Abstract
Over the past two decades, RNA catalysis has become a major topic of research. On the one hand, naturally occurring ribozymes have been extensively investigated concerning their structure and functional mechanisms. On the other hand, the knowledge gained from these studies has been used to engineer ribozyme variants with novel properties. In addition to RNA engineering by means of rational design, powerful techniques for selection of ribozymes from large pools of random sequences were developed and have been widely used for the generation of functional nucleic acids. RNA as catalyst has been accompanied by DNA, and nowadays a large number of ribozymes and deoxyribozymes are available. The field of ribozyme generation and selection has been extensively reviewed. With respect to the field of biotechnology, RNA and DNA catalysts working on peptides or proteins, or which are designed to control protein synthesis, are of utmost importance and interest. Therefore, in this review, we will focus on engineered nucleic acid catalysts for peptide synthesis and modification as well as for intracellular control of gene expression.




Similar content being viewed by others
References
Bessho Y, Hodgson DR, Suga H (2002) A tRNA aminoacylation system for non-natural amino acids based on a programmable ribozyme. Nat Biotechnol 20(7):723–728. doi:10.1038/nbt0702-723
Bramlage B, Luzi E, Eckstein F (1998) Designing ribozymes for the inhibition of gene expression. Trends Biotechnol 16(10):434–438
Brandsen BM, Hesser AR, Castner MA, Chandra M, Silverman SK (2013) DNA-catalyzed hydrolysis of esters and aromatic amides. J Am Chem Soc 135:16014–16017. doi:10.1021/ja4077233
Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harbor Perspectives in Biology 4(2):a003566. doi:10.1101/cshperspect.a003566
Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1(4):223–229
Büttner L, Seikowski J, Wawrzyniak K, Ochmann A, Hobartner C (2013) Synthesis of spin-labeled riboswitch RNAs using convertible nucleosides and DNA-catalyzed RNA ligation. Bioorg Med Chem 21(20):6171–6180. doi:10.1016/j.bmc.2013.04.007
Chandrasekar J, Silverman SK (2013) Catalytic DNA with phosphatase activity. Proc Natl Acad Sci U S A 110(14):5315–5320. doi:10.1073/pnas.1221946110
Chen YY, Jensen MC, Smolke CD (2010) Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci U S A 107(19):8531–8536. doi:10.1073/pnas.1001721107
Cho EJ, Lee J-W, Rajendran M, Ellington AD (2008) Nucleic acids for reagentless biosensors. In: Ligler FS, Taitt CR (eds) Optical biosensors, 2nd edn. Elsevier, Amsterdam, pp 493–541. doi:10.1016/B978-044453125-4.50015-2
Chumachenko NV, Novikov Y, Yarus M (2009) Rapid and simple ribozymic aminoacylation using three conserved nucleotides. J Am Chem Soc 131(14):5257–5263. doi:10.1021/ja809419f
Coppins RL, Silverman SK (2004) A DNA enzyme that mimics the first step of RNA splicing. Nat Struct Mol Biol 11(3):270–274. doi:10.1038/nsmb727
Drude I, Vauléon S, Müller S (2007) Twin ribozyme mediated removal of nucleotides from an internal RNA site. Biochem Biophys Res Commun 363(1):24–29. doi:10.1016/j.bbrc.2007.08.135
Fujita Y, Ishikawa J, Furuta H, Ikawa Y (2010) Generation and development of RNA ligase ribozymes with modular architecture through “design and selection”. Molecules 15(9):5850–5865. doi:10.3390/molecules15095850
Fusz S, Eisenfuhr A, Srivatsan SG, Heckel A, Famulok M (2005) A ribozyme for the aldol reaction. Chem Biol 12(8):941–950. doi:10.1016/j.chembiol.2005.06.008
Goto Y, Suga H (2012) Flexizymes as a tRNA acylation tool facilitating genetic code reprogramming. Methods Mol Biol 848:465–478. doi:10.1007/978-1-61779-545-9_29
Goto Y, Murakami H, Suga H (2008a) Initiating translation with D-amino acids. RNA 14(7):1390–1398. doi:10.1261/rna.1020708
