Skip to main content

Advertisement

Log in

Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immune function relies on an appropriate balance of the lymphoid and myeloid responses. In the case of neoplasia, this balance is readily perturbed by the dramatic expansion of immature or dysfunctional myeloid cells accompanied by a reciprocal decline in the quantity/quality of the lymphoid response. In this review, we seek to: (1) define the nature of the atypical myelopoiesis observed in cancer patients and the impact of this perturbation on clinical outcomes; (2) examine the potential mechanisms underlying these clinical manifestations; and (3) explore potential strategies to restore normal myeloid cell differentiation to improve activation of the host antitumor immune response. We posit that fundamental alterations in myeloid homeostasis triggered by the neoplastic process represent critical checkpoints that govern therapeutic efficacy, as well as offer novel cellular-based biomarkers for tracking changes in disease status or relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

APC:

Antigen-presenting cell

ATRA:

All-trans retinoic acid

CD:

Cluster of differentiation

C/EBPα:

CCAAT/enhancer binding protein α

CML:

Chronic myeloid leukemia

CMP:

Common myeloid progenitors

COX:

Cyclooxygenase

CTLA-4:

Cytotoxic T lymphocyte-associated protein 4

DC:

Dendritic cell

GATA-3:

GATA-binding protein 3

G-CSF:

Granulocyte colony-stimulating factor

GMP:

Granulocyte–monocyte progenitors

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

HLA-DR:

Human leukocyte antigen-DR

HSC:

Hematopoietic stem cell

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

IRF-8:

Interferon regulatory factor 8

MDSC:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

MPP:

Multi-potent progenitor

PAX5:

Paired box protein Pax-5

PDE:

Phosphodiesterase

PD-L1:

Programmed death-ligand 1

PPARγ:

Peroxisome proliferator-activated receptor γ

PU.1:

PU box binding transcription factor PU.1

RANTES:

Regulated on activation, normal T cell expressed and secreted

RORγt:

RAR-related orphan receptor γ t

STAT:

Signal transducer and activator of transcription

TAM:

Tumor-associated macrophage

TAN:

Tumor-associated neutrophil

TAP:

Transporter associated with antigen processing

T-bet:

T box transcription factor

TDF:

Tumor-derived factor

TGF-β:

Transforming growth factor-β

Th :

T helper subset

TLRs:

Toll-like receptors

TNFα:

Tumor necrosis factor α

Tregs :

T regulatory cells

VEGF:

Vascular endothelial growth factor

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  3. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22(4):275–281. doi:10.1016/j.semcancer.2012.01.011

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952. doi:10.1038/nri1498

    CAS  PubMed  Google Scholar 

  6. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752. doi:10.1038/nrc3581

    CAS  PubMed  Google Scholar 

  7. Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9(8):628–638. doi:10.1038/nrm2455

    CAS  PubMed  Google Scholar 

  8. Shoenfeld Y, Tal A, Berliner S, Pinkhas J (1986) Leukocytosis in non hematological malignancies–a possible tumor-associated marker. J Cancer Res Clin Oncol 111(1):54–58

    CAS  PubMed  Google Scholar 

  9. Dorn C, Bugl S, Malenke E, Muller MR, Weisel KC, Vogel U, Horger M, Kanz L, Kopp HG (2014) Paraneoplastic granulocyte colony-stimulating factor secretion in soft tissue sarcoma mimicking myeloproliferative neoplasia: a case report. BMC Res Notes 7:313. doi:10.1186/1756-0500-7-313

    PubMed Central  PubMed  Google Scholar 

  10. Schmidt H, Bastholt L, Geertsen P, Christensen IJ, Larsen S, Gehl J, von der Maase H (2005) Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br J Cancer 93(3):273–278. doi:10.1038/sj.bjc.6602702

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Donskov F, von der Maase H (2006) Impact of immune parameters on long-term survival in metastatic renal cell carcinoma. J Clin Oncol 24(13):1997–2005. doi:10.1200/JCO.2005.03.9594

    PubMed  Google Scholar 

  12. Paesmans M, Sculier JP, Lecomte J, Thiriaux J, Libert P, Sergysels R, Bureau G, Dabouis G, Van Cutsem O, Mommen P, Ninane V, Klastersky J (2000) Prognostic factors for patients with small cell lung carcinoma: analysis of a series of 763 patients included in 4 consecutive prospective trials with a minimum follow-up of 5 years. Cancer 89(3):523–533

