with outcome in older patients with acute myeloid leukemia treated with hypomethylating agents. Leuk Lymphoma 55(8):1925–1929. https://doi.org/10.3109/10428194.2013.855309

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J, Wang H, Caughey B, Stojanov P, Getz G, Garcia-Manero G, Kantarjian H, Chen R, Stone RM, Neuberg D, Steensma DP, Ebert BL (2014) TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 124(17):2705–2712. https://doi.org/10.1182/blood-2014-06-582809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567. https://doi.org/10.1016/j.ccr.2010.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patnaik MM, Hanson CA, Hodnefield JM, Lasho TL, Finke CM, Knudson RA, Ketterling RP, Pardanani A, Tefferi A (2011) Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients. Leukemia 26(1):101–105. https://doi.org/10.1038/leu.2011.298

    Article  CAS  PubMed  Google Scholar 

  68. Jin J, Hu C, Yu M, Chen F, Ye L, Yin X, Zhuang Z, Tong H (2014) Prognostic value of isocitrate dehydrogenase mutations in myelodysplastic syndromes: a retrospective cohort study and meta-analysis. PLoS One 9(6):e100206. https://doi.org/10.1371/journal.pone.0100206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McCubrey JA, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Libra M, Cervello M, Montalto G, Yang LV, Abrams SL, Steelman LS (2017) Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Advances in biological Regulation 63:32–48. https://doi.org/10.1016/j.jbior.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  70. Chang CK, Zhao YS, Xu F, Guo J, Zhang Z, He Q, Wu D, Wu LY, Su JY, Song LX, Xiao C, Li X (2017) TP53 mutations predict decitabine-induced complete responses in patients with myelodysplastic syndromes. Br J Haematol 176(4):600–608. https://doi.org/10.1111/bjh.14455

    Article  CAS  PubMed  Google Scholar 

  71. Takahashi K, Patel K, Bueso-Ramos C, Zhang J, Gumbs C, Jabbour E, Kadia T, Andreff M, Konopleva M, DiNardo C, Daver N, Cortes J, Estrov Z, Futreal A, Kantarjian H, Garcia-Manero G (2016) Clinical implications of TP53 mutations in myelodysplastic syndromes treated with hypomethylating agents. Oncotarget 7(12):14172–14187. https://doi.org/10.18632/oncotarget.7290

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kulasekararaj AG, Smith AE, Mian SA, Mohamedali AM, Krishnamurthy P, Lea NC, Gaken J, Pennaneach C, Ireland R, Czepulkowski B, Pomplun S, Marsh JC, Mufti GJ (2013) TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. Br J Haematol 160(5):660–672. https://doi.org/10.1111/bjh.12203

    Article  CAS  PubMed  Google Scholar 

  73. Desoutter J, Gay J, Berthon C, Ades L, Gruson B, Geffroy S, Plantier I, Marceau A, Helevaut N, Fernandes J, Bemba M, Stalnikiewicz L, Frimat C, Labreuche J, Nibourel O, Roumier C, Figeac M, Fenaux P, Quesnel B, Renneville A, Duhamel A, Preudhomme C (2016) Molecular prognostic factors in acute myeloid leukemia receiving first-line therapy with azacitidine. Leukemia 30(6):1416–1418. https://doi.org/10.1038/leu.2015.314

    Article  CAS  PubMed  Google Scholar 

  74. Bally C, Ades L, Renneville A, Sebert M, Eclache V, Preudhomme C, Mozziconacci MJ, de The H, Lehmann-Che J, Fenaux P (2014) Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res 38(7):751–755. https://doi.org/10.1016/j.leukres.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  75. Woo J, Howard NP, Storer BE, Fang M, Yeung CC, Scott BL, Deeg HJ (2017) Mutational analysis in serial marrow samples during azacitidine treatment in patients with post-transplant relapse of acute myeloid leukemia or myelodysplastic syndromes. Haematologica 102:e216–e218. https://doi.org/10.3324/haematol.2016.162909

