Abstract
Proteins and peptides with hydrophobic and amphiphilic segments are responsible for many biological functions. The sensing and generation of membrane curvature are the functions of several protein domains or motifs. While some specific membrane proteins play an essential role in controlling the curvature of distinct intracellular membranes, others participate in various cellular processes such as clathrin-mediated endocytosis, where several proteins sort themselves at the neck of the membrane bud. A few membrane-inserting proteins form nanopores that permeate selective ions and water to cross the membrane. In addition, many natural and synthetic small peptides and protein toxins disrupt the membrane by inducing nonspecific pores in the membrane. The pore formation causes cell death through the uncontrolled exchange between interior and exterior cellular contents. In this article, we discuss the insertion depth and orientation of protein/peptide helices, and their role as a sensor and inducer of membrane curvature as well as a pore former in the membrane. We anticipate that this extensive review will assist biophysicists to gain insight into curvature sensing, generation, and pore formation by membrane insertion.
Graphical Abstract








Similar content being viewed by others
Data Availability
All data generated or analyzed during this study are included in this article.
References
Aimon S, Callan-Jones A, Berthaud A et al (2014) Membrane shape modulates transmembrane protein distribution. Dev Cell 28(2):212–218. https://doi.org/10.1016/j.devcel.2013.12.012
Akimov SA, Volynsky PE, Galimzyanov TR et al (2017) Pore formation in lipid membrane ii: Energy landscape under external stress. Sci Rep 7(1):1–20. https://doi.org/10.1038/s41598-017-12749-x
Alberts B, Heald R, Johnson A et al (2022) Molecular Biology of the Cell, 7th edn. W. W. Norton & Company
Alexiev U (2013) Dynamics of helix 8 in gpcr function Encyclopedia of Biophysics Roberts. Springer, Berlin, pp 549–552. https://doi.org/10.1007/978-3-642-16712-6_78
Anbazhagan V, Schneider D (2010) The membrane environment modulates self-association of the human GpA TM domain-implications for membrane protein folding and transmembrane signaling. Biochimica Et Biophysica Acta (BBA)-Biomembranes 1798(10):1899–1907. https://doi.org/10.1016/j.bbamem.2010.06.027
Anderluh G, Lakey J (eds) (2010) Molecular Mechanism of Sphingomyelin-Specific Membrane Binding and Pore Formation by Actinoporins. Springer, NY
Antonny B (2011) Mechanisms of membrane curvature sensing. Annu Rev Biochem 80:101–123. https://doi.org/10.1146/annurev-biochem-052809-155121
Artim CM, Phan NN, Alabi CA (2018) Effect of composition on antibacterial activity of sequence-defined cationic oligothioetheramides. ACS Infect Dis 4(8):1257–1263. https://doi.org/10.1021/acsinfecdis.8b00079
Awile O, Krisko A, Sbalzarini IF et al (2010) Intrinsically disordered regions may lower the hydration free energy in proteins: a case study of nudix hydrolase in the bacterium deinococcus radiodurans. PLoS Comput Biol 6(7):e1000,854. https://doi.org/10.1371/journal.pcbi.1000854
Babu MM (2016) The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 44(5):1185–1200. https://doi.org/10.1042/BST20160172
Balsera M, Goetze TA, Kovács-Bogdán E et al (2009) Characterization of tic110, a channel-forming protein at the inner envelope membrane of chloroplasts, unveils a response to \(\rm Ca^{2+}\) and a stromal regulatory disulfide bridge. J Biol Chem 284(5):2603–2616. https://doi.org/10.1074/jbc.M807134200
Baumgart T, Capraro BR, Zhu C et al (2011) Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu Rev Phys Chem 62:483–506. https://doi.org/10.1146/annurev.physchem.012809.103450
Bechinger B, Kim Y, Chirlian L et al (1991) Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. J Biomol NMR 1(2):167–173. https://doi.org/10.1007/BF01877228
Bhatia VK, Madsen KL, Bolinger PY et al (2009) Amphipathic motifs in bar domains are essential for membrane curvature sensing. EMBO J 28(21):3303–3314. https://doi.org/10.1038/emboj.2009.261
Bhatia VK, Hatzakis NS, Stamou D (2010) A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 21:381–390. https://doi.org/10.1016/j.semcdb.2009.12.004
Bigay J, Gounon P, Robineau S et al (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426(6966):563–566. https://doi.org/10.1038/nature02108
Bigay J, Casella JF, Drin G et al (2005) ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J 24(13):2244–2253. https://doi.org/10.1038/sj.emboj.7600714
Bigelow HR, Petrey DS, Liu J et al (2004) Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res 32(8):2566–2577. https://doi.org/10.1093/nar/gkh580
Bodescu M, Rosenkötter F, Fritz J (2017) Time lapse AFM on vesicle formation from mixed lipid bilayers induced by the membrane-active peptide melittin. Soft Matter 13(38):6845–6851. https://doi.org/10.1039/C7SM01095H
Böhme S, Padmavathi PV, Holterhues J et al (2009) Topology of the amphipathic helices of the colicin A pore-forming domain in E. coli lipid membranes studied by pulse EPR. Phys Chem Chem Phys 11(31):6770–6777. https://doi.org/10.1039/B907117M
Boman H (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215. https://doi.org/10.1046/j.1365-2796.2003.01228.x
Botelho AV, Huber T, Sakmar TP et al (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 91(12):4464–4477. https://doi.org/10.1529/biophysj.106.082776
Brahma R, Raghuraman H (2022) Measuring membrane penetration depths and conformational changes in membrane peptides and proteins. J Membr Biol 255(4–5):469–483. https://doi.org/10.1007/s00232-022-00224-2
Brasseur R (1991) Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J Biol Chem 266(24):16,120-16,127. https://doi.org/10.1016/S0021-9258(18)98524-8
Breukink E, van Kraaij C, van Dalen A et al (1998) The orientation of nisin in membranes. Biochemistry (Mosc ) 37(22):8153–8162. https://doi.org/10.1021/bi972797l
Breukink E, Wiedemann I, Cv Kraaij et al (1999) Use of the cell wall precursor lipid ii by a pore-forming peptide antibiotic. Science 286(5448):2361–2364. https://doi.org/10.1126/science.286.5448.2361