    CAS  PubMed  Google Scholar 

  13. Carus A, Ladekarl M, Hager H, Pilegaard H, Nielsen PS, Donskov F (2013) Tumor-associated neutrophils and macrophages in non-small cell lung cancer: no immediate impact on patient outcome. Lung Cancer 81(1):130–137. doi:10.1016/j.lungcan.2013.03.003

    PubMed  Google Scholar 

  14. Lee Y, Kim SH, Han JY, Kim HT, Yun T, Lee JS (2012) Early neutrophil-to-lymphocyte ratio reduction as a surrogate marker of prognosis in never smokers with advanced lung adenocarcinoma receiving gefitinib or standard chemotherapy as first-line therapy. J Cancer Res Clin Oncol 138(12):2009–2016. doi:10.1007/s00432-012-1281-4

    CAS  PubMed  Google Scholar 

  15. Chen MH, Chang PM, Chen PM, Tzeng CH, Chu PY, Chang SY, Yang MH (2009) Prognostic significance of a pretreatment hematologic profile in patients with head and neck cancer. J Cancer Res Clin Oncol 135(12):1783–1790. doi:10.1007/s00432-009-0625-1

    PubMed  Google Scholar 

  16. Rudolph BM, Loquai C, Gerwe A, Bacher N, Steinbrink K, Grabbe S, Tuettenberg A (2014) Increased frequencies of CD11b(+) CD33(+) CD14(+) HLA-DR(low) myeloid-derived suppressor cells are an early event in melanoma patients. Exp Dermatol 23(3):202–204. doi:10.1111/exd.12336

    CAS  PubMed  Google Scholar 

  17. Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E, Speiser DE (2014) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother 63(3):247–257. doi:10.1007/s00262-013-1508-5

    CAS  PubMed  Google Scholar 

  18. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553. doi:10.1200/JCO.2006.08.5829

    CAS  PubMed  Google Scholar 

  19. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+ HLA-DR/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70(11):4335–4345. doi:10.1158/0008-5472.CAN-09-3767

    CAS  PubMed  Google Scholar 

  20. Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, Zanovello P (2009) IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182(10):6562–6568. doi:10.4049/jimmunol.0803831

    CAS  PubMed  Google Scholar 

  21. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59. doi:10.1007/s00262-008-0523-4

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Garcia J, Vogelbaum MA, Finke J (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13(6):591–599. doi:10.1093/neuonc/nor042

    PubMed Central  PubMed  Google Scholar 

  23. Zhang H, Maric I, DiPrima MJ, Khan J, Orentas RJ, Kaplan RN, Mackall CL (2013) Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood 122(7):1105–1113. doi:10.1182/blood-2012-08-449413

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Laborde RR, Lin Y, Gustafson MP, Bulur PA, Dietz AB (2014) Cancer vaccines in the world of immune suppressive monocytes (CD14(+)HLA-DR(lo/neg) Cells): the gateway to improved responses. Front Immunol 5:147. doi:10.3389/fimmu.2014.00147

    PubMed Central  PubMed  Google Scholar 

  25. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    CAS  PubMed  Google Scholar 

  26. Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P, Lang S (2011) Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 89(2):311–317. doi:10.1189/jlb.0310162

    CAS  PubMed  Google Scholar 

  27. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D, Kim Y (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123(4):1580–1589. doi:10.1172/JCI60083

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Chikamatsu K, Sakakura K, Toyoda M, Takahashi K, Yamamoto T, Masuyama K (2012) Immunosuppressive activity of CD14+ HLA-DR cells in squamous cell carcinoma of the head and neck. Cancer Sci 103(6):976–983. doi:10.1111/j.1349-7006.2012.02248.x

    CAS  PubMed  Google Scholar 

  29. Sippel TR, White J, Nag K, Tsvankin V, Klaassen M, Kleinschmidt-DeMasters BK, Waziri A (2011) Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clin Cancer Res 17(22):6992–7002. doi:10.1158/1078-0432.CCR-11-1107

    CAS  PubMed  Google Scholar 

  30. Ohki S, Shibata M, Gonda K, Machida T, Shimura T, Nakamura I, Ohtake T, Koyama Y, Suzuki S, Ohto H, Takenoshita S (2012) Circulating myeloid-derived suppressor cells are increased and correlate to immune suppression, inflammation and hypoproteinemia in patients with cancer. Oncol Rep 28(2):453–458. doi:10.3892/or.2012.1812