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li Y, Xu Q, Lv N, Wang L, Zhao H, Wang X, Guo J, Chen C, Li Y, Yu L (2017) Clinical implications of genome-wide DNA methylation studies in acute myeloid leukemia. J Hematol Oncol 10(1):41. https://doi.org/10.1186/s13045-017-0409-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang L-Y, Yuan Y-Q, Zhou D-M, Wang Z-Y, Ju S-G, Sun Y, Li J, Fu J-X (2016) Impact of global and gene-specific DNA methylation in de novo or relapsed acute myeloid leukemia patients treated with decitabine. Asian Pac J Cancer Prev 17(1):431–437. https://doi.org/10.7314/apjcp.2016.17.1.431

    Article  PubMed  Google Scholar 

  78. Shen L, Kantarjian H, Guo Y, Lin E, Shan J, Huang X, Berry D, Ahmed S, Zhu W, Pierce S, Kondo Y, Oki Y, Jelinek J, Saba H, Estey E, Issa JP (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 28(4):605–613. https://doi.org/10.1200/JCO.2009.23.4781

    Article  CAS  PubMed  Google Scholar 

  79. Negrotto S, Ng KP, Jankowska AM, Bodo J, Gopalan B, Guinta K, Mulloy JC, Hsi E, Maciejewski J, Saunthararajah Y (2012) CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors. Leukemia 26(2):244–254. https://doi.org/10.1038/leu.2011.207

    Article  CAS  PubMed  Google Scholar 

  80. Cluzeau T, Robert G, Mounier N, Karsenti JM, Dufies M, Puissant A, Jacquel A, Renneville A, Preudhomme C, Cassuto JP, Raynaud S, Luciano F, Auberger P (2012) BCL2L10 is a predictive factor for resistance to azacitidine in MDS and AML patients. Oncotarget 3(4):490–501. https://doi.org/10.18632/oncotarget.481

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vidal V, Robert G, Goursaud L, Durand L, Ginet C, Karsenti JM, Luciano F, Gastaud L, Garnier G, Braun T, Hirsch P, Raffoux E, Nloga AM, Padua RA, Dombret H, Rohrlich P, Ades L, Chomienne C, Auberger P, Fenaux P, Cluzeau T (2017) BCL2L10 positive cells in bone marrow are an independent prognostic factor of azacitidine outcome in myelodysplastic syndrome and acute myeloid leukemia. Oncotarget. https://doi.org/10.18632/oncotarget.17482

  82. Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F, Vanrumbeke M, Fenaux P (1998) Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 91(8):2985–2990

    CAS  PubMed  Google Scholar 

  83. Aoki E, Ohashi H, Uchida T, Murate T, Saito H, Kinoshita T (2003) Expression levels of DNA methyltransferase genes do not correlate with p15INK4B gene methylation in myelodysplastic syndromes. Leukemia 17(9):1903–1904. https://doi.org/10.1038/sj.leu.2403046

    Article  CAS  PubMed  Google Scholar 

  84. Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Kohler G, Wijermans P, Jones PA, Lubbert M (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100(8):2957–2964. https://doi.org/10.1182/blood.V100.8.2957

    Article  CAS  PubMed  Google Scholar 

  85. Lehmann U, Dobbelstein C, Fenner M, Romermann D, Hasemeier B, Metzig K, Steinemann D, Busche G, Krauter J, Ganser A, Kreipe H (2009) Complete cytogenetic remission after decitabine treatment in a patient with secondary AML harbouring high p15INK4b gene methylation and high global DNA methylation. Ann Hematol 88(3):275–277. https://doi.org/10.1007/s00277-008-0584-7

    Article  PubMed  Google Scholar 

  86. Manzoli L, Martelli AM, Billi AM, Faenza I, Fiume R, Cocco L (2005) Nuclear phospholipase C: involvement in signal transduction. Prog Lipid Res 44(4):185–206. https://doi.org/10.1016/j.plipres.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  87. Follo MY, Russo D, Finelli C, Mongiorgi S, Clissa C, Fili C, Colombi C, Gobbi M, Manzoli L, Piazzi M, Martelli AM, Cocco L (2012) Epigenetic regulation of nuclear PI-PLCbeta1 signaling pathway in low-risk MDS patients during azacitidine treatment. Leukemia 26(5):943–950. https://doi.org/10.1038/leu.2011.300

