Skip to main content

Advertisement

Adoptive T cell therapy of solid cancers

  • Symposium Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The development of immune-based approaches for the treatment of cancer has been actively investigated for many years. One strategy that has emerged as a potentially effective strategy for the treatment of aggressive established malignancies is adoptive T cell therapy. The power of this approach has been repeatedly observed in preclinical animal models. However, moving from homogeneous animal models to the heterogeneous human clinical setting has been very difficult. It is only in recent times that we have been able to pinpoint the problems of the clinical translation of adoptive T cell therapy. Some of the major problems are sources of tumor-specific T cells, ex vivo expansion, persistence, and anti-tumor activity. This review overviews the nature of these problems and some of the emerging solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ho WY, Blattman JN, Dossett ML, Yee C, Greenberg PD (2003) Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 3:431–437

    Article  PubMed  CAS  Google Scholar 

  2. Ho WY, Yee C, Greenberg PD (2002) Adoptive therapy with CD8(+) T cells: it may get by with a little help from its friends. J Clin Invest 110:1415–1417

    Article  PubMed  CAS  Google Scholar 

  3. Cheever MA, Chen W (1997) Therapy with cultured T cells: principles revisited. Immunol Rev 157:177–194

    Article  PubMed  CAS  Google Scholar 

  4. Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  PubMed  CAS  Google Scholar 

  5. Disis ML, Knutson KL, Schiffman K, Rinn K, McNeel DG (2000) Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Res Treat 62:245–252

    Article  PubMed  CAS  Google Scholar 

  6. Dutoit V, Rubio-Godoy V, Pittet MJ, et al. (2002) Degeneracy of antigen recognition as the molecular basis for the high frequency of naive A2/Melan-a peptide multimer(+) CD8(+) T cells in humans. J Exp Med 196:207–216

    Article  PubMed  CAS  Google Scholar 

  7. Germeau C, Ma W, Schiavetti F et al (2005) High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med 201:241–248

    Article  PubMed  CAS  Google Scholar 

  8. Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D (2004) Part I: vaccines for solid tumours. Lancet Oncol 5:681–689

    Article  PubMed  CAS  Google Scholar 

  9. Choi C, Witzens M, Bucur M et al (2005) Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma. Blood 105:2132–2134

    Article  PubMed  CAS  Google Scholar 

  10. Feuerer M, Rocha M, Bai L et al (2001) Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer 92:96–105

    Article  PubMed  CAS  Google Scholar 

  11. Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER- 2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107:477–484

    Article  PubMed  CAS  Google Scholar 

  12. Disis ML, Gooley TA, Rinn K et al (2002) Generation of T-cell immunity to the her-2/neu protein after active immunization with HER-2/neu Peptide-based vaccines. J Clin Oncol 20:2624–2632

    Article  PubMed  CAS  Google Scholar 

  13. Knutson KL, Disis ML (2004) IL-12 enhances the generation of tumour antigen-specific Th1 CD4 T cells during ex vivo expansion. Clin Exp Immunol 135:322–329

    Article  PubMed  CAS  Google Scholar 

  14. Gately MK, Wilson DE, Wong HL (1986) Synergy between recombinant interleukin 2 (rIL 2) and IL 2-depleted lymphokine-containing supernatants in facilitating allogeneic human cytolytic T lymphocyte responses in vitro. J Immunol 136:1274–1282

    PubMed  CAS  Google Scholar 

  15. Wolf SF, Temple PA, Kobayashi M et al (1991) Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 146:3074–3081

    PubMed  CAS  Google Scholar 

  16. Gately MK, Desai BB, Wolitzky AG et al (1991) Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J Immunol 147:874–882

    PubMed  CAS  Google Scholar 

  17. Uherova P, Connick E, MaWhinney S, Schlichtemeier R, Schooley RT, Kuritzkes DR (1996) In vitro effect of interleukin-12 on antigen-specific lymphocyte proliferative responses from persons infected with human immunodeficiency virus type 1. J Infect Dis 174:483–489

    PubMed  CAS  Google Scholar 

  18. McFarland EJ, Harding PA, MaWhinney S, Schooley RT, Kuritzkes DR (1998) In vitro effects of IL-12 on HIV-1-specific CTL lines from HIV-1- infected children. J Immunol 161:513–519

    PubMed  CAS  Google Scholar 

  19. Trinchieri G (1993) Interleukin-12 and its role in the generation of TH1 cells. Immunol Today 14:335–338

    Article  PubMed  CAS  Google Scholar 

  20. Salazar LG, Fikes J, Southwood S et al (2003) Immunization of cancer patients with HER-2/neu-derived peptides demonstrating high-affinity binding to multiple class II alleles. Clin Cancer Res 9:5559–5565

