Skip to main content

Advertisement

Log in

Initial characterization of an immunotoxin constructed from domains II and III of cholera exotoxin

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotoxins are antibody–toxin fusion proteins under development as cancer therapeutics. In early clinical trials, immunotoxins constructed with domains II and III of Pseudomonas exotoxin (termed PE38), have produced a high rate of complete remissions in Hairy Cell Leukemia and objective responses in other malignancies. Cholera exotoxin (also known as cholix toxin) has a very similar three-dimensional structure to Pseudomonas exotoxin (PE) and when domains II and III of each are compared at the primary sequence level, they are 36% identical and 50% similar. Here we report on the construction and activity of an immunotoxin made with domains II and III of cholera exotoxin (here termed CET40). In cell viability assays, the CET40 immunotoxin was equipotent to tenfold less active compared to a PE-based immunotoxin made with the same single-chain Fv. A major limitation of toxin-based immunotoxins is the development of neutralizing antibodies to the toxin portion of the immunotoxin. Because of structure and sequence similarities, we evaluated a CET40 immunotoxin for the presence of PE-related epitopes. In western blots, three-of-three anti-PE antibody preparations failed to react with the CET40 immunotoxin. More importantly, in neutralization studies neither these antibodies nor those from patients with neutralizing titers to PE38, neutralized the CET40-immunotoxin. We propose that the use of modular components such as antibody Fvs and toxin domains will allow a greater flexibility in how these agents are designed and deployed including the sequential administration of a second immunotoxin after patients have developed neutralizing antibodies to the first.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. (for results sections) Amino acids 270–634 of CET encompass domains II, III and a small sub-domain termed, Ib. For simplicity, domain Ib is not routinely mentioned (also see “Discussion”).

References

  1. Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  CAS  PubMed  Google Scholar 

  2. Cheson BD, Leonard JP (2008) Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med 359:613–626

    Article  CAS  PubMed  Google Scholar 

  3. Heimann DM, Weiner LM (2007) Monoclonal antibodies in therapy of solid tumors. Surg Oncol Clin N Am 16:775–792, viii

    Google Scholar 

  4. Green DJ, Pagel JM, Pantelias A et al (2007) Pretargeted radioimmunotherapy for B-cell lymphomas. Clin Cancer Res 13:5598s–5603s

    Article  CAS  PubMed  Google Scholar 

  5. Rybak SM (2008) Antibody–onconase conjugates: cytotoxicity and intracellular routing. Curr Pharm Biotechnol 9:226–230

    Article  CAS  PubMed  Google Scholar 

  6. Liu XY, Pop LM, Vitetta ES (2008) Engineering therapeutic monoclonal antibodies. Immunol Rev 222:9–27

    Article  CAS  PubMed  Google Scholar 

  7. Singh Y, Palombo M, Sinko PJ (2008) Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 15:1802–1826

    Article  CAS  PubMed  Google Scholar 

  8. Brumlik MJ, Daniel BJ, Waehler R et al (2008) Trends in immunoconjugate and ligand-receptor based targeting development for cancer therapy. Expert Opin Drug Deliv 5:87–103

    Article  CAS  PubMed  Google Scholar 

  9. Carter PJ, Senter PD (2008) Antibody–drug conjugates for cancer therapy. Cancer J 14:154–169

    Article  CAS  PubMed  Google Scholar 

  10. Goldenberg DM, Sharkey RM (2007) Novel radiolabeled antibody conjugates. Oncogene 26:3734–3744

    Article  CAS  PubMed  Google Scholar 

  11. Pastan I, Hassan R, FitzGerald DJ et al (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237

    Article  CAS  PubMed  Google Scholar 

  12. Kreitman RJ, Pastan I (2006) Immunotoxins in the treatment of refractory hairy cell leukemia. Hematol Oncol Clin North Am 20:1137–1151, viii

    Google Scholar 

  13. Ricart AD, Tolcher AW (2007) Technology insight: cytotoxic drug immunoconjugates for cancer therapy. Nat Clin Pract Oncol 4:245–255

    Article  CAS  PubMed  Google Scholar 

  14. Frankel AE, Kreitman RJ, Sausville EA (2000) Targeted toxins. Clin Cancer Res 6:326–334

    CAS  PubMed  Google Scholar 

  15. Frankel AE, Neville DM, Bugge TA et al (2003) Immunotoxin therapy of hematologic malignancies. Semin Oncol 30:545–557

    Article  CAS  PubMed  Google Scholar 

  16. Pastan I, Hassan R, Fitzgerald DJ et al (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6:559–565

    Article  CAS  PubMed  Google Scholar 

  17. Schnell R, Borchmann P, Staak JO et al (2003) Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin’s lymphoma. Ann Oncol 14:729–736

    Article  CAS  PubMed  Google Scholar 

  18. Schnell R, Staak O, Borchmann P (2002) A Phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin’s and non-Hodgkin’s lymphoma. Clin Cancer Res 8:1779–1786

    CAS  PubMed  Google Scholar 

  19. Frankel AE (2004) Reducing the immune response to immunotoxin. Clin Cancer Res 10:13–15

    Article  CAS  PubMed  Google Scholar 

  20. Messmer D, Kipps TJ (2005) Treatment of solid tumors with immunotoxins. Breast Cancer Res 7:184–186

    Article  CAS  PubMed  Google Scholar 

  21. Onda M, Beers R, Xiang L et al (2008) An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc Natl Acad Sci USA 105:11311–11316

