Abstract
Major histocompatibility complex (MHC) molecules are only found in jawed vertebrates and not in more primitive species. MHC class II type structures likely represent the ancestral structure of MHC molecules. Efficient MHC class II transport to endosomal compartments depends on association with a specialized chaperone, the MHC class II invariant chain (aliases Ii or CD74). The present study identifies conserved motifs in the CLIP region of CD74 molecules, used for binding in the MHC class II binding groove, throughout jawed vertebrates. Peculiarly, in CD74a molecules of Ostariophysi, a fish clade including for example Mexican tetra and zebrafish, the CLIP region has duplicated. In mammals, in endosomal compartments, the peptide-free form of classical MHC class II is stabilized by binding to nonclassical MHC class II “DM,” a process that participates in “peptide editing” (selection for high affinity peptides). Hitherto, DM-lineage genes had only been reported from the level of amphibians, but the present study reveals the existence of DMA and DMB genes in lungfish. This is the first study which details how classical and DM lineage molecules have distinguishing glycine-rich motifs in their transmembrane regions. In addition, based on extant MHC class II structures and functions, the present study proposes a model for early MHC evolution, in which, in an ancestral jawed vertebrate, the ancestral MHC molecule derived from a heavy-chain-only antibody type molecule that cycled between the cell surface and endosomal compartments.
Similar content being viewed by others
References
Adams EJ, Luoma AM (2013) The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 31:529–561
Adler LN, Jiang W, Bhamidipati K, Millican M, Macaubas C, Hung SC, Mellins ED (2017) The other function: class II-restricted antigen presentation by B cells. Front Immunol 8:319
Ashman JB, Miller J (1999) A role for the transmembrane domain in the trimerization of the MHC class II-associated invariant chain. J Immunol 163:2704–2712
Bevec T, Stoka V, Pungercic G, Dolenc I, Turk V (1996) Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J Exp Med 183:1331–1338
Bikoff EK, Huang LY, Episkopou V, van Meerwijk J, Germain RN, Robertson EJ (1993) Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain expression. J Exp Med 177(6):1699–1712
Bikoff EK, Kenty G, Van Kaer L (1998) Distinct peptide loading pathways for MHC class II molecules associated with alternative II chain isoforms. J Immunol 160:3101–3110
Bird PI, Trapani JA, Villadangos JA (2009) Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 9:871–882
Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512
Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473
Bremnes B, Madsen T, Gedde-Dahl M, Bakke O (1994) An LI and ML motif in the cytoplasmic tail of the MHC-associated invariant chain mediate rapid internalization. J Cell Sci 107:2021–2032
Bremnes B, Rode M, Gedde-Dahl M, Nordeng TW, Jacobsen J, Ness SA, Bakke O (2000) The MHC class II-associated chicken invariant chain shares functional properties with its mammalian homologs. Exp Cell Res 259:360–369
Broughton RE, Betancur-R R, Li C, Arratia G, Ortí G (2013) Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLOS Curr Tree Life Ed 1. https://doi.org/10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e
Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39
Brunet A, Samaan A, Deshaies F, Kindt TJ, Thibodeau J (2000) Functional characterization of a lysosomal sorting motif in the cytoplasmic tail of HLA-DObeta. J Biol Chem 275(47):37062–37071
Busch R, Cloutier I, Sékaly RP, Hämmerling GJ (1996) Invariant chain protects class II histocompatibility antigens from binding intact polypeptides in the endoplasmic reticulum. EMBO J 15:418–428
Castellino F, Germain RN (2006) Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 24:519–540
Chazara O, Tixier-Boichard M, Morin V, Zoorob R, Bed'hom B (2011) Organisation and diversity of the class II DM region of the chicken MHC. Mol Immunol 48:1263–1271
Chen FF, Lin HB, Li JC, Wang Y, Li J, Zhang DG, Yu WY (2017) Grass carp (Ctenopharyngodon idellus) invariant chain of the MHC class II chaperone protein associates with the class I molecule. Fish Shellfish Immunol 63:1–8
Cloutier M, Gauthier C, Fortin JS, Thibodeau J (2014) The invariant chain p35 isoform promotes formation of nonameric complexes with MHC II molecules. Immunol Cell Biol 92:553–556
Colbert JD, Matthews SP, Miller G, Watts C (2009) Diverse regulatory roles for lysosomal proteases in the immune response. Eur J Immunol 39:2955–2965
