Skip to main content

Advertisement

Log in

Cells of the Immune System Orchestrate Changes in Bone Cell Function

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

There is a complex interplay between the cells of the immune system and bone. Immune cells, such as T and NK cells, are able to enhance osteoclast formation via the production of RANKL. Yet there is increasing evidence to show that during the resolution of inflammation or as a consequence of increased osteoclastogenesis there is an anabolic response via the formation of more osteoblasts. Furthermore, osteoblasts themselves are involved in the control of immune cell function, thus promoting the resolution of inflammation. Hence, the concept of “coupling”—how bone formation is linked to resorption—needs to be more inclusive rather than restricting our focus to osteoblast–osteoclast interactions as in a whole organism these cells are never in isolation. This review will investigate the role of immune cells in normal bone homeostasis and in inflammatory diseases where the balance between resorption and formation is lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Howard GA et al (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 78(5):3204–3208

    CAS  PubMed  Google Scholar 

  2. Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11(2):76–81

    CAS  PubMed  Google Scholar 

  3. Tamma R, Zallone A (2012) Osteoblast and osteoclast crosstalks: from OAF to Ephrin. Inflamm Allergy Drug Targets 11(3):196–200

    CAS  PubMed  Google Scholar 

  4. Takayanagi H (2012) New developments in osteoimmunology. Nat Rev Rheumatol 8(11):684–689

    CAS  PubMed  Google Scholar 

  5. Horton MA et al (1985) On the origin of the osteoclast: the cell surface phenotype of rodent osteoclasts. Calcif Tissue Int 37(1):46–50

    CAS  PubMed  Google Scholar 

  6. Quinn JM et al (2000) Fibroblastic stromal cells express receptor activator of NF-kappaB ligand and support osteoclast differentiation. J Bone Miner Res 15(8):1459–1466

    CAS  PubMed  Google Scholar 

  7. Soderstrom K et al (2010) Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc Natl Acad Sci USA 107(29):13028–13033

    CAS  PubMed  Google Scholar 

  8. Horwood NJ et al (1999) Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun 265(1):144–150

    CAS  PubMed  Google Scholar 

  9. Kong YY et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759):304–309

    CAS  PubMed  Google Scholar 

  10. Shinoda K et al (2003) Resting T cells negatively regulate osteoclast generation from peripheral blood monocytes. Bone 33(4):711–720

    CAS  PubMed  Google Scholar 

  11. Rifas L, Arackal S, Weitzmann MN (2003) Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts. J Cell Biochem 88(4):650–659

    CAS  PubMed  Google Scholar 

  12. Gough AK et al (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344(8914):23–27

    CAS  PubMed  Google Scholar 

  13. Loftus EV Jr et al (2003) Risk of fracture in ulcerative colitis: a population-based study from Olmsted County, Minnesota. Clin Gastroenterol Hepatol 1(6):465–473

    PubMed  Google Scholar 

  14. Magrey M, Khan MA (2010) Osteoporosis in ankylosing spondylitis. Curr Rheumatol Rep 12(5):332–336

    PubMed  Google Scholar 

  15. Spector TD et al (1993) Risk of vertebral fracture in women with rheumatoid arthritis. BMJ 306(6877):558

    CAS  PubMed  Google Scholar 

  16. Eyerich S et al (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119(12):3573–3585

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Murphy CA et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198(12):1951–1957

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Takayanagi H et al (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408(6812):600–605

    CAS  PubMed  Google Scholar 

  19. Sato K, Takayanagi H (2006) Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol 18(4):419–426

    CAS  PubMed  Google Scholar 

  20. Takayanagi H (2005) Inflammatory bone destruction and osteoimmunology. J Periodontal Res 40(4):287–293

    CAS  PubMed  Google Scholar 

  21. Kotake S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103(9):1345–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Zaiss MM et al (2010) Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol 184(12):7238–7246

    CAS  PubMed  Google Scholar 

  23. Kim YG et al (2007) Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem Biophys Res Commun 357(4):1046–1052

    CAS  PubMed  Google Scholar 

  24. Wythe SE et al (2013) Targeted delivery of cytokine therapy to rheumatoid tissue by a synovial targeting peptide. Ann Rheum Dis 72(1):129–135