Breukink E, van Heusden HE, Vollmerhaus PJ et al (2003) Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem 278(22):19,898-19,903. https://doi.org/10.1074/jbc.M301463200
Brochard-Wyart F, de Gennes PG, Sandre O (2000) Transient pores in stretched vesicles: role of leak-out. Phys A 278(1–2):32–51. https://doi.org/10.1016/S0378-4371(99)00559-2
Brooks RL, Dixon AM (2020) Revealing the mechanism of protein-lipid interactions for a putative membrane curvature sensor in plant endoplasmic reticulum. Biochimica et Biophysica Acta (BBA)-Biomembranes 1862(3):183,160. https://doi.org/10.1016/j.bbamem.2019.183160
Campelo F, McMahon HT, Kozlov MM (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95(5):2325–2339. https://doi.org/10.1529/biophysj.108.133173
Chattopadhyay A, London E (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry (Mosc ) 26(1):39–45. https://doi.org/10.1021/bi00375a006
Chattopadhyay A, McNamee MG (1991) Average membrane penetration depth of tryptophan residues of the nicotinic acetylcholine receptor by the parallax method. Biochemistry (Mosc ) 30(29):7159–7164. https://doi.org/10.1021/bi00243a017
Chattopadhyay G, Varadarajan R (2019) Facile measurement of protein stability and folding kinetics using a nano differential scanning fluorimeter. Protein Sci 28(6):1127–1134. https://doi.org/10.1002/pro.3622
Chen FY, Lee MT, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 84(6):3751–3758. https://doi.org/10.1016/S0006-3495(03)75103-0
Chen H, Fre S, Slepnev VI et al (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394(6695):793–797. https://doi.org/10.1038/29555
Chen Z, Atefi E, Baumgart T (2016) Membrane shape instability induced by protein crowding. Biophys J 111(9):1823–1826. https://doi.org/10.1016/j.bpj.2016.09.039
Chin LS, Raynor MC, Wei X et al (2001) Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 276(10):7069–7078. https://doi.org/10.1074/jbc.M004129200
Cho H, Stanzione F, Oak A et al (2019) Intrinsic structural features of the human IRE1\(\alpha\) transmembrane domain sense membrane lipid saturation. Cell Rep 27(1):307–320. https://doi.org/10.1016/j.celrep.2019.03.017
Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151. https://doi.org/10.1146/annurev.biophys.33.110502.133337
Choe S, Bennett MJ, Fujii G et al (1992) The crystal structure of diphtheria toxin. Nature 357(6375):216–222. https://doi.org/10.1038/357216a0
Christ K, Wiedemann I, Bakowsky U et al (2007) The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochimica et Biophysica Acta (BBA)-Biomembranes 1768(3):694–704. https://doi.org/10.1016/j.bbamem.2006.12.003
Cornish J, Chamberlain SG, Owen D et al (2020) Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 48(6):2669–2689. https://doi.org/10.1042/BST20200467
Cui H, Lyman E, Voth GA (2011) Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys J 100(5):1271–1279. https://doi.org/10.1016/j.bpj.2011.01.036
Cymer F, Von Heijne G, White SH (2015) Mechanisms of integral membrane protein insertion and folding. J Mol Biol 427(5):999–1022. https://doi.org/10.1016/j.jmb.2014.09.014
De Gerónimo E, Sawicki LR, Arias NB et al (2014) IFABP portal region insertion during membrane interaction depends on phospholipid composition. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1841(1):141–150. https://doi.org/10.1016/j.bbalip.2013.10.011
De Groot BL, Frigato T, Helms V et al (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biol 333(2):279–293. https://doi.org/10.1016/j.jmb.2003.08.003
Derganc J, Čopič A (2016) Membrane bending by protein crowding is affected by protein lateral confinement. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858(6):1152–1159. https://doi.org/10.1016/j.bbamem.2016.03.009
Doñate F, Yañez AJ, Iriarte A et al (2000) Interaction of the precursor to mitochondrial aspartate aminotransferase and its presequence peptide with model membranes. J Biol Chem 275(44):34,147-34,156. https://doi.org/10.1074/jbc.M004494200
Drin G, Casella JF, Gautier R et al (2007) A general amphipathic \(\alpha\)-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14(2):138–146. https://doi.org/10.1038/nsmb1194
Drolle E, Kučerka N, Hoopes M et al (2013) Effect of melatonin and cholesterol on the structure of DOPC and DPPC membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1828(9):2247–2254. https://doi.org/10.1016/j.bbamem.2013.05.015
Duclohier H, Molle G, Spach G (1989) Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys J 56(5):1017–1021. https://doi.org/10.1016/S0006-3495(89)82746-8
Eftink MR (2002) Intrinsic fluorescence of proteins. Topics in fluorescence spectroscopy. Springer, Berlin, pp 1–15
Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochimica et Biophysica Acta (BBA)-Biomembranes 1788(1):289–294. https://doi.org/10.1016/j.bbamem.2008.08.023
Fagerberg L, Jonasson K, von Heijne G et al (2010) Prediction of the human membrane proteome. Proteomics 10(6):1141–1149. https://doi.org/10.1002/pmic.200900258
Fjell CD, Hiss JA, Hancock RE et al (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discovery 11(1):37–51. https://doi.org/10.1038/nrd3591
Ford MG, Mills IG, Peter BJ et al (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419(6905):361–366. https://doi.org/10.1038/nature01020
Fox RO, Richards FM (1982) A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-å resolution. Nature 300(5890):325–330. https://doi.org/10.1038/300325a0
Frost A, Perera R, Roux A et al (2008) Structural basis of membrane invagination by f-bar domains. Cell 132(5):807–817. https://doi.org/10.1016/j.cell.2007.12.041
Fukuchi S, Homma K, Minezaki Y et al (2006) Intrinsically disordered loops inserted into the structural domains of human proteins. J Mol Biol 355(4):845–857. https://doi.org/10.1016/j.jmb.2005.10.037
Gable JE, Schlamadinger DE, Cogen AL et al (2009) Fluorescence and uv resonance raman study of peptide- vesicle interactions of human cathelicidin ll-37 and its f6w and f17w mutants. Biochemistry (Mosc ) 48(47):11,264-11,272. https://doi.org/10.1021/bi900996q
Gallop JL, Jao CC, Kent HM et al (2006) Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25(12):2898–2910. https://doi.org/10.1038/sj.emboj.7601174