Cosson P, Bonifacino JS (1992) Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science 258:659–662
Cresswell P, Roche PA (2014 Jul) Invariant chain-MHC class II complexes: always odd and never invariant. Immunol Cell Biol 92(6):471–472
Criscitiello MF, Ohta Y, Graham MD, Eubanks JO, Chen PL, Flajnik MF (2012) Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II. Dev Comp Immunol 36:521–533
Denzin LK (2013) Inhibition of HLA-DM mediated MHC class II peptide loading by HLA-DO promotes self tolerance. Front Immunol 4:465
Denzin LK, Cresswell P (1995) HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell 82:155–165
Dijkstra JM, Grimholt U (2018) Major histocompatibility complex (MHC) fragment numbers alone—in Atlantic cod and in general—do not represent functional variability. F1000Res 7:963
Dijkstra JM, Kiryu I, Köllner B, Yoshiura Y, Ototake M (2003) MHC class II invariant chain homologues in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 15:91–105
Dijkstra JM, Grimholt U, Leong J, Koop BF, Hashimoto K (2013) Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates. BMC Evol Biol 13:260
Dijkstra JM, Yamaguchi T, Grimholt U (2018) Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Immunogenetics 70:459–476
Dixon AM, Stanley BJ, Matthews EE, Dawson JP, Engelman DM (2006) Invariant chain transmembrane domain trimerization: a step in MHC class II assembly. Biochemistry 45:5228–5234
Dixon AM, Drake L, Hughes KT, Sargent E, Hunt D, Harton JA, Drake JR (2014) Differential transmembrane domain GXXXG motif pairing impacts major histocompatibility complex (MHC) class II structure. J Biol Chem 289:11695–11703
Drake LA, Drake JR (2016) A triad of molecular regions contribute to the formation of two distinct MHC class II conformers. Mol Immunol 74:59–70
Falk K, Rötzschke O, Stevanović S, Jung G, Rammensee HG (1994) Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Immunogenetics 39:230–242
Fineschi B, Arneson LS, Naujokas MF, Miller J (1995) Proteolysis of major histocompatibility complex class II-associated invariant chain is regulated by the alternatively spliced gene product, p41. Proc Natl Acad Sci U S A 92:10257–10261
Fineschi B, Sakaguchi K, Appella E, Miller J (1996) The proteolytic environment involved in MHC class II-restricted antigen presentation can be modulated by the p41 form of invariant chain. J Immunol 157:3211–3215
Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59
Flajnik MF, Deschacht N, Muyldermans S (2011) A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biol 9:e1001120
Fortin JS, Cloutier M, Thibodeau J (2013) Exposing the specific roles of the invariant chain isoforms in shaping the MHC class II Peptidome. Front Immunol 4:443
Frauwirth K, Shastri N (2001) Mutation of the invariant chain transmembrane region inhibits II degradation, prolongs association with MHC class II, and selectively disrupts antigen presentation. Cell Immunol 209:97–108
Fujiki K, Smith CM, Liu L, Sundick RS, Dixon B (2003) Alternate forms of MHC class II-associated invariant chain are not produced by alternative splicing in rainbow trout (Oncorhynchus mykiss) but are encoded by separate genes. Dev Comp Immunol 27:377–391
Fung-Leung WP, Surh CD, Liljedahl M, Pang J, Leturcq D, Peterson PA, Webb SR, Karlsson L (1996) Antigen presentation and T cell development in H2-M-deficient mice. Science 271:1278–1281
Gelin C, Sloma I, Charron D, Mooney N (2009) Regulation of MHC II and CD1 antigen presentation: from ubiquity to security. J Leukoc Biol 85:215–224
Ghosh P, Amaya M, Mellins E, Wiley DC (1995) The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378:457–462
Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L, Bucala R, Shachar I (2008) Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem 283:2784–2792
Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM (2015) A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol 15:32
Guillemot F, Turmel P, Charron D, Le Douarin N, Auffray C (1986) Structure, biosynthesis, and polymorphism of chicken MHC class II (B-L) antigens and associated molecules. J Immunol 137:1251–1257
Guncar G, Pungercic G, Klemencic I, Turk V, Turk D (1999) Crystal structure of MHC class II-associated p41 II fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J 18:793–803
Günther S, Schlundt A, Sticht J, Roske Y, Heinemann U, Wiesmüller KH, Jung G, Falk K, Rötzschke O, Freund C (2010) Bidirectional binding of invariant chain peptides to an MHC class II molecule. Proc Natl Acad Sci U S A 107:22219–22224