    PubMed  Google Scholar 

  31. Wu WC, Sun HW, Chen HT, Liang J, Yu XJ, Wu C, Wang Z, Zheng L (2014) Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc Natl Acad Sci USA 111(11):4221–4226. doi:10.1073/pnas.1320753111

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Luger D, Yang YA, Raviv A, Weinberg D, Banerjee S, Lee MJ, Trepel J, Yang L, Wakefield LM (2013) Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects. PLoS One 8(10):e76115. doi:10.1371/journal.pone.0076115

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang S, Fu Y, Ma K, Liu C, Jiao X, Du W, Zhang H, Wu X (2014) The significant increase and dynamic changes of the myeloid-derived suppressor cells percentage with chemotherapy in advanced NSCLC patients. Clin Transl Oncol 16(7):616–622. doi:10.1007/s12094-013-1125-y

    CAS  PubMed  Google Scholar 

  34. Feng PH, Lee KY, Chang YL, Chan YF, Kuo LW, Lin TY, Chung FT, Kuo CS, Yu CT, Lin SM, Wang CH, Chou CL, Huang CD, Kuo HP (2012) CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer. Am J Respir Crit Care Med 186(10):1025–1036. doi:10.1164/rccm.201204-0636OC

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Heuvers ME, Muskens F, Bezemer K, Lambers M, Dingemans AM, Groen HJ, Smit EF, Hoogsteden HC, Hegmans JP, Aerts JG (2013) Arginase-1 mRNA expression correlates with myeloid-derived suppressor cell levels in peripheral blood of NSCLC patients. Lung Cancer 81(3):468–474. doi:10.1016/j.lungcan.2013.06.005

    PubMed  Google Scholar 

  36. Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, Wu YC, Chu Y, Chung FT, Kuo CH, Lee KY, Lin SM, Lin HC, Wang CH, Yu CT, Kuo HP (2010) Population alterations of l-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14(−)/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol 136(1):35–45. doi:10.1007/s00432-009-0634-0

    CAS  PubMed  Google Scholar 

  37. Srivastava MK, Bosch JJ, Thompson JA, Ksander BR, Edelman MJ, Ostrand-Rosenberg S (2008) Lung cancer patients’ CD4(+) T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells. Cancer Immunol Immunother 57(10):1493–1504. doi:10.1007/s00262-008-0490-9

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Huang A, Zhang B, Wang B, Zhang F, Fan KX, Guo YJ (2013) Increased CD14(+)HLA-DR (−/low) myeloid-derived suppressor cells correlate with extrathoracic metastasis and poor response to chemotherapy in non-small cell lung cancer patients. Cancer Immunol Immunother 62(9):1439–1451. doi:10.1007/s00262-013-1450-6

    CAS  PubMed  Google Scholar 

  39. Waight JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, Bogner PN, Farren MR, Lee KP, Liu K, Abrams SI (2013) Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Invest 123(10):4464–4478. doi:10.1172/JCI68189

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190(7):3783–3797. doi:10.4049/jimmunol.1201449

    CAS  PubMed  Google Scholar 

  41. Verma C, Eremin JM, Robins A, Bennett AJ, Cowley GP, El-Sheemy MA, Jibril JA, Eremin O (2013) Abnormal T regulatory cells (Tregs: FOXP3+, CTLA-4+), myeloid-derived suppressor cells (MDSCs: monocytic, granulocytic) and polarised T helper cell profiles (Th1, Th2, Th17) in women with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC) and surgery: failure of abolition of abnormal treg profile with treatment and correlation of treg levels with pathological response to NAC. J Transl Med 11:16. doi:10.1186/1479-5876-11-16

    PubMed Central  PubMed  Google Scholar 

  42. Wald G, Barnes KT, Bing MT, Kresowik TP, Tomanek-Chalkley A, Kucaba TA, Griffith TS, Brown JA, Norian LA (2014) Minimal changes in the systemic immune response after nephrectomy of localized renal masses. Urol Oncol 32(5):589–600. doi:10.1016/j.urolonc.2014.01.023

    PubMed  Google Scholar 

  43. Wang Z, Zhang Y, Liu Y, Wang L, Zhao L, Yang T, He C, Song Y, Gao Q (2014) Association of myeloid-derived suppressor cells and efficacy of cytokine-induced killer cell immunotherapy in metastatic renal cell carcinoma patients. J Immunother 37(1):43–50. doi:10.1097/CJI.0000000000000005

    CAS  PubMed  Google Scholar 

  44. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yancey D, Dahm P, Vieweg J (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14(24):8270–8278. doi:10.1158/1078-0432.CCR-08-0165

