Skip to main content

Advertisement

Log in

Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Although 18F-fluorodeoxyglucose (FDG) PET is an established imaging technique to assess brain glucose utilisation, accurate measurement of tracer concentration is confounded by the presence of partial volume effect (PVE) due to the limited spatial resolution of PET, which is particularly true in atrophic brains such as those encountered in patients with Alzheimer’s disease (AD). Our aim was to investigate the effects of PVE correction on FDG PET in conjunction with voxel-based morphometry (VBM) in patients with mild AD.

Methods

Thirty-nine AD patients and 73 controls underwent FDG PET and MRI. The PVE-corrected grey matter PET images were obtained using an MRI-based three-compartment method. Additionally, the results of PET were compared with grey matter loss detected by VBM.

Results

Before PVE correction, reduced FDG uptake was observed in posterior cingulate gyri (PCG) and parieto-temporal lobes (PTL) in AD patients, which persisted after PVE correction. Notably, PVE correction revealed relatively preserved FDG uptake in hippocampal areas, despite the grey matter loss in medial temporal lobe (MTL) revealed by VBM.

Conclusion

FDG uptake in PCG and PTL is reduced in AD regardless of whether or not PVE correction is applied, supporting the notion that the reduced FDG uptake in these areas is not the result of atrophy. Furthermore, FDG uptake by grey matter tissue in the MTL, including hippocampal areas, is relatively preserved, suggesting that compensatory mechanisms may play a role in patients with mild AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.

    Article  PubMed  CAS  Google Scholar 

  2. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002;17:302–16.

    Article  PubMed  CAS  Google Scholar 

  3. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 2003;30:1104–13.

    Article  PubMed  Google Scholar 

  4. Herholz K. PET studies in dementia. Ann Nucl Med 2003;17:79–89.

    Article  PubMed  Google Scholar 

  5. Chen WP, Matsunari I, Noda A, Yanase D, Yajima K, Takeda N, et al. Rapid scanning protocol for brain 18F-FDG PET: a validation study. J Nucl Med 2005;46:1633–41.

    PubMed  Google Scholar 

  6. Ibáñez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 1998;50:1585–93.

    PubMed  Google Scholar 

  7. Matsuda H, Ohnishi T, Asada T, Li ZJ, Kanetaka H, Imabayashi E, et al. Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 2003;44:1243–52.

    PubMed  Google Scholar 

  8. Yanase D, Matsunari I, Yajima K, Chen W, Fujikawa A, Nishimura S, et al. Brain FDG PET study of normal aging in Japanese: effect of atrophy correction. Eur J Nucl Med Mol Imaging 2005;32:794–805.

    Article  PubMed  Google Scholar 

  9. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage 2000;11:805–21.

    Article  PubMed  CAS  Google Scholar 

  10. Pelletier D, Garrison K, Henry R. Measurement of whole-brain atrophy in multiple sclerosis. J Neuroimaging 2004;14:11S–9S.

    Article  PubMed  Google Scholar 

  11. May A. The role of imaging in the pathophysiology and diagnosis of headache. Curr Opin Neurol 2005;18:293–7.

    Article  PubMed  Google Scholar 

  12. Karas GB, Burton EJ, Rombouts SA, van Schijndel RA, O’Brien JT, Scheltens P, et al. A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 2003;18:895–907.

    Article  PubMed  CAS  Google Scholar 

  13. Ishii K, Sasaki H, Kono AK, Miyamoto N, Fukuda T, Mori E. Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging 2005;32:959–63.

    Article  PubMed  Google Scholar 

  14. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34:939–44.

    PubMed  CAS  Google Scholar 

  15. Berg L. Clinical dementia rating. Br J Psychiatry 1984;145:339.

    PubMed  CAS  Google Scholar 

  16. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. Stuttgart: Thieme Medical, 1988.

  17. Frith CD, Friston K, Ashburner J, Holmes A, Poline J, Worsley K, et al. Principles and methods. In: Frackowiak RSJ, Friston KJ, Frith C, Dolan R, Mazziotta J, editors. Human brain function. San Diego: Academic; 1997. p. 3–159.

    Google Scholar 

  18. Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K, et al. Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med 1997;38:925–8.

    PubMed  CAS  Google Scholar 

  19. Soonawala D, Amin T, Ebmeier KP, Steele JD, Dougall NJ, Best J, et al. Statistical parametric mapping of 99mTc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. Neuroimage 2002;17:1193–202.

    Article  PubMed  Google Scholar 

  20. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21–36.

    Article  PubMed  CAS  Google Scholar 

  21. Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ. Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 1996;47:454–61.

    PubMed  CAS  Google Scholar 

  22. Meltzer CC, Kinahan PE, Greer PJ, Nichols TE, Comtat C, Cantwell MN, et al. Comparative evaluation of MR-based partial-volume correction schemes for PET. J Nucl Med 1999;40:2053–65.