Halaby DM, Poupon A, Mornon J (1999) The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng 12:563–571
Harton J, Jin L, Hahn A, Drake J (2016) Immunological functions of the membrane proximal region of MHC class II molecules. F1000Res. Faculty Rev-368
Hashimoto K (2003) The transformation hypothesis for the origin of the major histocompatibility complex (MHC) family molecules and the elucidation of the fundamental ancient duplication unit (FADU) in the genome. Recent Res Dev Immun 1:55–80
Hashimoto K, Nakanishi T, Kurosawa Y (1990) Isolation of carp genes encoding major histocompatibility complex antigens. Proc Natl Acad Sci U S A 87:6863–6867
Hood L, Kronenberg M, Hunkapiller T (1985) T cell antigen receptors and the immunoglobulin supergene family. Cell 40:225–229
Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A 78:3824–3828
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Eliott D, Threadgold G, Harden G, Ware D, Mortimer B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Ürün Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberländer M, Rudolph-Geiger S, Teucke M, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Carter NP, Harrow J, Ning Z, Herrero J, Searle SMJ, Enright A, Geisler R, Plasterk RHA, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nüsslein-Volhard C, Hubbard TJP, Crollius HR, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503
Hughes AL, Nei M (1989) Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 6:559–579
Hughes AL, Nei M (1993) Evolutionary relationships of the classes of major histocompatibility complex genes. Immunogenetics 37:337–346
Hüttl S, Helfrich F, Mentrup T, Held S, Fukumori A, Steiner H, Saftig P, Fluhrer R, Schröder B (2016) Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochem J 473:1405–1422
Jahnke M, Trowsdale J, Kelly AP (2013) Ubiquitination of HLA-DO by MARCH family E3 ligases. Eur J Immunol 43:1153–1161
Jasanoff A, Park SJ, Wiley DC (1995) Direct observation of disordered regions in the major histocompatibility complex class II-associated invariant chain. Proc Natl Acad Sci U S A 92:9900–9904
Jasanoff A, Wagner G, Wiley DC (1998) Structure of a trimeric domain of the MHC class II-associated chaperonin and targeting protein II. EMBO J 17:6812–6808
Jones PP, Murphy DB, Hewgill D, McDevitt HO (1979) Detection of a common polypeptide chain in I--A and I--E sub-region immunoprecipitates. Mol Immunol 16:51–60
Kaufman J (2018) Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol 36:383–409
Kaufman JF, Auffray C, Korman AJ, Shackelford DA, Strominger J (1984a) The class II molecules of the human and murine major histocompatibility complex. Cell 36:1–13
Kaufman JF, Krangel MS, Strominger JL (1984b) Cysteines in the transmembrane region of major histocompatibility complex antigens are fatty acylated via thioester bonds. J Biol Chem 259:7230–7238
Kaufman J, Andersen R, Avila D, Engberg J, Lambris J, Salomonsen J, Welinder K, Skjødt K (1992) Different features of the MHC class I heterodimer have evolved at different rates. Chicken B-F and beta 2-microglobulin sequences reveal invariant surface residues. J Immunol 148:1532–1546
Kaufman J, Milne S, Göbel TW, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925
King G, Dixon AM (2010) Evidence for role of transmembrane helix-helix interactions in the assembly of the class II major histocompatibility complex. Mol BioSyst 6:1650–1661
Koch N, Lauer W, Habicht J, Dobberstein B (1987) Primary structure of the gene for the murine Ia antigen-associated invariant chains (II). An alternatively spliced exon encodes a cysteine-rich domain highly homologous to a repetitive sequence of thyroglobulin. EMBO J 6:1677–1683
Koch N, Zacharias M, König A, Temme S, Neumann J, Springer S (2011) Stoichiometry of HLA class II-invariant chain oligomers. PLoS One 6:e17257
Kokubu F, Litman R, Shamblott MJ, Hinds K, Litman GW (1988) Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J 7:3413–3422
Komaniwa S, Hayashi H, Kawamoto H, Sato SB, Ikawa T, Katsura Y, Udaka K (2009) Lipid-mediated presentation of MHC class II molecules guides thymocytes to the CD4 lineage. Eur J Immunol 39:96–112
Kozik P, Francis RW, Seaman MN, Robinson MS (2010) A screen for endocytic motifs. Traffic 11:843–855
Kropshofer H, Vogt AB, Hämmerling GJ (1995) Structural features of the invariant chain fragment CLIP controlling rapid release from HLA-DR molecules and inhibition of peptide binding. Proc Natl Acad Sci U S A 92:8313–8317
Kropshofer H, Vogt AB, Moldenhauer G, Hammer J, Blum JS, Hämmerling GJ (1996) Editing of the HLA-DR-peptide repertoire by HLA-DM. EMBO J 15:6144–6154