    CAS  PubMed  Google Scholar 

  45. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, Hilf N, Schoor O, Fritsche J, Mahr A, Maurer D, Vass V, Trautwein C, Lewandrowski P, Flohr C, Pohla H, Stanczak JJ, Bronte V, Mandruzzato S, Biedermann T, Pawelec G, Derhovanessian E, Yamagishi H, Miki T, Hongo F, Takaha N, Hirakawa K, Tanaka H, Stevanovic S, Frisch J, Mayer-Mokler A, Kirner A, Rammensee HG, Reinhardt C, Singh-Jasuja H (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18(8):1254–1261. doi:10.1038/nm.2883

    CAS  PubMed  Google Scholar 

  46. Brusa D, Simone M, Gontero P, Spadi R, Racca P, Micari J, Degiuli M, Carletto S, Tizzani A, Matera L (2013) Circulating immunosuppressive cells of prostate cancer patients before and after radical prostatectomy: profile comparison. Int J Urol 20(10):971–978. doi:10.1111/iju.12086

    CAS  PubMed  Google Scholar 

  47. Idorn M, Kollgaard T, Kongsted P, Sengelov L, Thor Straten P (2014) Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol Immunother 63(11):1177–1187. doi:10.1007/s00262-014-1591-2

    CAS  PubMed  Google Scholar 

  48. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243. doi:10.1053/j.gastro.2008.03.020

    CAS  PubMed  Google Scholar 

  49. Shen P, Wang A, He M, Wang Q, Zheng S (2014) Increased circulating Lin(-/low) CD33(+) HLA-DR(−) myeloid-derived suppressor cells in hepatocellular carcinoma patients. Hepatol Res 44(6):639–650. doi:10.1111/hepr.12167

    CAS  PubMed  Google Scholar 

  50. Yazawa T, Shibata M, Gonda K, Machida T, Suzuki S, Kenjo A, Nakamura I, Tsuchiya T, Koyama Y, Sakurai K, Shimura T, Tomita R, Ohto H, Gotoh M, Takenoshita S (2013) Increased IL-17 production correlates with immunosuppression involving myeloid-derived suppressor cells and nutritional impairment in patients with various gastrointestinal cancers. Mol Clin Oncol 1(4):675–679. doi:10.3892/mco.2013.134

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Gao J, Wu Y, Su Z, Amoah Barnie P, Jiao Z, Bie Q, Lu L, Wang S, Xu H (2014) Infiltration of alternatively activated macrophages in cancer tissue is associated with MDSC and Th2 polarization in patients with esophageal cancer. PLoS One 9(8):e104453. doi:10.1371/journal.pone.0104453

    PubMed Central  PubMed  Google Scholar 

  52. Wang L, Chang EW, Wong SC, Ong SM, Chong DQ, Ling KL (2013) Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 190(2):794–804. doi:10.4049/jimmunol.1202088

    CAS  PubMed  Google Scholar 

  53. Khaled YS, Ammori BJ, Elkord E (2014) Increased levels of granulocytic myeloid-derived suppressor cells in peripheral blood and tumour tissue of pancreatic cancer patients. J Immunol Res 2014:879897. doi:10.1155/2014/879897

    PubMed Central  PubMed  Google Scholar 

  54. Bazhin AV, Shevchenko I, Umansky V, Werner J, Karakhanova S (2014) Two immune faces of pancreatic adenocarcinoma: possible implication for immunotherapy. Cancer Immunol Immunother 63(1):59–65. doi:10.1007/s00262-013-1485-8

    CAS  PubMed  Google Scholar 

  55. Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, Zhu J, Wei H, Zhao K (2013) Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One 8(2):e57114. doi:10.1371/journal.pone.0057114

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Romano A, Conticello C, Cavalli M, Vetro C, La Fauci A, Parrinello NL, Di Raimondo F (2014) Immunological dysregulation in multiple myeloma microenvironment. Biomed Res Int 2014:198539. doi:10.1155/2014/198539

    PubMed Central  PubMed  Google Scholar 

  57. von Hohenstaufen KA, Conconi A, de Campos CP, Franceschetti S, Bertoni F, Margiotta Casaluci G, Stathis A, Ghielmini M, Stussi G, Cavalli F, Gaidano G, Zucca E (2013) Prognostic impact of monocyte count at presentation in mantle cell lymphoma. Br J Haematol 162(4):465–473. doi:10.1111/bjh.12409