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Appel H et al (2006) Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum 54(9):2845–2851

    PubMed  Google Scholar 

  26. Bowness P et al (2011) Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol 186(4):2672–2680

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Daoussis D et al (2010) Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 62(1):150–158

    CAS  PubMed  Google Scholar 

  28. Appel H et al (2009) Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60(11):3257–3262

    PubMed  Google Scholar 

  29. Chen HA et al (2010) Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol 37(10):2126–2132

    CAS  PubMed  Google Scholar 

  30. Vosse D et al (2008) Association of markers of bone- and cartilage-degradation with radiological changes at baseline and after 2 years follow-up in patients with ankylosing spondylitis. Rheumatology (Oxford) 47(8):1219–1222

    CAS  Google Scholar 

  31. Braun J, Baraliakos X (2011) Imaging of axial spondyloarthritis including ankylosing spondylitis. Ann Rheum Dis 70(Suppl 1):i97–i103

    PubMed  Google Scholar 

  32. Byrne FR et al (2005) CD4+CD45RBHi T cell transfer induced colitis in mice is accompanied by osteopenia which is treatable with recombinant human osteoprotegerin. Gut 54(1):78–86

    CAS  PubMed  Google Scholar 

  33. Ruutu M et al (2012) Beta-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum 64(7):2211–2222

    CAS  PubMed  Google Scholar 

  34. Pacifici R (2007) T cells and postmenopausal osteoporosis in murine models. Arthritis Res Ther 9(2):102

    PubMed Central  PubMed  Google Scholar 

  35. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13(7):791–801

    CAS  PubMed  Google Scholar 

  36. Jilka RL et al (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 101(9):1942–1950

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kimble RB et al (1996) Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 271(46):28890–28897

    CAS  PubMed  Google Scholar 

  38. Cenci S et al (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106(10):1229–1237

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Lee SK et al (2006) T lymphocyte-deficient mice lose trabecular bone mass with ovariectomy. J Bone Miner Res 21(11):1704–1712

    CAS  PubMed  Google Scholar 

  40. Yamaza T et al (2008) Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS One 3(7):e2615

    PubMed Central  PubMed  Google Scholar 

  41. Roggia C et al (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98(24):13960–13965

    CAS  PubMed  Google Scholar 

  42. Li JY et al (2011) Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci USA 108(2):768–773

    CAS  PubMed  Google Scholar 

  43. Grassi F et al (2007) Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci USA 104(38):15087–15092

    CAS  PubMed  Google Scholar 

  44. Li Y et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109(9):3839–3848

    CAS  PubMed  Google Scholar 

  45. DeSelm CJ et al (2012) IL-17 mediates estrogen-deficient osteoporosis in an Act1-dependent manner. J Cell Biochem 113(9):2895–2902

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Fox SW, Chambers TJ (2000) Interferon-gamma directly inhibits TRANCE-induced osteoclastogenesis. Biochem Biophys Res Commun 276(3):868–872

    CAS  PubMed  Google Scholar 

  47. Kotake S et al (2005) IFN-gamma-producing human T cells directly induce osteoclastogenesis from human monocytes via the expression of RANKL. Eur J Immunol 35(11):3353–3363

    CAS  PubMed  Google Scholar 

  48. Madyastha PR et al (2000) IFN-gamma enhances osteoclast generation in cultures of peripheral blood from osteopetrotic patients and normalizes superoxide production. J Interferon Cytokine Res 20(7):645–652

    CAS  PubMed  Google Scholar 

  49. Sato K et al (1992) Prolonged decrease of serum calcium concentration by murine gamma-interferon in hypercalcemic, human tumor (EC-GI)-bearing nude mice. Cancer Res 52(2):444–449

    CAS  PubMed  Google Scholar 

  50. Tohkin M et al (1994) Comparative study of inhibitory effects by murine interferon gamma and a new bisphosphonate (alendronate) in hypercalcemic, nude mice bearing human tumor (LJC-1-JCK). Cancer Immunol Immunother 39(3):155–160