Garcera MJG, Elferink MG, Driessen AJ et al (1993) In vitro pore-forming activity of the lantibiotic nisin: Role of protonmotive force and lipid composition. Eur J Biochem 212(2):417–422. https://doi.org/10.1111/j.1432-1033.1993.tb17677.x
Ghosh AK, Rukmini R, Chattopadhyay A (1997) Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Biochemistry (Mosc ) 36(47):14,291-14,305. https://doi.org/10.1021/bi971933j
Gkeka P, Sarkisov L (2009) Spontaneous formation of a barrel-stave pore in a coarse-grained model of the synthetic LS3 peptide and a dppc lipid bilayer. J Phys Chem B 113(1):6–8. https://doi.org/10.1021/jp808417a
Gkeka P, Sarkisov L (2010) Interactions of phospholipid bilayers with several classes of amphiphilic \(\alpha\)-helical peptides: insights from coarse-grained molecular dynamics simulations. J Phys Chem B 114(2):826–839. https://doi.org/10.1021/jp908320b
Glaser RW, Sachse C, Dürr UH et al (2005) Concentration-dependent realignment of the antimicrobial peptide PGLa in lipid membranes observed by solid-state \({19}^{{\rm F-NMR}}\). Biophys J 88(5):3392–3397. https://doi.org/10.1529/biophysj.104.056424
Gómez-Llobregat J, Elías-Wolff F, Lindén M (2016) Anisotropic membrane curvature sensing by amphipathic peptides. Biophys J 110(1):197–204. https://doi.org/10.1016/j.bpj.2015.11.3512
Gonen T, Cheng Y, Sliz P et al (2005) Lipid-protein interactions in double-layered two-dimensional aqp0 crystals. Nature 438(7068):633–638. https://doi.org/10.1038/nature04321
González-Rubio P, Gautier R, Etchebest C et al (2011) Amphipathic-lipid-packing-sensor interactions with lipids assessed by atomistic molecular dynamics. Biochimica et Biophysica Acta (BBA)-Biomembranes 1808(9):2119–2127. https://doi.org/10.1016/j.bbamem.2011.05.006
Grau B, Javanainen M, García-Murria MJ et al (2017) The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress 1(2):90. https://doi.org/10.15698/cst2017.11.111
Grau-Campistany A, Strandberg E, Wadhwani P et al (2015) Hydrophobic mismatch demonstrated for membranolytic peptides and their use as molecular rulers to measure bilayer thickness in native cells. Sci Rep 5(1):1–9. https://doi.org/10.1038/srep09388
Grecco HE, Schmick M, Bastiaens PI (2011) Signaling from the living plasma membrane. Cell 144(6):897–909. https://doi.org/10.1016/j.cell.2011.01.029
Haldar S, Chaudhuri A, Gu H et al (2012) Membrane organization and dynamics of “inner pair’’ and “outer pair’’ tryptophan residues in gramicidin channels. J Phys Chem B 116(36):11,056-11,064. https://doi.org/10.1021/jp304846f
Han M, Mei Y, Khant H et al (2009) Characterization of antibiotic peptide pores using cryo-em and comparison to neutron scattering. Biophys J 97(1):164–172. https://doi.org/10.1016/j.bpj.2009.04.039
Harrington JM, Scelsi C, Hartel A et al (2012) Novel african trypanocidal agents: membrane rigidifying peptides. PLoS ONE 7(e44):384. https://doi.org/10.1371/journal.pone.0044384
Harrison RL, Bonning BC (2010) Proteases as insecticidal agents. Toxins 2(5):935–953. https://doi.org/10.3390/toxins2050935
Has C (2022) Recent advancements to measure membrane mechanical and transport properties. J Liposome Res 32(1):1–21. https://doi.org/10.1080/08982104.2020.1850776
Has C, Das SL (2021) Recent developments in membrane curvature sensing and induction by proteins. Biochimica et Biophysica Acta (BBA)-General Subjects 1865(10):129,971. https://doi.org/10.1016/j.bbagen.2021.129971
Has C, Pan S (2021) Vesicle formation mechanisms: an overview. J Liposome Res 31(1):90–111. https://doi.org/10.1080/08982104.2020.1730401
Has C, Sivadas P, Das SL (2022) Insights into membrane curvature sensing and membrane remodeling by intrinsically disordered proteins and protein regions. J Membr. https://doi.org/10.1007/s00232-022-00237-x
He K, Ludtke SJ, Worcester DL et al (1996) Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J 70(6):2659–2666. https://doi.org/10.1016/S0006-3495(96)79835-1
Heller WT, He K, Ludtke SJ et al (1997) Effect of changing the size of lipid headgroup on peptide insertion into membranes. Biophys J 73(1):239–244. https://doi.org/10.1016/S0006-3495(97)78064-0
Heller WT, Waring AJ, Lehrer RI et al (1998) Multiple states of \(\beta\)-sheet peptide protegrin in lipid bilayers. Biochemistry (Mosc ) 37(49):17,331-17,338. https://doi.org/10.1021/bi981314q
Heller WT, Waring AJ, Lehrer RI et al (2000) Membrane thinning effect of the \(\beta\)-sheet antimicrobial protegrin. Biochemistry (Mosc ) 39(1):139–145. https://doi.org/10.1021/bi991892m
Helms V (2002) Attraction within the membrane. EMBO Rep 3(12):1133–1138. https://doi.org/10.1093/embo-reports/kvf245
Henriksen JR, Andresen TL (2011) Thermodynamic profiling of peptide membrane interactions by isothermal titration calorimetry: a search for pores and micelles. Biophys J 101(1):100–109. https://doi.org/10.1016/j.bpj.2011.05.047
Henzler Wildman KA, Lee DK, Ramamoorthy A (2003) Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry (Mosc ) 42(21):6545–6558. https://doi.org/10.1021/bi0273563
Herlo R, Lund VK, Lycas MD et al (2018) An amphipathic helix directs cellular membrane curvature sensing and function of the bar domain protein PICK1. Cell Rep 23(7):2056–2069. https://doi.org/10.1016/j.celrep.2018.04.074
van Heusden HE, de Kruijff B, Breukink E (2002) Lipid II induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin. Biochemistry (Mosc ) 41(40):12,171-12,178. https://doi.org/10.1021/bi026090x
Hianik T (2011) Mechanical properties of bilayer lipid membranes and protein-lipid interactions. Adv Planar Lipid Bilayers Liposomes 13:33–72. https://doi.org/10.1016/B978-0-12-387721-5.00002-X
Hinds MG, Zhang W, Anderluh G et al (2002) Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. J Mol Biol 315(5):1219–1229. https://doi.org/10.1006/jmbi.2001.5321
Holt A, Killian JA (2010) Orientation and dynamics of transmembrane peptides: the power of simple models. Eur Biophys J 39(4):609–621. https://doi.org/10.1007/s00249-009-0567-1
Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes 1778(2):357–375. https://doi.org/10.1016/j.bbamem.2007.11.008