Lamb CA, Cresswell P (1992) Assembly and transport properties of invariant chain trimers and HLA-DR-invariant chain complexes. J Immunol 148:3478–3482
Lennon-Duménil AM, Roberts RA, Valentijn K, Driessen C, Overkleeft HS, Erickson A, Peters PJ, Bikoff E, Ploegh HL, Wolf Bryant P (2001) The p41 isoform of invariant chain is a chaperone for cathepsin L. EMBO J 20:4055–4064
Li Q, Ao J, Mu Y, Yang Z, Li T, Zhang X, Chen X (2015) Cathepsin S, but not cathepsin L, participates in the MHC class II-associated invariant chain processing in large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol 47:743–750
Lindstedt R, Liljedahl M, Péléraux A, Peterson PA, Karlsson L (1995) The MHC class II molecule H2-M is targeted to an endosomal compartment by a tyrosine-based targeting motif. Immunity 3:561–572
Litman GW, Rast JP, Shamblott MJ, Haire RN, Hulst M, Roess W, Litman RT, Hinds-Frey KR, Zilch A, Amemiya CT (1993) Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol Biol Evol 10:60–72
Litman GW, Rast JP, Fugmann SD (2010) The origins of vertebrate adaptive immunity. Nat Rev Immunol 10:543–553
Lotteau V, Teyton L, Burroughs D, Charron D (1987) A novel HLA class II molecule (DR alpha-DQ beta) created by mismatched isotype pairing. Nature 329:339–341
Majera D, Kristan KČ, Neefjes J, Turk D, Mihelič M (2012) Expression, purification and assembly of soluble multimeric MHC class II-invariant chain complexes. FEBS Lett 586:1318–1324
Malmstrøm M, Matschiner M, Tørresen OK, Star B, Snipen LG, Hansen TF, Baalsrud HT, Nederbragt AJ, Hanel R, Salzburger W, Stenseth NC, Jakobsen KS, Jentoft S (2016) Evolution of the immune system influences speciation rates in teleost fishes. Nat Genet 48:1204–1210
Marks MS, Germain RN, Bonifacino JS (1995) Transient aggregation of major histocompatibility complex class II chains during assembly in normal spleen cells. J Biol Chem 270:10475–10481
Mellins ED, Stern LJ (2014) HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol 26:115–122
Mihelic M, Turk D (2007) Two decades of thyroglobulin type-1 domain research. Biol Chem 388:1123–1130
Mihelic M, Dobersek A, Guncar G, Turk D (2008) Inhibitory fragment from the p41 form of invariant chain can regulate activity of cysteine cathepsins in antigen presentation. J Biol Chem 283:14453–14460
Moore DT, Berger BW, DeGrado WF (2008) Protein-protein interactions in the membrane: sequence, structural, and biological motifs. Structure 16:991–1001
Morris P, Shaman J, Attaya M, Amaya M, Goodman S, Bergman C, Monaco JJ, Mellins E (1994) An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules. Nature 368:551–554
Mosyak L, Zaller DM, Wiley DC (1998) The structure of HLA-DM, the peptide exchange catalyst that loads antigen onto class II MHC molecules during antigen presentation. Immunity 9:377–383
Naujokas MF, Morin M, Anderson MS, Peterson M, Miller J (1993) The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell 74:257–268
Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11:823–836
Nguyen TB, Jayaraman P, Bergseng E, Madhusudhan MS, Kim CY, Sollid LM (2017) Unraveling the structural basis for the unusually rich association of human leukocyte antigen DQ2.5 with class-II-associated invariant chain peptides. J Biol Chem 292:9218–9228
Ohnishi K (1984) Domain structures and molecular evolution of class I and class II major histocompatibility gene complex (MHC) products deduced from amino acid and nucleotide sequence homologies. Orig Life 14:707–715
Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF (2006) Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 176:3674–3685
O'Sullivan DM, Noonan D, Quaranta V (1987) Four Ia invariant chain forms derive from a single gene by alternate splicing and alternate initiation of transcription/translation. J Exp Med 166:444–460
Painter CA, Stern LJ (2012) Conformational variation in structures of classical and non-classical MHCII proteins and functional implications. Immunol Rev 250:144–157
Pieters J, Bakke O, Dobberstein B (1993) The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail. J Cell Sci 106:831–846
Pond L, Kuhn LA, Teyton L, Schutze MP, Tainer JA, Jackson MR, Peterson PA (1995) A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J Biol Chem 270:19989–19997
Pos W, Sethi DK, Call MJ, Schulze MS, Anders AK, Pyrdol J, Wucherpfennig KW (2012) Crystal structure of the HLA-DM-HLA-DR1 complex defines mechanisms for rapid peptide selection. Cell 151:1557–1568