    CAS  PubMed  Google Scholar 

  51. Arnoldi J, Gerdes J, Flad HD (1990) Immunohistologic assessment of cytokine production of infiltrating cells in various forms of leprosy. Am J Pathol 137(4):749–753

    CAS  PubMed  Google Scholar 

  52. Baker PJ et al (1999) CD4+ T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun 67(6):2804–2809

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Cenci S et al (2003) Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci USA 100(18):10405–10410

    CAS  PubMed  Google Scholar 

  54. Goodman GR et al (1999) Interferon-alpha, unlike interferon-gamma, does not cause bone loss in the rat. Bone 25(4):459–463

    CAS  PubMed  Google Scholar 

  55. Key LL Jr et al (1995) Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med 332(24):1594–1599

    PubMed  Google Scholar 

  56. Mann GN et al (1994) Interferon-gamma causes loss of bone volume in vivo and fails to ameliorate cyclosporin A-induced osteopenia. Endocrinology 135(3):1077–1083

    CAS  PubMed  Google Scholar 

  57. Rodriguiz RM, Key LL Jr, Ries WL (1993) Combination macrophage-colony stimulating factor and interferon-gamma administration ameliorates the osteopetrotic condition in microphthalmic (mi/mi) mice. Pediatr Res 33(4 Pt 1):384–389

    CAS  PubMed  Google Scholar 

  58. Duque G et al (2011) Interferon-gamma plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J Bone Miner Res 26(7):1472–1483

    CAS  PubMed  Google Scholar 

  59. Gao Y et al (2007) IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117(1):122–132

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Tyagi AM et al (2012) Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 7(9):e44552

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Goswami J et al (2009) A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur J Immunol 39(10):2831–2839

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Rivollier A et al (2004) Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104(13):4029–4037

    CAS  PubMed  Google Scholar 

  63. Speziani C et al (2007) Murine dendritic cell transdifferentiation into osteoclasts is differentially regulated by innate and adaptive cytokines. Eur J Immunol 37(3):747–757

    CAS  PubMed  Google Scholar 

  64. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508

    CAS  PubMed  Google Scholar 

  65. Alnaeeli M, Penninger JM, Teng YT (2006) Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. J Immunol 177(5):3314–3326

    CAS  PubMed  Google Scholar 

  66. Maitra R et al (2010) Dendritic cell–mediated in vivo bone resorption. J Immunol 185(3):1485–1491

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Jacome-Galarza CE et al (2013) Identification, characterization and isolation of a common progenitor for osteoclasts, macrophages and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28:1203–1213

    CAS  PubMed  Google Scholar 

  68. Mizoguchi T et al (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184(4):541–554

    CAS  PubMed  Google Scholar 

  69. Charles JF et al (2012) Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 122(12):4592–4605

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Grcevic D et al (2006) Activated T lymphocytes suppress osteoclastogenesis by diverting early monocyte/macrophage progenitor lineage commitment towards dendritic cell differentiation through down-regulation of receptor activator of nuclear factor-kappaB and c-Fos. Clin Exp Immunol 146(1):146–158

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Gupta N et al (2010) IL-3 inhibits human osteoclastogenesis and bone resorption through downregulation of c-Fms and diverts the cells to dendritic cell lineage. J Immunol 185(4):2261–2272

    CAS  PubMed  Google Scholar 

  72. Paust S, von Andrian UH (2011) Natural killer cell memory. Nat Immunol 12(6):500–508

    CAS  PubMed  Google Scholar 

  73. Vivier E et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Grom AA et al (2003) Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr 142(3):292–296

    CAS  PubMed  Google Scholar 

  75. Pridgeon C et al (2003) Natural killer cells in the synovial fluid of rheumatoid arthritis patients exhibit a CD56bright, CD94bright, CD158negative phenotype. Rheumatology (Oxford) 42(7):870–878

    CAS  Google Scholar 

  76. Lo CK et al (2008) Natural killer cell degeneration exacerbates experimental arthritis in mice via enhanced interleukin-17 production. Arthritis Rheum 58(9):2700–2711