Goto Y, Ohta A, Sako Y, Yamagishi Y, Murakami H, Suga H (2008b) Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem Biol 3(2):120–129. doi:10.1021/cb700233t
Gredell JA, Frei CS, Cirino PC (2012) Protein and RNA engineering to customize microbial molecular reporting. Biotechnol J 7(4):477–499. doi:10.1002/biot.201100266
Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857
Harris ME (2008) Catalytic Modes in Natural Ribozymes. Wiley Encyclopedia of Chemical Biology. John Wiley & Sons, Inc., 1–11. doi:10.1002/9780470048672.wecb640
Hartig JS, Najafi-Shoushtari SH, Grune I, Yan A, Ellington AD, Famulok M (2002) Protein-dependent ribozymes report molecular interactions in real time. Nat Biotechnol 20(7):717–722. doi:10.1038/nbt0702-717
Hausch F, Jäschke A (1997) Libraries of multifunctional RNA conjugates for the selection of new RNA catalysts. Bioconjugate Chem 8(6):885–890. doi:10.1021/bc9701151
Illangasekare M, Yarus M (1999) A tiny RNA that catalyzes both aminoacyl-RNA and peptidyl-RNA synthesis. RNA 5(11):1482–1489
Illangasekare M, Sanchez G, Nickles T, Yarus M (1995) Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267(5198):643–647
Jenne A, Famulok M (1998) A novel ribozyme with ester transferase activity. Chem Biol 5(1):23–34
Kawakami T, Aimoto S (2007) Peptide ligation using a building block having a cysteinyl prolyl ester (CPE) autoactivating unit at the carboxy terminus. Chem Lett 36(1):76–77. doi:10.1246/Cl.2007.76
Kawakami T, Murakami H, Suga H (2008a) Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides. Chem Biol 15(1):32–42. doi:10.1016/j.chembiol.2007.12.008
Kawakami T, Murakami H, Suga H (2008b) Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids. J Am Chem Soc 130(50):16861–16863. doi:10.1021/ja806998v
Kawakami T, Ohta A, Ohuchi M, Ashigai H, Murakami H, Suga H (2009) Diverse backbone-cyclized peptides via codon reprogramming. Nat Chem Biol 5(12):888–890. doi:10.1038/nchembio.259
Ketzer P, Haas SF, Engelhardt S, Hartig JS, Nettelbeck DM (2012) Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Res 40(21):e167. doi:10.1093/nar/gks734
Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10(9):708–712. doi:10.1038/nsb959
Klauser B, Hartig JS (2013) An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res 41(10):5542–5552. doi:10.1093/nar/gkt253
Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31(1):147–157
Lad C, Williams NH, Wolfenden R (2003) The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases. Proc Natl Acad Sci U S A 100(10):5607–5610. doi:10.1073/pnas.0631607100
Lee N, Suga H (2001) A minihelix-loop RNA acts as a trans-aminoacylation catalyst. RNA 7(7):1043–1051
Lee N, Bessho Y, Wei K, Szostak JW, Suga H (2000) Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Biol 7(1):28–33. doi:10.1038/71225
Lee J, Lin L, Li Y (2011) Functional nucleic acids for fluorescence-based biosensing applications. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology III, vol 113. Springer Series on Fluorescence, 221, p 201. doi:10.1007/978-3-642-18035-4_6
Lewin AS (2010) Regulatory RNA in gene therapy. In: Herzog RW, Zolotukhin S (ed) A guide to human gene therapy. World Scientific Publishing Co Pte Ltd, Singapore, pp 103–122
Link KH, Breaker RR (2009) In vitro selection of glmS ribozymes. Methods Mol Biol 540:349–364. doi:10.1007/978-1-59745-558-9_25
Lohse PA, Szostak JW (1996) Ribozyme-catalysed amino-acid transfer reactions. Nature 381(6581):442–444. doi:10.1038/381442a0
Meyer AJ, Ellefson JW, Ellington AD (2012) Abiotic self-replication. Acc Chem Res 45(12):2097–2105. doi:10.1021/ar200325v
Michener JK, Smolke CD (2012) High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng 14(4):306–316. doi:10.1016/j.ymben.2012.04.004