    Article  CAS  PubMed  Google Scholar 

  88. Follo MY, Finelli C, Mongiorgi S, Clissa C, Bosi C, Testoni N, Chiarini F, Ramazzotti G, Baccarani M, Martelli AM, Manzoli L, Martinelli G, Cocco L (2009) Reduction of phosphoinositide-phospholipase C beta1 methylation predicts the responsiveness to azacitidine in high-risk MDS. Proc Natl Acad Sci U S A 106(39):16811–16816. https://doi.org/10.1073/pnas.0907109106

    Article  PubMed  PubMed Central  Google Scholar 

  89. Follo MY, Finelli C, Mongiorgi S, Clissa C, Chiarini F, Ramazzotti G, Paolini S, Martinelli G, Martelli AM, Cocco L (2011) Synergistic induction of PI-PLCbeta1 signaling by azacitidine and valproic acid in high-risk myelodysplastic syndromes. Leukemia 25(2):271–280. https://doi.org/10.1038/leu.2010.266

    Article  CAS  PubMed  Google Scholar 

  90. Damm F, Oberacker T, Thol F, Surdziel E, Wagner K, Chaturvedi A, Morgan M, Bomm K, Gohring G, Lubbert M, Kanz L, Fiedler W, Schlegelberger B, Heil G, Schlenk RF, Dohner K, Dohner H, Krauter J, Ganser A, Heuser M (2011) Prognostic importance of histone methyltransferase MLL5 expression in acute myeloid leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29(6):682–689. https://doi.org/10.1200/JCO.2010.31.1118

    Article  CAS  Google Scholar 

  91. Heuser M, Yap DB, Leung M, de Algara TR, Tafech A, McKinney S, Dixon J, Thresher R, Colledge B, Carlton M, Humphries RK, Aparicio SA (2009) Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. Blood 113(7):1432–1443. https://doi.org/10.1182/blood-2008-06-162263

    Article  CAS  PubMed  Google Scholar 

  92. Yun H, Damm F, Yap D, Schwarzer A, Chaturvedi A, Jyotsana N, Lubbert M, Bullinger L, Dohner K, Geffers R, Aparicio S, Humphries RK, Ganser A, Heuser M (2014) Impact of MLL5 expression on decitabine efficacy and DNA methylation in acute myeloid leukemia. Haematologica 99(9):1456–1464. https://doi.org/10.3324/haematol.2013.101386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Poloni A, Serrani F, Berardinelli E, Maurizi G, Mariani M, Costantini B, Trappolini S, Mancini S, Olivieri A, Leoni P (2013) Telomere length, c-myc and mad-1 expression could represent prognosis markers of myelodysplastic syndrome. Leuk Res 37(11):1538–1544. https://doi.org/10.1016/j.leukres.2013.07.022

    Article  CAS  PubMed  Google Scholar 

  94. Xia B, Tian C, Guo S, Zhang L, Zhao D, Qu F, Zhao W, Wang Y, Wu X, Da W, Wei S, Zhang Y (2015) C-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia. Leuk Res 39(1):92–99. https://doi.org/10.1016/j.leukres.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  95. Falantes JF, Trujillo P, Piruat JI, Calderon C, Marquez-Malaver FJ, Martin-Antonio B, Millan A, Gomez M, Gonzalez J, Martino ML, Montero I, Parody R, Espigado I, Urbano-Ispizua A, Perez-Simon JA (2015) Overexpression of GYS1, MIF, and MYC is associated with adverse outcome and poor response to azacitidine in myelodysplastic syndromes and acute myeloid leukemia. Clinical lymphoma, myeloma & leukemia 15(4):236–244. https://doi.org/10.1016/j.clml.2014.10.003

    Article  Google Scholar 

  96. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50. https://doi.org/10.1038/ng.2007.30