Huang HW (1995) Elasticity of lipid bilayer interacting with amphiphilic helical peptides. J Phys II 5(10):1427–1431. https://doi.org/10.1051/jp2:1995103
Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry (Mosc ) 39(29):8347–8352. https://doi.org/10.1021/bi000946l
Huang HW (2006) Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(9):1292–1302. https://doi.org/10.1016/j.bbamem.2006.02.001
Huang HW, Charron NE (2017) Understanding membrane-active antimicrobial peptides. Q Rev Biophys. https://doi.org/10.1017/S0033583517000087
Huang HW, Wu Y (1991) Lipid-alamethicin interactions influence alamethicin orientation. Biophys J 60(5):1079–1087. https://doi.org/10.1016/S0006-3495(91)82144-0
Huang HW, Chen FY, Lee MT (2004) Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett 92(19):198,304. https://doi.org/10.1103/PhysRevLett.92.198304
Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2):143–152. https://doi.org/10.1007/s13238-010-0004-3
James HP, Jadhav S (2021) Kinetics of pore formation in stearoyl-oleoyl-phosphatidylcholine vesicles by ph sensitive cell penetrating peptide gala. Chem Phys Lipids 241(105):139. https://doi.org/10.1016/j.chemphyslip.2021.105139
Jao CC, Der-Sarkissian A, Chen J et al (2004) Structure of membrane-bound \(\alpha\)-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci 101(22):8331–8336. https://doi.org/10.1073/pnas.0400553101
de Jesus AJ, White OR, Flynn AD et al (2016) Determinants of curvature-sensing behavior for MARCKS-fragment peptides. Biophys J 110(9):1980–1992. https://doi.org/10.1016/j.bpj.2016.04.007
Jobin ML, Vamparys L, Deniau R et al (2019) Biophysical insight on the membrane insertion of an arginine-rich cell-penetrating peptide. Int J Mol Sci 20(18):4441. https://doi.org/10.3390/ijms20184441
Jung HH, Jung HJ, Milescu M et al (2010) Structure and orientation of a voltage-sensor toxin in lipid membranes. Biophys J 99(2):638–646. https://doi.org/10.1016/j.bpj.2010.04.061
Jung JS, Preston GM, Smith BL et al (1994) Molecular structure of the water channel through aquaporin CHIP. the hourglass model. J Biol Chem 269(20):14,648-14,654. https://doi.org/10.1016/S0021-9258(17)36674-7
Kabelka I, Vacha R (2021) Advances in molecular understanding of \(\alpha\)-helical membrane-active peptides. Acc Chem Res 54(9):2196–2204. https://doi.org/10.1021/acs.accounts.1c00047
Kahn R, Kern F, Clark J et al (1991) Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins. J Biol Chem 266(4):2606–2614. https://doi.org/10.1016/S0021-9258(18)52288-2
Kaksonen M, Roux A (2018) Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19(5):313–326. https://doi.org/10.1038/nrm.2017.132
Karatekin E, Sandre O, Guitouni H et al (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84(3):1734–1749. https://doi.org/10.1016/S0006-3495(03)74981-9
Kawano K, Ogushi M, Masuda T et al (2019) Development of a membrane curvature-sensing peptide based on a structure-activity correlation study. Chem Pharm Bull. https://doi.org/10.1248/cpb.c19-00465
Khandelia H, Ipsen JH, Mouritsen OG (2008) The impact of peptides on lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1778(7–8):1528–1536. https://doi.org/10.1016/j.bbamem.2008.02.009
Killian JA (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1376(3):401–416. https://doi.org/10.1016/s0304-4157(98)00017-3
Killian JA, von Heijne G (2000) How proteins adapt to a membrane-water interface. Trends Biochem Sci 25(9):429–434. https://doi.org/10.1016/s0968-0004(00)01626-1
Kirchberg K, Kim TY, Möller M et al (2011) Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc Natl Acad Sci 108(46):18,690-18,695. https://doi.org/10.1073/pnas.1015461108
Kirszberg C, Lima LG, de Oliveira ADS et al (2009) Simultaneous tissue factor expression and phosphatidylserine exposure account for the highly procoagulant pattern of melanoma cell lines. Melanoma Res 19(5):301–308. https://doi.org/10.1097/CMR.0b013e32832e40fe
Koslov M, Markin V (1984) A theory of osmotic lysis of lipid vesicles. J Theor Biol 109(1):17–39. https://doi.org/10.1016/s0022-5193(84)80108-3
Kristensen K, Henriksen JR, Andresen TL (2014) Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838(12):2994–3002. https://doi.org/10.1016/j.bbamem.2014.08.007
Ladokhin AS (1999) Analysis of protein and peptide penetration into membranes by depth-dependent fluorescence quenching: theoretical considerations. Biophys J 76(2):946–955. https://doi.org/10.1016/S0006-3495(99)77258-9
Ladokhin AS (2014) Measuring membrane penetration with depth-dependent fluorescence quenching: distribution analysis is coming of age. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838(9):2289–2295. https://doi.org/10.1016/j.bbamem.2014.02.019
Ladokhin AS, Holloway P, Kostrzhevska E (1993) Distribution analysis of membrane penetration of proteins by depth-dependent fluorescence quenching. J Fluoresc 3(3):195–197. https://doi.org/10.1007/BF00862742
Ladokhin AS, Selsted ME, White SH (1997) Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J 72(4):1762–1766. https://doi.org/10.1016/S0006-3495(97)78822-2
Lai CL, Jao CC, Lyman E et al (2012) Membrane binding and self-association of the epsin N-terminal homology domain. J Mol Biol 423(5):800–817. https://doi.org/10.1016/j.jmb.2012.08.010
Lee CC, Sun Y, Qian S et al (2011) Transmembrane pores formed by human antimicrobial peptide ll-37. Biophys J 100(7):1688–1696. https://doi.org/10.1016/j.bpj.2011.02.018
Lee MT, Chen FY, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43(12):3590–3599. https://doi.org/10.1021/bi036153r
Lee MT, Hung WC, Chen FY et al (2005) Many-body effect of antimicrobial peptides: on the correlation between lipid’s spontaneous curvature and pore formation. Biophys J 89(6):4006–4016. https://doi.org/10.1529/biophysj.105.068080
Lee MT, Hung WC, Chen FY et al (2008) Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc Natl Acad Sci 105(13):5087–5092. https://doi.org/10.1073/pnas.0710625105
Lee MT, Sun TL, Hung WC et al (2013) Process of inducing pores in membranes by melittin. Proc Natl Acad Sci 110(35):14,243-14,248. https://doi.org/10.1073/pnas.1307010110l
Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128(37):12,156-12,161. https://doi.org/10.1021/ja062927q
Leveritt JM III, Pino-Angeles A, Lazaridis T (2015) The structure of a melittin-stabilized pore. Biophys J 108(10):2424–2426. https://doi.org/10.1016/j.bpj.2015.04.006
Li W, Nicol F, Szoka FC Jr (2004) GALA: a designed synthetic ph-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 56(7):967–985. https://doi.org/10.1016/j.addr.2003.10.041
Li ZL (2018) Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1. Chin Phys B 27(3):038,703
Lichtenberg D, Robson RJ, Dennis EA (1983) Solubilization of phospholipids by detergents structural and kinetic aspects. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 737(2):285–304. https://doi.org/10.1016/0304-4157(83)90004-7
Lin JM, Lin TL, Jeng US (2007) Time-resolved grazing-incidence small-angle X-ray scattering studies of lipid multibilayers with the insertion of amyloid peptide during the swelling process. J Appl Crystallogr 40(s1):s367–s372. https://doi.org/10.1107/S0021889807008199
London E, Ladokhin AS (2002) Measuring the depth of amino acid residues in membrane-inserted peptides by fluorescence quenching. Curr Top Membr 52:89–115. https://doi.org/10.1016/S1063-5823(02)52006-8
Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19(5):549–557. https://doi.org/10.1016/j.sbi.2009.06.001
Ludtke S, He K, Huang H (1995) Membrane thinning caused by magainin 2. Biochemistry (Mosc ) 34(51):16,764-16,769. https://doi.org/10.1021/bi00051a026
Ludtke SJ, He K, Heller WT et al (1996) Membrane pores induced by magainin. Biochemistry (Mosc ) 35(43):13,723-13,728. https://doi.org/10.1021/bi9620621
Madsen KL, Bhatia VK, Gether U et al (2010) BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature. FEBS Lett 584(9):1848–1855. https://doi.org/10.1016/j.febslet.2010.01.053
Mahata P, Das SL (2017) Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis. FEBS Lett 591(10):1333–1348. https://doi.org/10.1002/1873-3468.12661
Maier O, Wiethoff CM (2010) N-terminal \(\alpha\)-helix-independent membrane interactions facilitate adenovirus protein VI induction of membrane tubule formation. Virology 408(1):31–38. https://doi.org/10.1016/j.virol.2010.08.033
Maier O, Galan DL, Wodrich H et al (2010) An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature. Virology 402(1):11–19. https://doi.org/10.1016/j.virol.2010.03.043
Maiorano JN, Davidson WS (2000) The orientation of helix 4 in apolipoprotein AI-containing reconstituted high density lipoproteins. J Biol Chem 275(23):17,374-17,380. https://doi.org/10.1074/jbc.M000044200
Mak D, Webb WW (1995) Two classes of alamethicin transmembrane channels: molecular models from single-channel properties. Biophys J 69(6):2323–2336. https://doi.org/10.1016/S0006-3495(95)80102-5
Martyna A, Bahsoun B, Badham MD et al (2017) Membrane remodeling by the m2 amphipathic helix drives influenza virus membrane scission. Sci Rep 7(1):1–12. https://doi.org/10.1038/srep44695
Martyna A, Bahsoun B, Madsen JJ et al (2020) Cholesterol alters the orientation and activity of the influenza virus M2 amphipathic helix in the membrane. J Phys Chem B 124(31):6738–6747. https://doi.org/10.1021/acs.jpcb.0c03331
Matsuzaki K (2007) Physicochemical interactions of amyloid \(\beta\)-peptide with lipid bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes 1768(8):1935–1942. https://doi.org/10.1016/j.bbamem.2007.02.009
Matsuzaki K, Murase O, Tokuda H et al (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry (Mosc ) 33(11):3342–3349. https://doi.org/10.1021/bi00177a027
Matsuzaki K, Murase O, Fujii N et al (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry (Mosc ) 35(35):11,361-11,368. https://doi.org/10.1021/bi960016v
Matsuzaki K, Yoneyama S, Murase O et al (1996) Transbilayer transport of ions and lipids coupled with mastoparan x translocation. Biochemistry (Mosc ) 35(25):8450–8456. https://doi.org/10.1021/bi960342a
May S (2000) Theories on structural perturbations of lipid bilayers. Current Opinion Colloid Interf Sci 5(3–4):244–249. https://doi.org/10.1016/S1359-0294(00)00062-5
McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596. https://doi.org/10.1038/nature04396
Mecke A, Lee DK, Ramamoorthy A et al (2005) Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J 89(6):4043–4050. https://doi.org/10.1529/biophysj.105.062596
Meincken M, Holroyd D, Rautenbach M (2005) Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of escherichia coli. Antimicrob Agents Chemother 49(10):4085–4092. https://doi.org/10.1128/AAC.49.10.4085-4092.2005
Melville DB, Studer S, Schekman R (2020) Small sequence variations between two mammalian paralogs of the small gtpase sar1 underlie functional differences in coat protein complex ii assembly. J Biol Chem 295(25):8401–8412. https://doi.org/10.1074/jbc.RA120.012964
Mesa-Galloso H, Valiente PA, Valdés-Tresanco ME et al (2019) Membrane remodeling by the lytic fragment of SticholysinII: implications for the toroidal pore model. Biophys J 117(9):1563–1576. https://doi.org/10.1016/j.bpj.2019.09.018
Mihailescu M, Krepkiy D, Milescu M et al (2014) Structural interactions of a voltage sensor toxin with lipid membranes. Proc Natl Acad Sci 111(50):E5463–E5470. https://doi.org/10.1073/pnas.1415324111
Mihajlovic M, Lazaridis T (2010) Antimicrobial peptides in toroidal and cylindrical pores. Biochimica et Biophysica Acta (BBA)-Biomembranes 1798(8):1485–1493. https://doi.org/10.1016/j.bbamem.2010.04.004
Millard TH, Bompard G, Heung MY et al (2005) Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24(2):240–250. https://doi.org/10.1038/sj.emboj.7600535
Miller SE, Mathiasen S, Bright NA et al (2015) CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev Cell 33(2):163–175. https://doi.org/10.1016/j.devcel.2015.03.002
Mittag T, Kay LE, Forman-Kay JD (2009) Protein dynamics and conformational disorder in molecular recognition. J Mol Recognit. https://doi.org/10.1002/jmr.961
Monette M, Lafleur M (1995) Modulation of melittin-induced lysis by surface charge density of membranes. Biophys J 68(1):187–195. https://doi.org/10.1016/S0006-3495(95)80174-8