Min D-H, Kim D-E (2012) Suppression of hepatitis C viral genome replication with RNA-cleaving deoxyribozyme. In: Erdmann VA, Barciszewski J (eds) From nucleic acids sequences to molecular medicine. RNA Technologies, Springer Berlin Heidelberg, pp 429–452. doi:10.1007/978-3-642-27426-8_17
Morimoto J, Hayashi Y, Iwasaki K, Suga H (2011) Flexizymes: their evolutionary history and the origin of catalytic function. Acc Chem Res 44(12):1359–1368. doi:10.1021/ar2000953
Müller S, Strohbach D, Wolf J (2006) Sensors made of RNA: tailored ribozymes for detection of small organic molecules, metals, nucleic acids and proteins. IEE Proc Nanobiotechnology 153(2):31–40. doi:10.1049/ip-nbt:20050047
Murakami H, Kourouklis D, Suga H (2003a) Using a solid-phase ribozyme aminoacylation system to reprogram the genetic code. Chem Biol 10(11):1077–1084
Murakami H, Saito H, Suga H (2003b) A versatile tRNA aminoacylation catalyst based on RNA. Chem Biol 10(7):655–662
Murakami H, Ohta A, Ashigai H, Suga H (2006) A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat Methods 3(5):357–359. doi:10.1038/nmeth877
Nagraj N, Lu Y (2011) Catalytic nucleic acid biosensors for environmental monitoring. In: Mascini M, Palchetti I (eds) Nucleic acid biosensors for environmental pollution monitoring. The Royal Society of Chemistry, Cambridge, pp 82–98
Niwa N, Yamagishi Y, Murakami H, Suga H (2009) A flexizyme that selectively charges amino acids activated by a water-friendly leaving group. Bioorg Med Chem Lett 19(14):3892–3894. doi:10.1016/j.bmcl.2009.03.114
Nomura Y, Zhou L, Miu A, Yokobayashi Y (2013) Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth Biol 2(12):684–689. doi:10.1021/sb400037a
Ohta A, Murakami H, Higashimura E, Suga H (2007) Synthesis of polyester by means of genetic code reprogramming. Chem Biol 14(12):1315–1322. doi:10.1016/j.chembiol.2007.10.015
Piganeau N, Jenne A, Thuillier V, Famulok M (2000) An allosteric ribozyme regulated by doxycyline. Angew Chem, Int Ed 39(23):4369–4373. doi:10.1002/1521-3773(20001201)39:23<4369::aid-anie4369>3.0.co;2-n
Pradeepkumar PI, Höbartner C, Baum DA, Silverman SK (2008) DNA-catalyzed formation of nucleopeptide linkages. Angew Chem, Int Ed 47(9):1753–1757. doi:10.1002/anie.200703676
Prudent JR, Uno T, Schultz PG (1994) Expanding the scope of RNA catalysis. Science 264(5167):1924–1927
Puttaraju M, Jamison SF, Mansfield SG, Garcia-Blanco MA, Mitchell LG (1999) Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nat Biotechnol 17(3):246–252. doi:10.1038/6986
Ramaswamy K, Saito H, Murakami H, Shiba K, Suga H (2004) Designer ribozymes: programming the tRNA specificity into flexizyme. J Am Chem Soc 126(37):11454–11455. doi:10.1021/ja046843y
Sachdeva A, Chandra M, Chandrasekar J, Silverman SK (2012) Covalent tagging of phosphorylated peptides by phosphate-specific deoxyribozymes. ChemBioChem 13(5):654–657. doi:10.1002/cbic.201200048
Saito H, Suga H (2001) A ribozyme exclusively aminoacylates the 3'-hydroxyl group of the tRNA terminal adenosine. J Am Chem Soc 123(29):7178–7179
Saito H, Suga H (2002) Outersphere and innersphere coordinated metal ions in an aminoacyl-tRNA synthetase ribozyme. Nucleic Acids Res 30(23):5151–5159
Saito H, Kourouklis D, Suga H (2001a) An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J 20(7):1797–1806. doi:10.1093/emboj/20.7.1797
Saito H, Watanabe K, Suga H (2001b) Concurrent molecular recognition of the amino acid and tRNA by a ribozyme. RNA 7(12):1867–1878
Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94(9):4262–4266
Saragliadis A, Hartig JS (2013) Ribozyme-based transfer RNA switches for post-transcriptional control of amino acid identity in protein synthesis. J Am Chem Soc 135(22):8222–8226. doi:10.1021/Ja311107p
Schlosser K, Li YF (2010) A versatile endoribonuclease mimic made of DNA: characteristics and applications of the 8–17 RNA-cleaving DNAzyme. ChemBioChem 11(7):866–879. doi:10.1002/Cbic.200900786