    Google Scholar 

  58. Giallongo C, Parrinello N, Tibullo D, La Cava P, Romano A, Chiarenza A, Barbagallo I, Palumbo GA, Stagno F, Vigneri P, Di Raimondo F (2014) Myeloid derived suppressor cells (MDSCs) are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs) in chronic myeloid leukemia patients. PLoS One 9(7):e101848. doi:10.1371/journal.pone.0101848

    PubMed Central  PubMed  Google Scholar 

  59. Christiansson L, Soderlund S, Svensson E, Mustjoki S, Bengtsson M, Simonsson B, Olsson-Stromberg U, Loskog AS (2013) Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia. PLoS One 8(1):e55818. doi:10.1371/journal.pone.0055818

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V (2014) Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 1319:47–65. doi:10.1111/nyas.12469

    CAS  PubMed  Google Scholar 

  61. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1(1):95–103

    CAS  PubMed  Google Scholar 

  62. Duechler M, Peczek L, Zuk K, Zalesna I, Jeziorski A, Czyz M (2014) The heterogeneous immune microenvironment in breast cancer is affected by hypoxia-related genes. Immunobiology 219(2):158–165. doi:10.1016/j.imbio.2013.09.003

    CAS  PubMed  Google Scholar 

  63. Achberger S, Aldrich W, Tubbs R, Crabb JW, Singh AD, Triozzi PL (2014) Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol Immunol 58(2):182–186. doi:10.1016/j.molimm.2013.11.018

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Finkelstein SE, Carey T, Fricke I, Yu D, Goetz D, Gratz M, Dunn M, Urbas P, Daud A, DeConti R, Antonia S, Gabrilovich D, Fishman M (2010) Changes in dendritic cell phenotype after a new high-dose weekly schedule of interleukin-2 therapy for kidney cancer and melanoma. J Immunother 33(8):817–827. doi:10.1097/CJI.0b013e3181ecccad

    CAS  PubMed  Google Scholar 

  65. Weide B, Martens A, Zelba H, Stutz C, Derhovanessian E, Di Giacomo AM, Maio M, Sucker A, Schilling B, Schadendorf D, Buttner P, Garbe C, Pawelec G (2014) Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin Cancer Res 20(6):1601–1609. doi:10.1158/1078-0432.CCR-13-2508

    CAS  PubMed  Google Scholar 

  66. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DM (2013) Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 93(4):633–637. doi:10.1189/jlb.0912461

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Rosmarin AG, Yang Z, Resendes KK (2005) Transcriptional regulation in myelopoiesis: hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 33(2):131–143. doi:10.1016/j.exphem.2004.08.015

    CAS  PubMed  Google Scholar 

  69. Zhu J, Emerson SG (2002) Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21(21):3295–3313. doi:10.1038/sj.onc.1205318

    CAS  PubMed  Google Scholar 

  70. Friedman AD (2002) Transcriptional regulation of granulocyte and monocyte development. Oncogene 21(21):3377–3390. doi:10.1038/sj.onc.1205324

    CAS  PubMed  Google Scholar 

  71. Iwasaki H, Akashi K (2007) Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26(6):726–740. doi:10.1016/j.immuni.2007.06.004

    CAS  PubMed  Google Scholar 

  72. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24(6):801–812. doi:10.1016/j.immuni.2006.04.008

    CAS  PubMed Central  PubMed  Google Scholar 

  73. King KY, Goodell MA (2011) Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 11(10):685–692. doi:10.1038/nri3062

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Vahedi G, Poholek AC, Hand TW, Laurence A, Kanno Y, O’Shea JJ, Hirahara K (2013) Helper T-cell identity and evolution of differential transcriptomes and epigenomes. Immunol Rev 252(1):24–40. doi:10.1111/imr.12037

    PubMed Central  PubMed  Google Scholar 

  75. Schiavoni G, Mattei F, Sestili P, Borghi P, Venditti M, Morse HC 3rd, Belardelli F, Gabriele L (2002) ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 196(11):1415–1425

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Tailor P, Tamura T, Kong HJ, Kubota T, Kubota M, Borghi P, Gabriele L, Ozato K (2007) The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 27(2):228–239. doi:10.1016/j.immuni.2007.06.009

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Gabriele L, Ozato K (2007) The role of the interferon regulatory factor (IRF) family in dendritic cell development and function. Cytokine Growth Factor Rev 18(5–6):503–510. doi:10.1016/j.cytogfr.2007.06.008

    CAS  PubMed  Google Scholar 

  78. Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, O’Shea JJ, Singh H, Ozato K (2005) IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J Immunol 174(5):2573–2581