    PubMed  CAS  Google Scholar 

  23. Ishii K, Willoch F, Minoshima S, Drzezga A, Ficaro EP, Cross DJ, et al. Statistical brain mapping of 18F-FDG PET in Alzheimer’s disease: validation of anatomic standardization for atrophied brains. J Nucl Med 2001;42:548–57.

    PubMed  CAS  Google Scholar 

  24. Ball MJ. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol (Berl) 1977;37:111–8.

    Article  CAS  Google Scholar 

  25. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 1984;225:1168–70.

    Article  PubMed  CAS  Google Scholar 

  26. Ball MJ, Fisman M, Hachinski V, Blume W, Fox A, Kral VA, et al. A new definition of Alzheimer’s disease: a hippocampal dementia. Lancet 1985;1:14–6.

    Article  PubMed  CAS  Google Scholar 

  27. Ouchi Y, Nobezawa S, Okada H, Yoshikawa E, Futatsubashi M, Kaneko M. Altered glucose metabolism in the hippocampal head in memory impairment. Neurology 1998;51:136–42.

    PubMed  CAS  Google Scholar 

  28. De Santi S, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001;22:529–39.

    Article  PubMed  Google Scholar 

  29. Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005;64:1860–7.

    Article  PubMed  CAS  Google Scholar 

  30. Jagust WJ. Functional imaging patterns in Alzheimer’s disease. Relationships to neurobiology. Ann N Y Acad Sci 1996;777:30–6.

    Article  PubMed  CAS  Google Scholar 

  31. Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Relatively preserved hippocampal glucose metabolism in mild Alzheimer’s disease. Dement Geriatr Cogn Disord 1998;9:317–22.

    Article  PubMed  CAS  Google Scholar 

  32. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005;32:486–510.

    Article  PubMed  CAS  Google Scholar 

  33. Horwitz B. Neuroplasticity and the progression of Alzheimer’s disease. Int J Neurosci 1988;41:1–14.

    PubMed  CAS  Google Scholar 

  34. Davies CA, Mann DM, Sumpter PQ, Yates PO. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 1987;78:151–64.

    Article  PubMed  CAS  Google Scholar 

  35. Jueptner M, Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 1995;2:148–56.

    Article  PubMed  CAS  Google Scholar 

  36. Scheff SW, DeKosky ST, Price DA. Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 1990;11:29–37.

    Article  PubMed  CAS  Google Scholar 

  37. Geddes JW, Monaghan DT, Cotman CW, Lott IT, Kim RC, Chui HC. Plasticity of hippocampal circuitry in Alzheimer’s disease. Science 1985;230:1179–81.

    Article  PubMed  CAS  Google Scholar 

  38. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65:404–11.

    Article  PubMed  CAS  Google Scholar 

  39. Insausti R, Amaral DG, Cowan WM. The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 1987;264:356–95.

    Article  PubMed  CAS  Google Scholar 

  40. Munoz M, Insausti R. Cortical efferents of the entorhinal cortex and the adjacent parahippocampal region in the monkey (Macaca fascicularis). Eur J Neurosci 2005;22:1368–88.

    Article  PubMed  Google Scholar 

  41. Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 2005;234:851–9.

    Article  PubMed  Google Scholar 

  42. West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 1994;344:769–72.

    Article  PubMed  CAS  Google Scholar 

  43. Hof PR, Bussiere T, Gold G, Kovari E, Giannakopoulos P, Bouras C, et al. Stereologic evidence for persistence of viable neurons in layer II of the entorhinal cortex and the CA1 field in Alzheimer disease. J Neuropathol Exp Neurol 2003;62:55–67.

    PubMed  Google Scholar 

  44. Rasmusson DX, Brandt J, Steele C, Hedreen JC, Troncoso JC, Folstein MF. Accuracy of clinical diagnosis of Alzheimer disease and clinical features of patients with non-Alzheimer disease neuropathology. Alzheimer Dis Assoc Disord 1996;10:180–8.

    Article  PubMed  CAS  Google Scholar 

  45. Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology 2003;226:315–36.

    Article  PubMed  Google Scholar 

  46. Mosconi L, De Santi S, Li Y, Li J, Zhan J, Tsui WH, et al. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer’s disease using FDG-PET. Eur J Nucl Med Mol Imaging 2006;33:210–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant for Development of Advanced Technology for Measurement and Evaluation of Brain Functions, Ishikawa Prefecture Collaboration of Regional Entities for the Advancement of Technological Excellence (to S.N. and M.Y.), from Japan Science and Technology Corporation, Japan, and by a grant for the Knowledge Cluster Initiative [High-Tech Sensing and Knowledge Handling Technology (Brain Technology)] (to M.Y.) from the Japanese Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors would like to thank Shigeo Hayashi and Masamichi Matsudaira of The Medical and Pharmacological Research Center Foundation for their technical support and the staff of the Department of Neurology of Kanazawa University Hospital for their clinical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Matsunari.

Additional information

Disclosure: The authors have reported no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuraki, M., Matsunari, I., Chen, WP. et al. Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 34, 1658–1669 (2007). https://doi.org/10.1007/s00259-007-0454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0454-x

Keywords

Navigation