Schroeder GK, Lad C, Wyman P, Williams NH, Wolfenden R (2006) The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proc Natl Acad Sci U S A 103(11):4052–4055. doi:10.1073/pnas.0510879103
Sengle G, Eisenfuhr A, Arora PS, Nowick JS, Famulok M (2001) Novel RNA catalysts for the Michael reaction. Chem Biol 8(5):459–473
Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19(8):751–755. doi:10.1038/90802
Soukup GA, Breaker RR (1999) Engineering precision RNA molecular switches. Proc Natl Acad Sci U S A 96(7):3584–3589
Soukup GA, Breaker RR (2000) Allosteric nucleic acid catalysts. Curr Opin Struct Biol 10(3):318–325. doi:10.1016/S0959-440X(00)00090-7
Suga H, Hayashi G, Terasaka N (2011) The RNA origin of transfer RNA aminoacylation and beyond. Philosophical transactions of the Royal Society of London Series B. Biol Sci 366(1580):2959–2964. doi:10.1098/rstb.2011.0137
Sullenger BA (2003) Targeted genetic repair: an emerging approach to genetic therapy. J Clin Invest 112(3):310–311. doi:10.1172/JCI19419
Sullenger BA, Cech TR (1994) Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature 371(6498):619–622. doi:10.1038/371619a0
Szostak J (2012) The eightfold path to non-enzymatic RNA replication. J Syst Chem 3(1):2. doi:10.1186/1759-2208-3-2
Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci U S A 107(10):4585–4589. doi:10.1073/pnas.0912895107
Turk RM, Illangasekare M, Yarus M (2011) Catalyzed and spontaneous reactions on ribozyme ribose. J Am Chem Soc 133(15):6044–6050. doi:10.1021/ja200275h
Vauléon S, Ivanov SA, Gwiazda S, Müller S (2005) Site-specific fluorescent and affinity labelling of RNA by using a small engineered twin ribozyme. ChemBioChem 6(12):2158–2162. doi:10.1002/cbic.200500215
Walsh SM, Sachdeva A, Silverman SK (2013) DNA catalysts with tyrosine kinase activity. J Am Chem Soc 135(40):14928–14931. doi:10.1021/ja407586u
Welz R, Bossmann K, Klug C, Schmidt C, Fritz HJ, Müller S (2003) Site-directed alteration of RNA sequence mediated by an engineered twin ribozyme. Angew Chem, Int Ed 42(21):2424–2427. doi:10.1002/anie.200250611
Wiegand TW, Janssen RC, Eaton BE (1997) Selection of RNA amide synthases. Chem Biol 4(9):675–683
Wieland M, Hartig JS (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem, Int Ed 47(14):2604–2607. doi:10.1002/anie.200703700
Wilson C, Szostak JW (1995) In vitro evolution of a self-alkylating ribozyme. Nature 374(6525):777–782. doi:10.1038/374777a0
Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104(36):14283–14288. doi:10.1073/pnas.0703961104
Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322(5900):456–460. doi:10.1126/science.1160311
Wittmann A, Suess B (2011) Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast. Mol Biosyst 7(8):2419–2427. doi:10.1039/c1mb05070b
Wong OY, Pradeepkumar PI, Silverman SK (2011) DNA-catalyzed covalent modification of amino acid side chains in tethered and free peptide substrates. Biochemistry 50(21):4741–4749. doi:10.1021/bi200585n
Yamagishi Y, Shoji I, Miyagawa S, Kawakami T, Katoh T, Goto Y, Suga H (2011) Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem Biol 18(12):1562–1570. doi:10.1016/j.chembiol.2011.09.013
Yen L, Svendsen J, Lee JS, Gray JT, Magnier M, Baba T, D’Amato RJ, Mulligan RC (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431(7007):471–476. doi:10.1038/nature02844
Author information
Authors and Affiliations
Corresponding author
Additional information
Darko Balke and Claudia Wichert contributed equally to this work
Rights and permissions
About this article
Cite this article
Balke, D., Wichert, C., Appel, B. et al. Generation and selection of ribozyme variants with potential application in protein engineering and synthetic biology. Appl Microbiol Biotechnol 98, 3389–3399 (2014). https://doi.org/10.1007/s00253-014-5528-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-014-5528-7