    CAS  PubMed  Google Scholar 

  79. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse HC 3rd, Ozato K, Horak I (1996) Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87(2):307–317

    CAS  PubMed  Google Scholar 

  80. Scheller M, Foerster J, Heyworth CM, Waring JF, Lohler J, Gilmore GL, Shadduck RK, Dexter TM, Horak I (1999) Altered development and cytokine responses of myeloid progenitors in the absence of transcription factor, interferon consensus sequence binding protein. Blood 94(11):3764–3771

    CAS  PubMed  Google Scholar 

  81. Tsujimura H, Tamura T, Ozato K (2003) Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J Immunol 170(3):1131–1135

    CAS  PubMed  Google Scholar 

  82. Schiavoni G, Mattei F, Borghi P, Sestili P, Venditti M, Morse HC 3rd, Belardelli F, Gabriele L (2004) ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood 103(6):2221–2228. doi:10.1182/blood-2003-09-3007

    CAS  PubMed  Google Scholar 

  83. Scharton-Kersten T, Contursi C, Masumi A, Sher A, Ozato K (1997) Interferon consensus sequence binding protein-deficient mice display impaired resistance to intracellular infection due to a primary defect in interleukin 12 p40 induction. J Exp Med 186(9):1523–1534

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Fehr T, Schoedon G, Odermatt B, Holtschke T, Schneemann M, Bachmann MF, Mak TW, Horak I, Zinkernagel RM (1997) Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J Exp Med 185(5):921–931

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, Fortin A, Haniffa M, Ceron-Gutierrez L, Bacon CM, Menon G, Trouillet C, McDonald D, Carey P, Ginhoux F, Alsina L, Zumwalt TJ, Kong XF, Kumararatne D, Butler K, Hubeau M, Feinberg J, Al-Muhsen S, Cant A, Abel L, Chaussabel D, Doffinger R, Talesnik E, Grumach A, Duarte A, Abarca K, Moraes-Vasconcelos D, Burk D, Berghuis A, Geissmann F, Collin M, Casanova JL, Gros P (2011) IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 365(2):127–138. doi:10.1056/NEJMoa1100066

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Tamura T, Thotakura P, Tanaka TS, Ko MS, Ozato K (2005) Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood 106(6):1938–1947. doi:10.1182/blood-2005-01-0080

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Dror N, Alter-Koltunoff M, Azriel A, Amariglio N, Jacob-Hirsch J, Zeligson S, Morgenstern A, Tamura T, Hauser H, Rechavi G, Ozato K, Levi BZ (2007) Identification of IRF-8 and IRF-1 target genes in activated macrophages. Mol Immunol 44(4):338–346. doi:10.1016/j.molimm.2006.02.026

    CAS  PubMed  Google Scholar 

  88. Wang IM, Contursi C, Masumi A, Ma X, Trinchieri G, Ozato K (2000) An IFN-gamma-inducible transcription factor, IFN consensus sequence binding protein (ICSBP), stimulates IL-12 p40 expression in macrophages. J Immunol 165(1):271–279

    CAS  PubMed  Google Scholar 

  89. Giese NA, Gabriele L, Doherty TM, Klinman DM, Tadesse-Heath L, Contursi C, Epstein SL, Morse HC 3rd (1997) Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J Exp Med 186(9):1535–1546

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Liu J, Ma X (2006) Interferon regulatory factor 8 regulates RANTES gene transcription in cooperation with interferon regulatory factor-1, NF-kappaB, and PU.1. J Biol Chem 281(28):19188–19195. doi:10.1074/jbc.M602059200

    CAS  PubMed  Google Scholar 

  91. Mullins DW, Martins RS, Elgert KD (2003) Tumor-derived cytokines dysregulate macrophage interferon-gamma responsiveness and interferon regulatory factor-8 expression. Exp Biol Med (Maywood) 228(3):270–277

    CAS  Google Scholar 

  92. Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584. doi:10.1146/annurev.immunol.26.021607.090400

    CAS  PubMed  Google Scholar 

  93. Driggers PH, Ennist DL, Gleason SL, Mak WH, Marks MS, Levi BZ, Flanagan JR, Appella E, Ozato K (1990) An interferon gamma-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 87(10):3743–3747

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kanno Y, Kozak CA, Schindler C, Driggers PH, Ennist DL, Gleason SL, Darnell JE Jr, Ozato K (1993) The genomic structure of the murine ICSBP gene reveals the presence of the gamma interferon-responsive element, to which an ISGF3 alpha subunit (or similar) molecule binds. Mol Cell Biol 13(7):3951–3963