    PubMed  Google Scholar 

  77. Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13(2):101–117

    CAS  PubMed  Google Scholar 

  78. Godfrey DI, Rossjohn J (2011) New ways to turn on NKT cells. J Exp Med 208(6):1121–1125

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Hu M et al (2011) Activated invariant NKT cells regulate osteoclast development and function. J Immunol 186(5):2910–2917

    CAS  PubMed  Google Scholar 

  80. Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241

    CAS  PubMed  Google Scholar 

  81. Blin-Wakkach C et al (2004) Characterization of a novel bipotent hematopoietic progenitor population in normal and osteopetrotic mice. J Bone Miner Res 19(7):1137–1143

    PubMed  Google Scholar 

  82. Dougall WC et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13(18):2412–2424

    CAS  PubMed  Google Scholar 

  83. Kong YY et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397(6717):315–323

    CAS  PubMed  Google Scholar 

  84. Yun TJ et al (2001) Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol 166(3):1482–1491

    CAS  PubMed  Google Scholar 

  85. Weitzmann MN et al (2000) B lymphocytes inhibit human osteoclastogenesis by secretion of TGFbeta. J Cell Biochem 78(2):318–324

    CAS  PubMed  Google Scholar 

  86. Li Y et al (2007) Ovariectomy-induced bone loss occurs independently of B cells. J Cell Biochem 100(6):1370–1375

    CAS  PubMed  Google Scholar 

  87. Raggatt LJ et al (2013) Absence of B cells does not compromise intramembranous bone formation during healing in a tibial injury model. Am J Pathol 182(5):1501–1508

    CAS  PubMed  Google Scholar 

  88. Nakken B et al (2011) B-cells and their targeting in rheumatoid arthritis—current concepts and future perspectives. Autoimmun Rev 11(1):28–34

    CAS  PubMed  Google Scholar 

  89. Bluml S et al (2013) B-cell targeted therapeutics in clinical development. Arthritis Res Ther 15(Suppl 1):S4

    PubMed Central  PubMed  Google Scholar 

  90. Loutis N, Bruckner P, Pataki A (1988) Induction of erosive arthritis in mice after passive transfer of anti-type II collagen antibodies. Agents Actions 25(3–4):352–359

    CAS  PubMed  Google Scholar 

  91. Taylor PC, Plater-Zyberk C, Maini RN (1995) The role of the B cells in the adoptive transfer of collagen-induced arthritis from DBA/1 (H-2q) to SCID (H-2d) mice. Eur J Immunolo 25(3):763–769

    CAS  Google Scholar 

  92. Svensson L et al (1998) B cell–deficient mice do not develop type II collagen-induced arthritis (CIA). Clin Exp Immunol 111(3):521–526

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Edwards JC, Leandro MJ, Cambridge G (2002) B-lymphocyte depletion therapy in rheumatoid arthritis and other autoimmune disorders. Biochem Soc Trans 30(4):824–828

    CAS  PubMed  Google Scholar 

  94. Moore J et al (2004) A phase II study of rituximab in rheumatoid arthritis patients with recurrent disease following haematopoietic stem cell transplantation. Bone Marrow Transplant 34(3):241–247

    CAS  PubMed  Google Scholar 

  95. Horwood NJ, Urbaniak AM, Danks L (2012) Tec family kinases in inflammation and disease. Int Rev Immunol 31(2):87–103

    CAS  PubMed  Google Scholar 

  96. Bedi B et al (2012) Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci USA 109(12):E725–E733

    CAS  PubMed  Google Scholar 

  97. Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102(5):1130–1139

    CAS  PubMed  Google Scholar 

  98. Nakagawa H et al (1993) Influence of monocyte–macrophage lineage cells on alkaline phosphatase activity of developing osteoblasts derived from rat bone marrow stromal cells. Nippon Seikeigeka Gakkai Zasshi 67(5):480–489

    CAS  PubMed  Google Scholar 

  99. Rifas L et al (1989) Monokines produced by macrophages stimulate the growth of osteoblasts. Connect Tissue Res 23(2–3):163–178

    CAS  PubMed  Google Scholar 

  100. Champagne CM et al (2002) Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30(1):26–31

    CAS  PubMed  Google Scholar 

  101. Hume DA, Loutit JF, Gordon S (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of bone and associated connective tissue. J Cell Sci 66:189–194

