Abstract
Inulin-type fructans (ITF) are known to cause a health-promoting bifidogenic effect, although the ITF degradation capacity of bifidobacteria in different intestinal regions remains unclear. The present study aims at offering new insights into this link, making use of a collection of 190 bifidobacterial strains, encompassing strains from gut biopsies (terminal ileum and proximal colon; mucosa-associated strains) and the simulator of the human intestinal microbial ecosystem (SHIME®; proximal and distal colon vessels; lumen-associated strains). A multivariate data analysis of all fermentation data revealed four clusters corresponding with different types of ITF degradation fingerprints, which were not correlated with the region in the intestine, suggesting that the degradation of ITF is uniform along the human intestine. Strains from cluster 1 consumed fructose, while strains from cluster 2 consumed more oligofructose than fructose. Higher fructose and oligofructose consumption was characteristic for clusters 3 and 4 strains, which degraded inulin too. In general, the mucosa-associated strains from biopsy origin seemed to be more specialized in the consumption of fructose and oligofructose, while the lumen-associated strains from SHIME origin displayed a higher degradation degree of inulin. Further, intra-species variability in ITF degradation was found, indicating strain-specific variations. The coexistence of different bifidobacterial strains with different ITF degradation fingerprints within the same intestinal region suggests cooperation for the degradation of ITF, with opportunities for cross-feeding on strain and/or species level.
Similar content being viewed by others
References
Aguirre de Cárcer D, Cuív PO, Wang T, Kang S, Worthley D, Whitehall V, Gordon I, McSweeney C, Leggett B, Morrison M (2011) Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon. ISME J 5:801–809. doi:10.1038/ismej.2010.177
Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S (2007) Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 73:7435–7442. doi:10.1128/AEM.01143-07
Bartosch S, Woodmansey EJ, Paterson JCM, Mcmurdo MET, Macfarlane GT (2005) Microbiological effects of consuming a synbiotic containing Bifidobacterium bifidum, Bifidobacterium lactis, and oligofructose in elderly persons, determined by real-time polymerase chain reaction and counting of viable bacteria. Clin Infect Dis 40:28–37. doi:10.1086/426027
Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938. doi:10.1073/pnas.1007028107
De Vuyst L, Leroy F (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 149:73–80. doi:10.1016/j.ijfoodmicro.2011.03.003
De Vuyst L, Moens F, Selak M, Rivière A, Leroy F (2013) Summer meeting 2013: growth and physiology of bifidobacteria. J Appl Microbiol 116:477–491. doi:10.1111/jam.12415
Falony G, De Vuyst L (2009) Ecological interactions of bacteria in the human gut. In: Charalampopoulos D, Rastall RA (eds) Prebiotics and probiotics science and technology. Springer, New York, pp. 641–682
Falony G, Lazidou K, Verschaeren A, Weckx S, Maes D, De Vuyst L (2009a) In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Appl Environ Microbiol 75:454–461. doi:10.1128/AEM.01488-08
Falony G, Verschaeren A, De Bruycker F, De Preter V, Verbeke K, Leroy F, De Vuyst L (2009b) In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate-producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Appl Environ Microbiol 75:5884–5892. doi:10.1128/AEM.00876-09
Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841. doi:10.1128/AEM.01296-06
FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation. ftp://ftp.fao.org/docrep/fao/009/a0512e/a0512e00.pdf. Accessed 26 February 2015.
FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO expert consultation. ftp://ftp.fao.org/es/esn/food/wgreport2.pdf. Accessed 26 February 2015.