Pos W, Sethi DK, Wucherpfennig KW (2013) Mechanisms of peptide repertoire selection by HLA-DM. Trends Immunol 34:495–501
Rammensee HG, Friede T, Stevanoviíc S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41:178–228
Riberdy JM, Avva RR, Geuze HJ, Cresswell P (1994) Transport and intracellular distribution of MHC class II molecules and associated invariant chain in normal and antigen-processing mutant cell lines. J Cell Biol 125:1225–1237
Roche PA, Furuta K (2015) The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15:203–216
Rudensky AY, Preston-Hurlburt P, Hong SC, Barlow A, Janeway CA Jr (1991) Sequence analysis of peptides bound to MHC class II molecules. Nature 353:622–627
Santos MS, Park CK, Foss SM, Li H, Voglmaier SM (2013) Sorting of the vesicular GABA transporter to functional vesicle pools by an atypical dileucine-like motif. J Neurosci 33:10634–10646
Schafer PH, Pierce SK, Jardetzky TS (1995 Dec) The structure of MHC class II: a role for dimer of dimers. Semin Immunol 7(6):389–398
Schulze MS, Wucherpfennig KW (2012) The mechanism of HLA-DM induced peptide exchange in the MHC class II antigen presentation pathway. Curr Opin Immunol 24:105–111
Shachar I, Flavell RA (1996) Requirement for invariant chain in B cell maturation and function. Science 274:106–108
Silva DS, Reis MI, Nascimento DS, do Vale A, Pereira PJ, dos Santos NM (2007) Sea bass (Dicentrarchus labrax) invariant chain and class II major histocompatibility complex: sequencing and structural analysis using 3D homology modelling. Mol Immunol 44:3758–3776
Sloan VS, Cameron P, Porter G, Gammon M, Amaya M, Mellins E, Zaller DM (1995) Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature 375:802–806
Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrøm M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzén A, Winer R, Knight J, Vogel JH, Aken B, Andersen Ø, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjøen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, Jakobsen KS (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210
Stern LJ, Wiley DC (1992) The human class II MHC protein HLA-DR1 assembles as empty alpha beta heterodimers in the absence of antigenic peptide. Cell 68(3):465–477
Stern LJ, Wiley DC (1994) Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2:245–251
Strubin M, Berte C, Mach B (1986) Alternative splicing and alternative initiation of translation explain the four forms of the Ia antigen-associated invariant chain. EMBO J 5:3483–3488
Tohmé M, Manoury B (2015) Invariant chain is a new chaperone for TLR7 in B cells. Mol Immunol 68:102–105
Travers P, Blundell TL, Sternberg MJ, Bodmer WF (1984) Structural and evolutionary analysis of HLA-D-region products. Nature 310(5974):235–238
Tulp A, Verwoerd D, Dobberstein B, Ploegh HL, Pieters J (1994) Isolation and characterization of the intracellular MHC class II compartment. Nature 369:120–126
Viville S, Neefjes J, Lotteau V, Dierich A, Lemeur M, Ploegh H, Benoist C, Mathis D (1993) Mice lacking the MHC class II-associated invariant chain. Cell 72:635–648
Walter W, Scheuer C, Lingnau K, Reichert TE, Schmitt E, Loos M, Maeurer MJ (2000) H2-M, a facilitator of MHC class II peptide loading, and its negative modulator H2-O are differentially expressed in response to proinflammatory cytokines. Immunogenetics 51:794–804
Ye H, Xu FZ, Yu WY (2009) The intracellular localization and oligomerization of chicken invariant chain with major histocompatibility complex class II subunits. Poult Sci 88:1594–1600
Yin L, Calvo-Calle JM, Dominguez-Amorocho O, Stern LJ (2012) HLA-DM constrains epitope selection in the human CD4 T cell response to vaccinia virus by favoring the presentation of peptides with longer HLA-DM-mediated half-lives. J Immunol 189:3983–3994
Yoder JA, Haire RN, Litman GW (1999) Cloning of two zebrafish cDNAs that share domains with the MHC class II-associated invariant chain. Immunogenetics 50:84–88
Zhou Z, Callaway KA, Weber DA, Jensen PE (2009) Cutting edge: HLA-DM functions through a mechanism that does not require specific conserved hydrogen bonds in class II MHC-peptide complexes. J Immunol 183:4187–4191
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on Biology and Evolution of Antigen Presentation
Rights and permissions
About this article
Cite this article
Dijkstra, J.M., Yamaguchi, T. Ancient features of the MHC class II presentation pathway, and a model for the possible origin of MHC molecules. Immunogenetics 71, 233–249 (2019). https://doi.org/10.1007/s00251-018-1090-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00251-018-1090-2