    Article  CAS  PubMed  Google Scholar 

  97. Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242. https://doi.org/10.1111/j.1600-065X.2010.00923.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Iwai Y, Hamanishi J, Chamoto K, Honjo T (2017) Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 24(1):26. https://doi.org/10.1186/s12929-017-0329-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Orskov AD, Treppendahl MB, Skovbo A, Holm MS, Friis LS, Hokland M, Gronbaek K (2015) Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation. Oncotarget 6(11):9612–9626. https://doi.org/10.18632/oncotarget.3324

    Article  PubMed  PubMed Central  Google Scholar 

  100. Daver N, Boddu P, Garcia-Manero G, Yadav SS, Sharma P, Allison J, Kantarjian H (2018) Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia 32:1094–1105. https://doi.org/10.1038/s41375-018-0070-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cao B, Yang W, Jin Y, Zhang M, He T, Zhan Q, Herman JG, Zhong G, Guo M (2016) Silencing NKD2 by promoter region Hypermethylation promotes esophageal cancer progression by activating Wnt signaling. J Thorac Oncol 11(11):1912–1926. https://doi.org/10.1016/j.jtho.2016.06.015

    Article  PubMed  Google Scholar 

  102. Li XX, Zhou JD, Zhang TJ, Yang L, Wen XM, Ma JC, Yang J, Zhang ZH, Lin J, Qian J (2017) Epigenetic dysregulation of NKD2 is a valuable predictor assessing treatment outcome in acute myeloid leukemia. J Cancer 8(3):460–468. https://doi.org/10.7150/jca.16914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Murai M, Toyota M, Satoh A, Suzuki H, Akino K, Mita H, Sasaki Y, Ishida T, Shen L, Garcia-Manero G, Issa JP, Hinoda Y, Tokino T, Imai K (2005) Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer 92(6):1165–1172. https://doi.org/10.1038/sj.bjc.6602422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lazarini M, Machado-Neto JA, Duarte AD, Pericole FV, Vieira KP, Niemann FS, Alvarez M, Traina F, Saad ST (2016) BNIP3L in myelodysplastic syndromes and acute myeloid leukemia: impact on disease outcome and cellular response to decitabine. Haematologica 101(11):e445–e448. https://doi.org/10.3324/haematol.2016.142521

    Article  PubMed  PubMed Central  Google Scholar 

  105. Unnikrishnan A, Papaemmanuil E, Beck D, Deshpande NP, Verma A, Kumari A, Woll PS, Richards LA, Knezevic K, Chandrakanthan V, Thoms JAI, Tursky ML, Huang Y, Ali Z, Olivier J, Galbraith S, Kulasekararaj AG, Tobiasson M, Karimi M, Pellagatti A, Wilson SR, Lindeman R, Young B, Ramakrishna R, Arthur C, Stark R, Crispin P, Curnow J, Warburton P, Roncolato F, Boultwood J, Lynch K, Jacobsen SEW, Mufti GJ, Hellstrom-Lindberg E, Wilkins MR, MacKenzie KL, Wong JWH, Campbell PJ, Pimanda JE (2017) Integrative genomics identifies the molecular basis of resistance to azacitidine therapy in myelodysplastic syndromes. Cell Rep 20(3):572–585. https://doi.org/10.1016/j.celrep.2017.06.067

    Article  CAS  PubMed  Google Scholar 

  106. Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6(11):8474–8490. https://doi.org/10.18632/oncotarget.3523

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lawrie CH (2013) MicroRNAs in hematological malignancies. Blood Rev 27(3):143–154. https://doi.org/10.1016/j.blre.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  108. Xie L, Jing R, Qi J, Lin Z, Ju S (2015) Drug resistance-related microRNAs in hematological malignancies: translating basic evidence into therapeutic strategies. Blood Rev 29(1):33–44. https://doi.org/10.1016/j.blre.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  109. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810. https://doi.org/10.1073/pnas.0707628104