    PubMed  CAS  Google Scholar 

  21. Tan JT, Dudl E, LeRoy E et al (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 98:8732–8737

    Article  PubMed  CAS  Google Scholar 

  22. Schultze JL, Seamon MJ, Michalak S, Gribben JG, Nadler LM (1997) Autologous tumor infiltrating T cells cytotoxic for follicular lymphoma cells can be expanded in vitro. Blood 89:3806–3816

    PubMed  CAS  Google Scholar 

  23. Tsai V, Kawashima I, Keogh E, Daly K, Sette A, Celis E (1998) In vitro immunization and expansion of antigen-specific cytotoxic T lymphocytes for adoptive immunotherapy using peptide-pulsed dendritic cells. Crit Rev Immunol 18:65–75

    PubMed  CAS  Google Scholar 

  24. Ma A, Boone DL, Lodolce JP (2000) The pleiotropic functions of interlukin 15: not so interlukin 2-like after all. J Exp Med 191:753–756

    Article  PubMed  CAS  Google Scholar 

  25. Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105–110

    PubMed  CAS  Google Scholar 

  26. Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3:269–279

    Article  PubMed  CAS  Google Scholar 

  27. Zeng R, Spolski R, Finkelstein SE et al (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201:139–148

    Article  PubMed  CAS  Google Scholar 

  28. Vonderheide RH, June CH (2003) A translational bridge to cancer immunotherapy: exploiting costimulation and target antigens for active and passive T cell immunotherapy. Immunol Res 27:341–356

    Article  PubMed  CAS  Google Scholar 

  29. Dang Y, Disis ML, Long A, Bonyhadi M, Knutson KL (2004) A novel rapid expansion methods for generating antigen-specific T cell lines for adoptive T cell therapy. Proc AACR 45:(Abstract)

  30. Maus MV, Kovacs B, Kwok WW et al (2004) Extensive replicative capacity of human central memory T cells. J Immunol 172:6675–6683

    PubMed  CAS  Google Scholar 

  31. Levine BL, Bernstein WB, Connors M, et al. (1997) Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 159:5921–5930

    PubMed  CAS  Google Scholar 

  32. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  PubMed  CAS  Google Scholar 

  33. Hu DE, Moore AM, Thomsen LL, Brindle KM (2004) Uric acid promotes tumor immune rejection. Cancer Res 64:5059–5062

    Article  PubMed  CAS  Google Scholar 

  34. Haddad H, Windgassen D, Ramsborg CG, Paredes CJ, Papoutsakis ET (2004) Molecular understanding of oxygen-tension and patient-variability effects on ex vivo expanded T cells. Biotechnol Bioeng 87:437–450

    Article  PubMed  CAS  Google Scholar 

  35. Dudley ME, Wunderlich JR, Yang JC et al (2002) A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 25:243–251

    Article  PubMed  CAS  Google Scholar 

  36. Dudley ME, Wunderlich J, Nishimura MI, et al. (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24:363–373

    Article  PubMed  CAS  Google Scholar 

  37. Yee C, Thompson JA, Byrd D et al (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173

    Article  PubMed  CAS  Google Scholar 

  38. Wherry EJ, Barber DL, Kaech SM, Blattman JN, Ahmed R (2004) Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc Natl Acad Sci USA 101:16004–16009

    Article  PubMed  CAS  Google Scholar 

  39. Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–250

    Article  PubMed  CAS  Google Scholar 

  40. Wang LX, Kjaergaard J, Cohen PA, Shu S, Plautz GE (2004) Memory T cells originate from adoptively transferred effectors and reconstituting host cells after sequential lymphodepletion and adoptive immunotherapy. J Immunol 172:3462–3468

    PubMed  CAS  Google Scholar 

  41. Schiavoni G, Mattei F, Di Pucchio T et al (2000) Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95:2024–2030

    PubMed  CAS  Google Scholar 

  42. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868

    Article  PubMed  CAS  Google Scholar 

  43. Matar P, Rozados VR, Gervasoni SI, Scharovsky OG (2001) Down regulation of T-cell-derived IL-10 production by low-dose cyclophosphamide treatment in tumor-bearing rats restores in vitro normal lymphoproliferative response. Int Immunopharmacol 1:307–319

    Article  PubMed  CAS  Google Scholar 

  44. North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074

    Article  PubMed  CAS  Google Scholar 

  45. Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    PubMed  CAS  Google Scholar 