Flint H (2004) Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Adv Appl Microbiol 56:89–120. doi:10.1016/S0065-2164(04)56003-3
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306. doi:10.4161/gmic.19897
Gibson GR, Beatty ER, Wang XIN, Cummings JH (1995) Selective stimulation of bifdobacteria in the human colon by oligofructose and inulin. Gastroenterol 108:975–982. doi:10.1016/0016-5085(95)90192-2
González-Rodríguez I, Ruiz L, Gueimonde M, Margolles A, Sánchez B (2013) Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol Lett 340:1–10. doi:10.1111/1574-6968.12056
Guarner F, Malagelada J-R (2003) Gut flora in health and disease. Lancet 361:512–519. doi:10.1016/S0140-6736(03)12489-0
Hong P-Y, Croix JA, Greenberg E, Gaskins HR, Mackie RI (2011) Pyrosequencing-based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PLoS One 6:e25042. doi:10.1371/journal.pone.0025042
Hugenholtz F, Mullaney JA, Kleerebezem M, Smidt H, Rosendale DI (2013) Modulation of the microbial fermentation in the gut by fermentable carbohydrates. Bioact Carbohydr Dietary Fibre 2:133–142. doi:10.1016/j.bcdf.2013.09.008
Kleessen B, Hartmann L, Blaut M (2003) Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr 89:597–606. doi:10.1079/BJN2002827
Kolida S, Tuohy K, Gibson GR (2007) Prebiotic effects of inulin and oligofructose. Br J Nutr 87:S193–S197. doi:10.1079/BJN/2002537
Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10:323–335. doi:10.1038/nrmicro2746
Langlands SJ, Hopkins MJ, Coleman N, Cummings JH (2004) Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut 53:1610–1616. doi:10.1136/gut.2003.037580
Lee J-H, O’Sullivan DJ (2010) Genomic insights into bifidobacteria. Microbiol Mol Biol Rev 74:378–416. doi:10.1128/MMBR.00004-10
Lepage P, Seksik P, Sutren M, de la Cochetière M-F, Jian R, Marteau P, Doré J (2005) Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 11:473–480. doi:10.1097/01.MIB.0000159662.62651.06
Macfarlane S, Macfarlane GT (2006) Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol 72:6204–6211. doi:10.1128/AEM.00754-06
Marchesi JR (2011) Human distal gut microbiome. Environ Microbiol 13:3088–3102. doi:10.1111/j.1462-2920.2011.02574.x
Marteau P (2013) Butyrate-producing bacteria as pharmabiotics for inflammatory bowel disease. Gut 62:1673. doi:10.1136/gutjnl-2012-304240
Moens F, Rivière A, Selak M, De Vuyst L (2014) Inulin-type fructan degradation capacity of interesting butyrate-producing bacteria and cross-feeding interactions of Faecalibacterium prausnitzii DSM 17677T with bifidobacteria. Arch Public Health 72:O6. doi:10.1186/2049-3258-72-S1-O6
Momozawa Y, Deffontaine V, Louis E, Medrano JF (2011) Characterization of bacteria in biopsies of colon and stools by high throughput sequencing of the V2 region of bacterial 16S rRNA gene in human. PLoS ONE 6:e16952. doi:10.1371/journal.pone.0016952
Nyangale EP, Mottram DS, Gibson GR (2012) Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res 11:5573–5585. doi:10.1021/pr300637d
Ouwerkerk JP, de Vos WM, Belzer C (2013) Glycobiome: bacteria and mucus at the epithelial interface. Best Pract Res Clin Gastroenterol. 27:25–38. doi:10.1016/j.bpg.2013.03.001
Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6:285–306. doi:10.1007/s12263-010-0206-6
Rivière A, Moens F, Selak M, Maes D, Weckx S, De Vuyst L (2014) The ability of bifidobacteria to degrade arabinoxylan oligosaccharide constituents and derived oligosaccharides is strain dependent. Appl Environ Microbiol 80:204–217. doi:10.1128/AEM.02853-13
Ruiz L, Ruas-Madiedo P, Gueimonde M, De Los Reyes-Gavilán CG, Margolles A, Sánchez B (2011) How do bifidobacteria counteract environmental challenges? mechanisms involved and physiological consequences. Genes Nutr 6:307–318. doi:10.1007/s12263-010-0207-5
Ruiz-Moyano S, Totten SM, Garrido DA, Smilowitz JT, German JB, Lebrilla CB, Mills DA (2013) Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol 79:6040–6949. doi:10.1128/AEM.01843-13
Russell DA, Ross RP, Fitzgerald GF, Stanton C (2011) Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 149:88–105. doi:10.1016/j.ijfoodmicro.2011.06.003
Russell WR, Hoyles L, Flint HJ, Dumas M-E (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16:246–254. doi:10.1016/j.mib.2013.07.002