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hsieh YY, Huang TC, Lo HL, Jhan JY, Chen ST, Yang PM (2016) Systematic discovery of drug action mechanisms by an integrated chemical genomics approach: identification of functional disparities between azacytidine and decitabine. Oncotarget 7(19):27363–27378. https://doi.org/10.18632/oncotarget.8455

    Article  PubMed  PubMed Central  Google Scholar 

  111. Damaraju VL, Mowles D, Yao S, Ng A, Young JD, Cass CE, Tong Z (2012) Role of human nucleoside transporters in the uptake and cytotoxicity of azacitidine and decitabine. Nucleosides Nucleotides Nucleic Acids 31(3):236–255. https://doi.org/10.1080/15257770.2011.652330

    Article  CAS  PubMed  Google Scholar 

  112. Tourneur L, Delluc S, Levy V, Valensi F, Radford-Weiss I, Legrand O, Vargaftig J, Boix C, Macintyre EA, Varet B, Chiocchia G, Buzyn A (2004) Absence or low expression of fas-associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemotherapy and poor outcome. Cancer Res 64(21):8101–8108. https://doi.org/10.1158/0008-5472.can-04-2361

    Article  CAS  PubMed  Google Scholar 

  113. Sibley K, Rollinson S, Allan JM, Smith AG, Law GR, Roddam PL, Skibola CF, Smith MT, Morgan GJ (2003) Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res 63(15):4327–4330

    CAS  PubMed  Google Scholar 

  114. Ettou S, Audureau E, Humbrecht C, Benet B, Jammes H, Clozel T, Bardet V, Lacombe C, Dreyfus F, Mayeux P, Solary E, Fontenay M (2012) Fas expression at diagnosis as a biomarker of azacitidine activity in high-risk MDS and secondary AML. Leukemia 26(10):2297–2299. https://doi.org/10.1038/leu.2012.152

    Article  CAS  PubMed  Google Scholar 

  115. Ghanim V, Herrmann H, Heller G, Peter B, Hadzijusufovic E, Blatt K, Schuch K, Cerny-Reiterer S, Mirkina I, Karlic H, Pickl WF, Zochbauer-Muller S, Valent P (2012) 5-Azacytidine and decitabine exert proapoptotic effects on neoplastic mast cells: role of FAS-demethylation and FAS re-expression, and synergism with FAS-ligand. Blood 119(18):4242–4252. https://doi.org/10.1182/blood-2011-09-382770

    Article  CAS  PubMed  Google Scholar 

  116. Quintas-Cardama A, Hu C, Qutub A, Qiu YH, Zhang X, Post SM, Zhang N, Coombes K, Kornblau SM (2017) p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia 31:1296–1305. https://doi.org/10.1038/leu.2016.350

    Article  CAS  PubMed  Google Scholar 

  117. Muller-Thomas C, Rudelius M, Rondak IC, Haferlach T, Schanz J, Huberle C, Schmidt B, Blaser R, Kremer M, Peschel C, Germing U, Platzbecker U, Gotze K (2014) Response to azacitidine is independent of p53 expression in higher-risk myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica 99(10):e179–e181. https://doi.org/10.3324/haematol.2014.104760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nishiwaki S, Ito M, Watarai R, Okuno S, Harada Y, Yamamoto S, Suzuki K, Kurahashi S, Iwasaki T, Sugiura I (2016) A new prognostic index to make short-term prognoses in MDS patients treated with azacitidine: a combination of p53 expression and cytogenetics. Leuk Res 41:21–26. https://doi.org/10.1016/j.leukres.2015.11.014

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant nos. 8167016, 81370635, 81170518, 81270611, 81570137, 81470010, and 81400135), Capital Medical Development Scientific Research Fund (grant no. SF2001-5001-07), Beijing Natural Science Foundation (grant no. 7151009), National Public Health Grant Research Foundation (grant no. 201202017), The Capital of the Public Health Project (grant no. Z111107067311070), and Technology Innovation Nursery Foundation (grant no. 13KMM01). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with either human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, Y., Lv, N. et al. Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes. Ann Hematol 97, 2025–2038 (2018). https://doi.org/10.1007/s00277-018-3464-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3464-9

Keywords