Moniruzzaman M, Islam MZ, Sharmin S et al (2017) Entry of a six-residue antimicrobial peptide derived from lactoferricin B into single vesicles and Escherichia coli cells without damaging their membranes. Biochemistry (Mosc ) 56(33):4419–4431. https://doi.org/10.1021/acs.biochem.6b01274
Mukhopadhyay R, Bhattacharjee H, Rosen BP (2014) Aquaglyceroporins: generalized metalloid channels. Biochimica et Biophysica Acta (BBA)-General Subjects 1840(5):1583–1591. https://doi.org/10.1016/j.bbagen.2013.11.021
Nagle KNTNS (2005) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208:193–202. https://doi.org/10.1007/s00232-005-7006-8
Nguyen KT, Le Clair SV, Ye S et al (2009) Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy. J Phys Chem B 113(36):12,169-12,180. https://doi.org/10.1021/jp904153z
Nicol F, Nir S, Szoka FC Jr (2000) Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicles. Biophys J 78(2):818–829. https://doi.org/10.1016/S0006-3495(00)76639-2
Nicolas M, Beito B, Oliveira M et al (2021) Strategies for antimicrobial peptides immobilization on surfaces to prevent biofilm growth on biomedical devices. Antibiotics 11(1):13. https://doi.org/10.3390/antibiotics11010013
Olbrich K, Rawicz W, Needham D et al (2000) Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys J 79(1):321–327. https://doi.org/10.1016/S0006-3495(00)76294-1
Panchal R, Smart M, Bowser D et al (2002) Pore-forming proteins and their application in biotechnology. Curr Pharm Biotechnol 3(2):99–115. https://doi.org/10.2174/1389201023378418
Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin ii: buforin ii kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244(1):253–257. https://doi.org/10.1006/bbrc.1998.8159
Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88(1):91–142. https://doi.org/10.1016/j.pbiomolbio.2004.01.009
Peter BJ, Kent HM, Mills IG et al (2004) Bar domains as sensors of membrane curvature: the amphiphysin bar structure. Science 303(5657):495–499. https://doi.org/10.1126/science.1092586
Phillips LR, Milescu M, Li-Smerin Y et al (2005) Voltage-sensor activation with a tarantula toxin as cargo. Nature 436(7052):857–860. https://doi.org/10.1038/nature03873
Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598. https://doi.org/10.1194/jlr.E600002-JLR200
Pino-Angeles A, Leveritt JM III, Lazaridis T (2016) Pore structure and synergy in antimicrobial peptides of the magainin family. PLoS Comput Biol 12(1):e1004,570. https://doi.org/10.1371/journal.pcbi.1004570
Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry (Mosc ) 29(17):4031–4037. https://doi.org/10.1021/bi00469a001
Porel M, Thornlow DN, Artim CM et al (2017) Sequence-defined backbone modifications regulate antibacterial activity of oligoteas. ACS Chem Biol 12(3):715–723. https://doi.org/10.1021/acschembio.6b00837
Pranke IM, Morello V, Bigay J et al (2011) \(\alpha\)-synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J Cell Biol 194(1):89–103. https://doi.org/10.1083/jcb.201011118
Prezeau L, Rives ML, Comps-Agrar L et al (2010) Functional crosstalk between gpcrs: with or without oligomerization. Curr Opin Pharmacol 10(1):6–13. https://doi.org/10.1016/j.coph.2009.10.009
Prinz WA, Hinshaw JE (2009) Membrane-bending proteins. Crit Rev Biochem Mol Biol 44(5):278–291. https://doi.org/10.1080/10409230903183472
Puech PH, Borghi N, Karatekin E et al (2003) Line thermodynamics: adsorption at a membrane edge. Phys Rev Lett 90(12):128,304. https://doi.org/10.1103/PhysRevLett.90.128304
Qian S, Wang W, Yang L et al (2008) Structure of the alamethicin pore reconstructed by x-ray diffraction analysis. Biophys J 94(9):3512–3522. https://doi.org/10.1529/biophysj.107.126474
Raghava S, Giorda KM, Romano FB et al (2013) Sv40 late protein vp4 forms toroidal pores to disrupt membranes for viral release. Biochemistry (Mosc ) 52(22):3939–3948. https://doi.org/10.1021/bi400036z
Raghuraman H, Chattopadhyay A (2004) Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys J 87(4):2419–2432. https://doi.org/10.1529/biophysj.104.043596
Raghuraman H, Kelkar DA, Chattopadhyay A (2005) Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach. Reviews in fluorescence 2005. Springer, Berlin, pp 199–222
Ramadurai S, Holt A, Schäfer LV et al (2010) Influence of hydrophobic mismatch and amino acid composition on the lateral diffusion of transmembrane peptides. Biophys J 99(5):1447–1454. https://doi.org/10.1016/j.bpj.2010.05.042
Rao BD, Chakraborty H, Chaudhuri A et al (2020) Differential sensitivity of phlip to ester and ether lipids. Chem Phys Lipids 226(104):849. https://doi.org/10.1016/j.chemphyslip.2019.104849
Rawicz W, Olbrich KC, McIntosh T et al (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79(1):328–339. https://doi.org/10.1016/S0006-3495(00)76295-3
Ren J, Lew S, Wang Z et al (1997) Transmembrane orientation of hydrophobic \(\alpha\)-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry (Mosc ) 36(33):10,213-10,220. https://doi.org/10.1021/bi9709295
Roman EA, González Flecha FL (2014) Kinetics and thermodynamics of membrane protein folding. Biomolecules 4(1):354–373. https://doi.org/10.3390/biom4010354
Salditt T, Li C, Spaar A (2006) Structure of antimicrobial peptides and lipid membranes probed by interface-sensitive x-ray scattering. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(9):1483–1498. https://doi.org/10.1016/j.bbamem.2006.08.002
Sani MA, Whitwell T, Gehman J et al (2013) Maculatin 1.1 disrupts staphylococcus aureus lipid membranes via a pore mechanism. Antimicrob Agents Chemother 57(8):3593–3600. https://doi.org/10.1128/AAC.00195-13
Sato H, Feix JB (2006) Osmoprotection of bacterial cells from toxicity caused by antimicrobial hybrid peptide CM15. Biochemistry (Mosc ) 45(33):9997–10007. https://doi.org/10.1021/bi060979m
Sato H, Feix JB (2006) Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic \(\alpha\)-helical antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(9):1245–1256. https://doi.org/10.1021/bi00036a021
Schön P, García-Sáez AJ, Malovrh P et al (2008) Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. Biophys J 95(2):691–698. https://doi.org/10.1529/biophysj.108.129981