    Article  CAS  PubMed  Google Scholar 

  22. Onda M, Nagata S, FitzGerald DJ et al (2006) Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. J Immunol 177:8822–8834

    CAS  PubMed  Google Scholar 

  23. Posey JA, Khazaeli MB, Bookman MA et al (2002) A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res 8:3092–3099

    CAS  PubMed  Google Scholar 

  24. Weldon JE, Xiang L, Chertov O et al (2009) A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 113(16):3792–3800

    Google Scholar 

  25. Kreitman RJ, Wilson WH, Bergeron K et al (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 345:241–247

    Article  CAS  PubMed  Google Scholar 

  26. Hassan R, Bullock S, Premkumar A et al (2007) Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res 13:5144–5149

    Article  CAS  PubMed  Google Scholar 

  27. Hassan R, Williams-Gould J, Watson T et al (2004) Pretreatment with rituximab does not inhibit the human immune response against the immunogenic protein LMB-1. Clin Cancer Res 10:16–18

    Article  CAS  PubMed  Google Scholar 

  28. Knechtle SJ (2001) Treatment with immunotoxin. Philos Trans R Soc Lond B Biol Sci 356:681–689

    Article  CAS  PubMed  Google Scholar 

  29. Pai LH, FitzGerald DJ, Tepper M et al (1990) Inhibition of antibody response to Pseudomonas exotoxin and an immunotoxin containing Pseudomonas exotoxin by 15-deoxyspergualin in mice. Cancer Res 50:7750–7753

    CAS  PubMed  Google Scholar 

  30. Jorgensen R, Purdy AE, Fieldhouse RJ et al (2008) Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem 283:10671–10678

    Article  CAS  PubMed  Google Scholar 

  31. Ogata M, Pastan I, FitzGerald D (1991) Analysis of Pseudomonas exotoxin activation and conformational changes by using monoclonal antibodies as probes. Infect Immun 59:407–414

    CAS  PubMed  Google Scholar 

  32. Batra JK, Fitzgerald DJ, Chaudhary VK et al (1991) Single-chain immunotoxins directed at the human transferrin receptor containing Pseudomonas exotoxin A or diphtheria toxin: anti-TFR(Fv)-PE40 and DT388-anti-TFR(Fv). Mol Cell Biol 11:2200–2205

    CAS  PubMed  Google Scholar 

  33. Purdy A, Rohwer F, Edwards R et al (2005) A glimpse into the expanded genome content of Vibrio cholerae through identification of genes present in environmental strains. J Bacteriol 187:2992–3001

    Article  CAS  PubMed  Google Scholar 

  34. Buchner J, Brinkmann U, Pastan I (1992) Renaturation of a single-chain immunotoxin facilitated by chaperones and protein disulfide isomerase. Biotechnology (N Y) 10:682–685

    Article  CAS  Google Scholar 

  35. Buchner J, Pastan I, Brinkmann U (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem 205:263–270

    Article  CAS  PubMed  Google Scholar 

  36. Kreitman RJ, Wilson WH, White JD et al (2000) Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 18:1622–1636

    CAS  PubMed  Google Scholar 

  37. Dalsgaard A, Albert MJ, Taylor DN et al (1995) Characterization of Vibrio cgolerae non-O1 serogroups obtained from an outbreak of diarrhea in Lima, Peru. J Clin Microbiol 33:2715–2722

    CAS  PubMed  Google Scholar 

  38. Chaudhary VK, Queen C, Junghans RP et al (1989) A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339:394–397

    Article  CAS  PubMed  Google Scholar 

  39. Brinkmann U, Pai LH, FitzGerald DJ et al (1991) B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci USA 88:8616–8620

    Article  CAS  PubMed  Google Scholar 

  40. Matthews DJ, Goodman LJ, Gorman CM et al (1994) A survey of furin substrate specificity using substrate phage display. Protein Sci 3:1197–1205

    Article  CAS  PubMed  Google Scholar 

  41. Zdanovsky AG, Chiron M, Pastan I et al (1993) Mechanism of action of Pseudomonas exotoxin. Identification of a rate-limiting step. J Biol Chem 268:21791–21799

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Conflict of interest statement

No conflicts are noted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. FitzGerald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

262_2009_794_MOESM1_ESM.eps

Supplemental Fig 1. Fractions of HB21-CET40 eluted from TSK G3000 column. Fractions 19-30 are shown after migration through a 4-20% Tris–glycine precast gel under reducing and non-reducing conditions. Fractions 28 and 29, marked with an asterisk, were used for experiments described in this paper (EPS 14682 kb)

262_2009_794_MOESM2_ESM.jpg

Supplemental Fig 2. The monoclonal antibody M40-1 was mixed with twice the desired final immunotoxin concentration for 1 hr at room temp and then added to each well of DLD-1 cells in a 96-well format. After a 48-hr incubation, cell viability was assessed using the WST-1 reagent. Each bar represents a replicate of 5 with the error bar indicating one SD. Comparisons of immunotoxin activity with and without antibody incubations are indicated with thin black lines (JPG 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarnovsky, R., Tendler, T., Makowski, M. et al. Initial characterization of an immunotoxin constructed from domains II and III of cholera exotoxin. Cancer Immunol Immunother 59, 737–746 (2010). https://doi.org/10.1007/s00262-009-0794-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0794-4

Keywords

Navigation