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Nguyen H, Hiscott J, Pitha PM (1997) The growing family of interferon regulatory factors. Cytokine Growth Factor Rev 8(4):293–312

    CAS  PubMed  Google Scholar 

  96. Tamura T, Ozato K (2002) ICSBP/IRF-8: its regulatory roles in the development of myeloid cells. J Interferon Cytokine Res 22(1):145–152. doi:10.1089/107999002753452755

    CAS  PubMed  Google Scholar 

  97. Politis AD, Ozato K, Coligan JE, Vogel SN (1994) Regulation of IFN-gamma-induced nuclear expression of IFN consensus sequence binding protein in murine peritoneal macrophages. J Immunol 152(5):2270–2278

    CAS  PubMed  Google Scholar 

  98. Zhao J, Kong HJ, Li H, Huang B, Yang M, Zhu C, Bogunovic M, Zheng F, Mayer L, Ozato K, Unkeless J, Xiong H (2006) IRF-8/interferon (IFN) consensus sequence-binding protein is involved in Toll-like receptor (TLR) signaling and contributes to the cross-talk between TLR and IFN-gamma signaling pathways. J Biol Chem 281(15):10073–10080. doi:10.1074/jbc.M507788200

    CAS  PubMed  Google Scholar 

  99. Weisz A, Marx P, Sharf R, Appella E, Driggers PH, Ozato K, Levi BZ (1992) Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon-inducible genes. J Biol Chem 267(35):25589–25596

    CAS  PubMed  Google Scholar 

  100. Schmidt M, Nagel S, Proba J, Thiede C, Ritter M, Waring JF, Rosenbauer F, Huhn D, Wittig B, Horak I, Neubauer A (1998) Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 91(1):22–29

    CAS  PubMed  Google Scholar 

  101. Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, Calabrese F, Basso G, Zanovello P, Cozzi E, Mandruzzato S, Bronte V (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32(6):790–802. doi:10.1016/j.immuni.2010.05.010

    CAS  PubMed  Google Scholar 

  102. Thevenot PT, Sierra RA, Raber PL, Al-Khami AA, Trillo-Tinoco J, Zarreii P, Ochoa AC, Cui Y, Del Valle L, Rodriguez PC (2014) The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity 41(3):389–401. doi:10.1016/j.immuni.2014.08.015

    CAS  PubMed  Google Scholar 

  103. Zhang W, Pal SK, Liu X, Yang C, Allahabadi S, Bhanji S, Figlin RA, Yu H, Reckamp KL (2013) Myeloid clusters are associated with a pro-metastatic environment and poor prognosis in smoking-related early stage non-small cell lung cancer. PLoS One 8(5):e65121. doi:10.1371/journal.pone.0065121

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, Sedrak C, Jungbluth AA, Chua R, Yang AS, Roman RA, Rosner S, Benson B, Allison JP, Lesokhin AM, Gnjatic S, Wolchok JD (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931. doi:10.1056/NEJMoa1112824

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Chen G, Emens LA (2013) Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol Immunother 62(2):203–216. doi:10.1007/s00262-012-1388-0

    CAS  PubMed Central  PubMed  Google Scholar 

  106. James BR, Anderson KG, Brincks EL, Kucaba TA, Norian LA, Masopust D, Griffith TS (2014) CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer Immunol Immunother 63(11):1213–1227. doi:10.1007/s00262-014-1598-8

    CAS  PubMed  Google Scholar 

  107. Bronte V, Serafini P, Apolloni E, Zanovello P (2001) Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother 24(6):431–446

    CAS  PubMed  Google Scholar 

  108. Qin H, Lerman B, Sakamaki I, Wei G, Cha SC, Rao SS, Qian J, Hailemichael Y, Nurieva R, Dwyer KC, Roth J, Yi Q, Overwijk WW, Kwak LW (2014) Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nat Med 20(6):676–681. doi:10.1038/nm.3560

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 106(16):6742–6747. doi:10.1073/pnas.0902280106

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Waight JD, Hu Q, Miller A, Liu S, Abrams SI (2011) Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS One 6(11):e27690. doi:10.1371/journal.pone.0027690

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835. doi:10.1016/j.ccr.2012.04.025

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Reeves G (2014) Overview of use of G-CSF and GM-CSF in the treatment of acute radiation injury. Health Phys 106(6):699–703. doi:10.1097/HP.0000000000000090