  46. Curiel TJ, Coukos G, Zou L, et al. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  47. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother DOI:10.1007/s00262–004–0653–2, 2005;On-Line

    Google Scholar 

  48. Knutson KL, Schiffman K, Cheever MA, Disis ML (2002) Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin Cancer Res 8:1014–1018

    PubMed  CAS  Google Scholar 

  49. Matloubian M, Concepcion RJ, Ahmed R (1994) CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol 68:8056–8063

    PubMed  CAS  Google Scholar 

  50. Weninger W, Crowley MA, Manjunath N, von Andrian UH (2001) Migratory properties of naive, effector, and memory CD8(+) T cells. J Exp Med 194:953–966

    Article  PubMed  CAS  Google Scholar 

  51. Palmer DC, Balasubramaniam S, Hanada K et al (2004) Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction. J Immunol 173:7209–7216

    PubMed  CAS  Google Scholar 

  52. Vitale M, Pelusi G, Taroni B et al (2005) HLA class I antigen down-regulation in primary ovary carcinoma lesions: association with disease stage. Clin Cancer Res 11:67–72

    PubMed  CAS  Google Scholar 

  53. Romero JM, Jimenez P, Cabrera T et al (2005) Coordinated downregulation of the antigen presentation machinery and HLA class I/beta2-microglobulin complex is responsible for HLA-ABC loss in bladder cancer. Int J Cancer 113:605–610

    Article  PubMed  CAS  Google Scholar 

  54. Saio M, Teicher M, Campbell G, Feiner H, Delgado Y, Frey AB (2004) Immunocytochemical demonstration of down regulation of HLA class-I molecule expression in human metastatic breast carcinoma. Clin Exp Metastasis 21:243–249

    Article  PubMed  CAS  Google Scholar 

  55. Chang CC, Campoli M, Ferrone S (2003) HLA class I defects in malignant lesions: what have we learned? Keio J Med 52:220–229

    PubMed  CAS  Google Scholar 

  56. Allavena P, Peccatori F, Maggioni D, et al. (1990) Intraperitoneal recombinant gamma-interferon in patients with recurrent ascitic ovarian carcinoma: modulation of cytotoxicity and cytokine production in tumor-associated effectors and of major histocompatibility antigen expression on tumor cells. Cancer Res 50:7318–7323

    PubMed  CAS  Google Scholar 

  57. Pujade-Lauraine E, Guastalla JP, Colombo N et al (1996) Intraperitoneal recombinant interferon gamma in ovarian cancer patients with residual disease at second-look laparotomy. J Clin Oncol 14:343–350

    PubMed  CAS  Google Scholar 

  58. Propper DJ, Chao D, Braybrooke JP et al (2003) Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res 9:84–92

    PubMed  CAS  Google Scholar 

  59. zum Buschenfelde CM, Hermann C, Schmidt B, Peschel C, Bernhard H (2002) Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res 62:2244–2247

    PubMed  Google Scholar 

  60. Viguier M, Lemaitre F, Verola O et al (2004) Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173:1444–1453

    PubMed  CAS  Google Scholar 

  61. Jones E, Dahm-Vicker M, Simon AK et al (2002) Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2:1

    PubMed  Google Scholar 

  62. Curiel TJ, Wei S, Dong H et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567

    Article  PubMed  CAS  Google Scholar 

  63. Almand B, Clark JI, Nikitina E et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    PubMed  CAS  Google Scholar 

  64. Zou W, Machelon V, Coulomb-L’Hermin A, et al. (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346

    Article  PubMed  CAS  Google Scholar 

  65. Sun YX, Wang J, Shelburne CE et al (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89:462–473

    Article  PubMed  CAS  Google Scholar 

  66. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  67. Nagasawa T, Hirota S, Tachibana K et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    Article  PubMed  CAS  Google Scholar 

  68. Gorelik L, Flavell RA (2002) Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2:46–53

    Article  PubMed  CAS  Google Scholar 

  69. Hodi FS, Mihm MC, Soiffer RJ et al (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 100:4712–4717

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith L. Knutson.

Additional information

This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2004 (PIVAC 4)”, held in Freudenstadt-Lauterbad, Black Forest, Germany, on 22–25 September 2004

Grant support: This grant was supported by K01-CA100764 (KLK) and R01-CA85374 (MLD)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knutson, K.L., Wagner, W. & Disis, M.L. Adoptive T cell therapy of solid cancers. Cancer Immunol Immunother 55, 96–103 (2006). https://doi.org/10.1007/s00262-005-0706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0706-1

Keywords