Sánchez B, Ruiz L, Gueimonde M, Ruas-Madiedo P, Margolles A (2013) Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences. Pharmacol Res 69:127–136. doi:10.1016/j.phrs.2012.11.004
Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen M-C, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427. doi:10.1073/pnas.212527599
Scott KP, Martin JC, Duncan SH, Flint HJ (2013) Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol 87:30–40. doi:10.1111/1574-6941.12186
Sheridan W, Lowndes RYH (1987) Tissue oxygen tension as a predictor of colonic anastomotic healing. Dis Colon Rectum 30:867–871
Turroni F, Duranti S, Guglielmetti S, van Sinderen D, Ventura M (2014) Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol 5:437–445. doi:10.3389/fmicb.2014.00437
Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, De Angelis GL, Shanahan F, van Sinderen D, Ventura M (2009) Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 75:1534–1545. doi:10.1128/AEM.02216-08
Turroni F, van Sinderen D, Ventura M (2011) Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol 149:37–44. doi:10.1016/j.ijfoodmicro.2010.12.010
Van de Wiele T, Van den Abbeele P, Ossieur W, Possemiers S, Marzorati M (2015) The simulator of the human intestinal microbial ecosystem (SHIME®). In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (eds) The impact of food bio-actives on gut health. Springer, New York, pp. 305–317
Van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W (2007) Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 102:452–460. doi:10.1111/j.1365-2672.2006.03084.x
Van den Abbeele P, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Kleerebezem M, Zoetendal EG, Smidt H, Verstraete W, Van de Wiele T, Possemiers S (2011) Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ Microbiol 13:2667–2680. doi:10.1111/j.1462-2920.2011.02533.x
Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Zoetendal E, Kleerebezem M, Smidt H, Van de Wiele T (2010) Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76:5237–5246. doi:10.1128/AEM.00759-10
Van den Abbeele P, Venema K, Van de Wiele T, Verstraete W, Possemiers S (2013) Different human gut models reveal the distinct fermentation patterns of arabinoxylan versus inulin. J Agric Food Chem 61:9819–9827. doi:10.1021/jf4021784
Van der Meulen R, Avonts L, De Vuyst L (2004) Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Appl Environ Microbiol 70:1923–1930. doi:10.1128/AEM.70.4.1923-1930
Van der Meulen R, Makras L, Verbrugghe K, Adriany T, De Vuyst L (2006) In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms. Appl Environ Microbiol 72:1006–1012. doi:10.1128/AEM.72.2.1006-1012
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548. doi:10.1128/MMBR.00005-07
Ventura M, O’Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, van Sinderen D, O’Toole PW (2009) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7:61–71. doi:10.1038/nrmicro2047
Walker A, Duncan S (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700. doi:10.1128/AEM.71.7.3692-3700
Watson D, O’Connell Motherway M, Schoterman MHC, van Neerven RJJ, Nauta A, van Sinderen D (2013) Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 114:1132–1146. doi:10.1111/jam.12105
Zoetendal E, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans ADL, de Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407. doi:10.1128/AEM.68.7.3401-3407
Acknowledgments
The authors acknowledge their financial support of the Research Council of the Vrije Universiteit Brussel (SRP, IRP, and IOF projects), the Research Foundation Flanders (FWO-Vlaanderen), and the Hercules Foundation. MS is the recipient of a PhD fellowship of the Vrije Universiteit Brussel in the framework of a bilateral agreement with the University of Ljubljana. AR and FM were the recipients of a PhD fellowship of the FWO-Vlaanderen.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
ESM 1
(PDF 443 kb)
Rights and permissions
About this article
Cite this article
Selak, M., Rivière, A., Moens, F. et al. Inulin-type fructan fermentation by bifidobacteria depends on the strain rather than the species and region in the human intestine. Appl Microbiol Biotechnol 100, 4097–4107 (2016). https://doi.org/10.1007/s00253-016-7351-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-016-7351-9