    CAS  PubMed  Google Scholar 

  113. Kaufman HL, Ruby CE, Hughes T, Slingluff CL Jr (2014) Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2:11. doi:10.1186/2051-1426-2-11

    PubMed Central  PubMed  Google Scholar 

  114. Nutt SL, Morrison AM, Dorfler P, Rolink A, Busslinger M (1998) Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J 17(8):2319–2333. doi:10.1093/emboj/17.8.2319

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Dimberg A, Karehed K, Nilsson K, Oberg F (2006) Inhibition of monocytic differentiation by phosphorylation-deficient Stat1 is associated with impaired expression of Stat2, ICSBP/IRF8 and C/EBPepsilon. Scand J Immunol 64(3):271–279. doi:10.1111/j.1365-3083.2006.01827.x

    CAS  PubMed  Google Scholar 

  116. Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62(5):909–918. doi:10.1007/s00262-013-1396-8

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433. doi:10.1126/science.342.6165.1432

    CAS  Google Scholar 

  118. Rolinski J, Hus I (2014) Breaking immunotolerance of tumors: a new perspective for dendritic cell therapy. J Immunotoxicol 11(4):311–318. doi:10.3109/1547691X.2013.865094

    CAS  PubMed  Google Scholar 

  119. Jochems C, Tucker JA, Tsang KY, Madan RA, Dahut WL, Liewehr DJ, Steinberg SM, Gulley JL, Schlom J (2014) A combination trial of vaccine plus ipilimumab in metastatic castration-resistant prostate cancer patients: immune correlates. Cancer Immunol Immunother 63(4):407–418. doi:10.1007/s00262-014-1524-0

    CAS  PubMed  Google Scholar 

  120. Tarhini AA, Butterfield LH, Shuai Y, Gooding WE, Kalinski P, Kirkwood JM (2012) Differing patterns of circulating regulatory T cells and myeloid-derived suppressor cells in metastatic melanoma patients receiving anti-CTLA4 antibody and interferon-alpha or TLR-9 agonist and GM-CSF with peptide vaccination. J Immunother 35(9):702–710. doi:10.1097/CJI.0b013e318272569b

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Tarhini AA, Edington H, Butterfield LH, Lin Y, Shuai Y, Tawbi H, Sander C, Yin Y, Holtzman M, Johnson J, Rao UN, Kirkwood JM (2014) Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS One 9(2):e87705. doi:10.1371/journal.pone.0087705

    PubMed Central  PubMed  Google Scholar 

  122. Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang Z, Wang C, Zhang Z, Xia W, Chen Z, Wang K, Zhang T, Xu J, Han Y, Zhang T, Wu X, Wang J, Gong W, Zheng S, Qiu F, Yan J, Huang J (2014) gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40(5):785–800. doi:10.1016/j.immuni.2014.03.013

    CAS  PubMed  Google Scholar 

  123. Annels NE, Shaw VE, Gabitass RF, Billingham L, Corrie P, Eatock M, Valle J, Smith D, Wadsley J, Cunningham D, Pandha H, Neoptolemos JP, Middleton G (2014) The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer. Cancer Immunol Immunother 63(2):175–183. doi:10.1007/s00262-013-1502-y

    CAS  PubMed  Google Scholar 

  124. Monk P, Lam E, Mortazavi A, Kendra K, Lesinski GB, Mace TA, Geyer S, Carson WE 3rd, Tahiri S, Bhinder A, Clinton SK, Olencki T (2014) A phase I study of high-dose interleukin-2 with sorafenib in patients with metastatic renal cell carcinoma and melanoma. J Immunother 37(3):180–186. doi:10.1097/CJI.0000000000000023

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Kudo-Saito C, Yura M, Yamamoto R, Kawakami Y (2014) Induction of immunoregulatory CD271+ cells by metastatic tumor cells that express human endogenous retrovirus H. Cancer Res 74(5):1361–1370. doi:10.1158/0008-5472.CAN-13-1349

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health Grant R01CA140622 (to Scott I. Abrams), an Alliance Development Award from the Roswell Park Alliance Foundation (to Scott I. Abrams), Department of Defense Award W81XWH-11-1-0394 (to Scott I. Abrams) and National Institute of Health Training Grant T32CA085183 (to Colleen S. Netherby).

Conflict of interest

Authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott I. Abrams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messmer, M.N., Netherby, C.S., Banik, D. et al. Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother 64, 1–13 (2015). https://doi.org/10.1007/s00262-014-1639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1639-3

Keywords

Navigation