Schümann M, Dathe M, Wieprecht T et al (1997) The tendency of magainin to associate upon binding to phospholipid bilayers. Biochemistry (Mosc ) 36(14):4345–4351. https://doi.org/10.1021/bi962304x
Schuster BS, Dignon GL, Tang WS et al (2020) Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc Natl Acad Sci 117(21):11,421-11,431. https://doi.org/10.1073/pnas.2000223117
Sekar D, Dillmann C, Sirait-Fischer E et al (2022) Phosphatidylserine synthase PTDSS1 shapes the tumor lipidome to maintain tumor-promoting inflammation. Can Res 82(8):1617–1632. https://doi.org/10.1158/0008-5472.CAN-20-3870
Sengupta D, Leontiadou H, Mark AE et al (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochimica et Biophysica Acta (BBA)-Biomembranes 1778(10):2308–2317
Sens P, Turner MS (2006) The forces that shape caveolae. Lipid Rafts Caveolae Membr Biophys Cell Biol. https://doi.org/10.1002/3527608079.ch2
Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Peptide Sci Orig Res Biomol 66(4):236–248. https://doi.org/10.1002/bip.10260
Shibata Y, Hu J, Kozlov MM et al (2009) Mechanisms shaping the membranes of cellular organelles. Annual Rev Cell Develop 25:329–354. https://doi.org/10.1146/annurev.cellbio.042308.113324
Shigedomi K, Osada S, Jelokhani-Niaraki M et al (2020) Systematic design and validation of ion channel stabilization of amphipathic \(\alpha\)-helical peptides incorporating tryptophan residues. ACS Omega 6(1):723–732. https://doi.org/10.1021/acsomega.0c05254
Sikora K, Jaśkiewicz M, Neubauer D et al (2020) The role of counter-ions in peptides-an overview. Pharmaceuticals 13(12):442. https://doi.org/10.3390/ph13120442
Silverman JA, Mindell JA, Finkelstein A et al (1994) Mutational analysis of the helical hairpin region of diphtheria toxin transmembrane domain. J Biol Chem 269(36):22,524-22,532. https://doi.org/10.1016/S0021-9258(17)31678-2
Simunovic M, Evergren E, Callan-Jones A et al (2019) Curving cells inside and out: Roles of BAR domain proteins in membrane shaping and its cellular implications. Annu Rev Cell Dev Biol 35:111–129. https://doi.org/10.1146/annurev-cellbio-100617-060558
Sinden R (1994) DNA-protein interactions. DNA Struct Fun 8:287–325. https://doi.org/10.1016/B978-0-08-057173-7.50013-4
Sood R, Domanov Y, Pietiäinen M et al (2008) Binding of LL-37 to model biomembranes: insight into target vs host cell recognition. Biochimica et Biophysica Acta (BBA)-Biomembranes 1778(4):983–996. https://doi.org/10.1016/j.bbamem.2007.11.016
Sparr E, Ash WL, Nazarov PV et al (2005) Self-association of transmembrane \(\alpha\)-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. J Biol Chem 280(47):39,324-39,331. https://doi.org/10.1074/jbc.M502810200
Stachowiak JC, Schmid EM, Ryan CJ et al (2012) Membrane bending by protein-protein crowding. Nat Cell Biol 14(9):944–949. https://doi.org/10.1038/ncb2561
Stahelin RV, Long F, Peter BJ et al (2003) Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J Biol Chem 278(31):28,993-28,999. https://doi.org/10.1074/jbc.M302865200
Subbarao NK, Parente RA, Szoka FC Jr et al (1987) The ph-dependent bilayer destabilization by an amphipathic peptide. Biochemistry (Mosc ) 26(11):2964–2972. https://doi.org/10.1021/bi00385a002
Suetsugu S, Gautreau A (2012) Synergistic bar-npf interactions in actin-driven membrane remodeling. Trends Cell Biol 22(3):141–150. https://doi.org/10.1016/j.tcb.2012.01.001
Suetsugu S, Kurisu S, Takenawa T (2014) Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 94(4):1219–1248. https://doi.org/10.1152/physrev.00040.2013
Sun D, Forsman J, Woodward CE (2015) Multistep molecular dynamics simulations identify the highly cooperative activity of melittin in recognizing and stabilizing membrane pores. Langmuir 31(34):9388–9401. https://doi.org/10.1021/acs.langmuir.5b01995
Sun H, Greathouse DV, Andersen OS et al (2008) The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels. J Biol Chem 283(32):22,233-22,243. https://doi.org/10.1074/jbc.M802074200
Szlasa W, Zendran I, Zalesińska A et al (2020) Lipid composition of the cancer cell membrane. J Bioenerg Biomembr 52:321–342. https://doi.org/10.1007/s10863-020-09846-4
Tebar F, Bohlander SK, Sorkin A (1999) Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell 10(8):2687–2702. https://doi.org/10.1091/mbc.10.8.2687
Terrone D, Sang SLW, Roudaia L et al (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry (Mosc ) 42(47):13,787-13,799. https://doi.org/10.1021/bi035293y
Tillu VA, Rae J, Gao Y et al (2021) Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nat Commun 12(1):931. https://doi.org/10.1038/s41467-021-21035-4
Tornesello AL, Borrelli A, Buonaguro L et al (2020) Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules 25(12):2850. https://doi.org/10.3390/molecules25122850
Torrent M, Cuyás E, Carreras E et al (2007) Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry (Mosc ) 46(3):720–733. https://doi.org/10.1021/bi061190e
Tosatto L, Andrighetti AO, Plotegher N et al (2012) Alpha-synuclein pore forming activity upon membrane association. Biochimica et Biophysica Acta (BBA)-Biomembranes 1818(11):2876–2883. https://doi.org/10.1016/j.bbamem.2012.07.007
Tosh RE, Collings PJ (1986) High pressure volumetric measurements in dipalmitoylphosphatidylcholine bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes 859(1):10–14. https://doi.org/10.1016/0005-2736(86)90312-3
Tremouilhac P, Strandberg E, Wadhwani P et al (2006) Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin. J Biol Chem 281(43):32,089-32,094. https://doi.org/10.1074/jbc.M604759200
Tsai FC, Simunovic M, Sorre B et al (2021) Comparing physical mechanisms for membrane curvature-driven sorting of bar-domain proteins. Soft Matter 17(16):4254–4265. https://doi.org/10.1039/D0SM01573C
Tyagi C, Marik T, Vágvölgyi C et al (2019) Accelerated molecular dynamics applied to the peptaibol folding problem. Int J Mol Sci 20(17):4268. https://doi.org/10.3390/ijms20174268
Tyagi NK, Kumar A, Goyal P et al (2007) D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Biochemistry (Mosc ) 46(47):13,616-13,628. https://doi.org/10.1021/bi701193x
Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1804(6):1231–1264. https://doi.org/10.1016/j.bbapap.2010.01.017
Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: Introducing the d2 concept. Annu Rev Biophys 37(1):215–246. https://doi.org/10.1146/annurev.biophys.37.032807.125924
Uversky VN, Santambrogio C, Brocca S et al (2012) Length-dependent compaction of intrinsically disordered proteins. FEBS Lett 586(1):70–73. https://doi.org/10.1016/j.febslet.2011.11.026
Van Den Bogaart G, Mika JT, Krasnikov V et al (2007) The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis. Biophys J 93(1):154–163. https://doi.org/10.1529/biophysj.107.106005
Van Der Lee R, Buljan M, Lang B et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631. https://doi.org/10.1021/cr400525m
Vidaurri EM, Chavez-Montes A, Tapia MG et al (2018) Differential interaction of \(\alpha\)-synuclein n-terminal segment with mitochondrial model membranes. Int J Biol Macromol 119:1286–1293. https://doi.org/10.1016/j.ijbiomac.2018.08.049
Vinatier J, Herzog E, Plamont MA et al (2006) Interaction between the vesicular glutamate transporter type 1 and endophilin A1, a protein essential for endocytosis. J Neurochem 97(4):1111–1125. https://doi.org/10.1111/j.1471-4159.2006.03821.x
Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucl Acids Res 44(D1):D1087–D1093. https://doi.org/10.1093/nar/gkv1278
Wang Q, Navarro MV, Peng G et al (2009) Molecular mechanism of membrane constriction and tubulation mediated by the f-bar protein pacsin/syndapin. Proc Natl Acad Sci 106(31):12,700-12,705. https://doi.org/10.1073/pnas.090297410
Ward J, Sodhi J, McGuffin L et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. https://doi.org/10.1016/j.jmb.2004.02.002
White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28(1):319–365. https://doi.org/10.1146/annurev.biophys.28.1.319
White SH, Ladokhin AS, Jayasinghe S et al (2001) How membranes shape protein structure. J Biol Chem 276(35):32,395-32,398. https://doi.org/10.1074/jbc.R100008200
Wiedemann I, Breukink E, van Kraaij C et al (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276(3):1772–1779. https://doi.org/10.1074/jbc.M006770200
Wiedemann I, Benz R, Sahl HG (2004) Lipid II-mediated pore formation by the peptide antibiotic nisin: a black lipid membrane study. J Bacteriol 186(10):3259–3261. https://doi.org/10.1128/JB.186.10.3259-3261.2004
Wiedman G, Fuselier T, He J et al (2014) Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide. J Am Chem Soc 136(12):4724–4731. https://doi.org/10.1021/ja500462s
Wimley WC (2010) Energetics of peptide and protein binding to lipid membranes. Proteins Membr Binding Pore Form. https://doi.org/10.1007/978-1-4419-6327-7_2
Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239(1):27–34. https://doi.org/10.1007/s00232-011-9343-0
Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3(10):842–848. https://doi.org/10.1038/nsb1096-842
Wu Y, Huang HW, Olah GA (1990) Method of oriented circular dichroism. Biophys J 57(4):797–806. https://doi.org/10.1016/S0006-3495(90)82599-6
Wu Y, He K, Ludtke SJ et al (1995) X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J 68(6):2361–2369. https://doi.org/10.1016/S0006-3495(95)80418-2
Yamada H, Padilla-Parra S, Park SJ et al (2009) Dynamic interaction of amphiphysin with n-wasp regulates actin assembly. J Biol Chem 284(49):34,244-34,256. https://doi.org/10.1074/jbc.M109.064204
Yang L, Weiss TM, Lehrer RI et al (2000) Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J 79(4):2002–2009. https://doi.org/10.1016/S0006-3495(00)76448-4
Yang L, Harroun TA, Weiss TM et al (2001) Barrel-stave model or toroidal model? a case study on melittin pores. Biophys J 81(3):1475–1485. https://doi.org/10.1016/S0006-3495(01)75802-X
Yau WM, Wimley WC, Gawrisch K et al (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37(42):14,713-14,718. https://doi.org/10.1021/bi980809c
Zasloff M (1987) Magainins, a class of antimicrobial peptides from xenopus skin: isolation, characterization of two active forms, and partial cdna sequence of a precursor. Proc Natl Acad Sci 84(15):5449–5453. https://doi.org/10.1073/pnas.84.15.5449
Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395. https://doi.org/10.1038/415389a
Zeno WF, Baul U, Snead WT et al (2018) Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat Commun 9(1):1–14. https://doi.org/10.1038/s41467-018-06532-3
Zeno WF, Thatte AS, Wang L et al (2019) Molecular mechanisms of membrane curvature sensing by a disordered protein. J Am Chem Soc 141(26):10,361-10,371. https://doi.org/10.1021/jacs.9b03927
Zhao H, Kinnunen PK (2002) Binding of the antimicrobial peptide temporin L to liposomes assessed by trp fluorescence. J Biol Chem 277(28):25,170-25,177. https://doi.org/10.1074/jbc.M203186200
Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19. https://doi.org/10.1038/nrm1784
Acknowledgements
We gladly acknowledge IIT Palakkad’s faculty seed grant and the Ministry of Human Resource Development’s (MHRD) grant Scheme for Transformational and Advanced Research in Sciences (STARS) for financial support. CH is grateful for the interesting conversation with Dr. Bibhuti Ranjan Mishra at IIT Palakkad, particularly about the pore formation mechanism. The reviewers’ thorough reading and insightful comments, which greatly enhanced this manuscript’s readability, are greatly appreciated by the authors.
Funding
Funding was received from the MHRD grant Scheme for Transformational and Advanced Research in Sciences (Grant No. STARS/APR2019/293).
Author information
Authors and Affiliations
Contributions
CH prepared all the figures and wrote the whole manuscript. SLD thoroughly reviewed the manuscript and suggested major modifications/corrections.
Corresponding author
Ethics declarations
Conflict of interest
The authors do not have any conflict of interest.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Has, C., Das, S.L. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation. J Membrane Biol 256, 343–372 (2023). https://doi.org/10.1007/s00232-023-00289-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00232-023-00289-7