    CAS  PubMed  Google Scholar 

  102. Chang MK et al (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244

    CAS  PubMed  Google Scholar 

  103. Alexander KA et al (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532

    CAS  PubMed  Google Scholar 

  104. Nicolaidou V et al (2012) Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One 7(7):e39871

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Guihard P et al (2012) Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 30(4):762–772

    CAS  PubMed  Google Scholar 

  106. Zarling JM et al (1986) Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci USA 83(24):9739–9743

    CAS  PubMed  Google Scholar 

  107. Walker EC et al (2010) Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 120(2):582–592

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Malik N et al (1995) Developmental abnormalities in mice transgenic for bovine oncostatin M. Mol Cell Biol 15(5):2349–2358

    CAS  PubMed Central  PubMed  Google Scholar 

  109. de Hooge AS et al (2002) Adenoviral transfer of murine oncostatin M elicits periosteal bone apposition in knee joints of mice, despite synovial inflammation and up-regulated expression of interleukin-6 and receptor activator of nuclear factor-kappa B ligand. Am J Pathol 160(5):1733–1743

    PubMed  Google Scholar 

  110. Levy JB et al (1996) Activation of the JAK-STAT signal transduction pathway by oncostatin-M cultured human and mouse osteoblastic cells. Endocrinology 137(4):1159–1165

    CAS  PubMed  Google Scholar 

  111. Bellido T et al (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138(9):3666–3676

    CAS  PubMed  Google Scholar 

  112. Fujio Y et al (2004) Signals through gp130 upregulate Wnt5a and contribute to cell adhesion in cardiac myocytes. FEBS Lett 573(1–3):202–206

    CAS  PubMed  Google Scholar 

  113. Katoh M (2007) STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer. Int J Mol Med 19(2):273–278

    CAS  PubMed  Google Scholar 

  114. Botelho FM, Edwards DR, Richards CD (1998) Oncostatin M stimulates c-Fos to bind a transcriptionally responsive AP-1 element within the tissue inhibitor of metalloproteinase-1 promoter. J Biol Chem 273(9):5211–5218

    CAS  PubMed  Google Scholar 

  115. Jochum W et al (2000) Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 6(9):980–984

    CAS  PubMed  Google Scholar 

  116. Sabatakos G et al (2000) Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6(9):985–990

    CAS  PubMed  Google Scholar 

  117. Sims NA, Walsh NC (2010) GP130 cytokines and bone remodelling in health and disease. BMB Rep 43(8):513–523

    CAS  PubMed  Google Scholar 

  118. Hamilton TA (2002) Molecular basis of macrophage activation: from gene expression to phenotypic diversity. In: Bourke BL (ed) The macrophage, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  119. Porta C et al (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci USA 106(35):14978–14983

    CAS  PubMed  Google Scholar 

  120. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604

    CAS  PubMed  Google Scholar 

  122. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Fleetwood AJ et al (2007) Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 178(8):5245–5252

    CAS  PubMed  Google Scholar 

  124. Smith W, Feldmann M, Londei M (1998) Human macrophages induced in vitro by macrophage colony-stimulating factor are deficient in IL-12 production. Eur J Immunol 28(8):2498–2507

    CAS  PubMed  Google Scholar 

  125. Tadokoro CE, de Almeida AI (2001) Bone marrow–derived macrophages grown in GM-CSF or M-CSF differ in their ability to produce IL-12 and to induce IFN-gamma production after stimulation with Trypanosoma cruzi antigens. Immunol Lett 77(1):31–38

    CAS  PubMed  Google Scholar 

  126. Verreck FA et al (2006) Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 79(2):285–293

    CAS  PubMed  Google Scholar 

  127. Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544

    CAS  PubMed  Google Scholar 

  128. Groh ME et al (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33(8):928–934

    CAS  PubMed  Google Scholar 

  129. Francois M et al (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20(1):187–195

    CAS  PubMed  Google Scholar 

  130. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Maggini J et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252

    PubMed Central  PubMed  Google Scholar 

  132. Nemeth K et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Jones S et al (2007) The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol 179(5):2824–2831

    CAS  PubMed  Google Scholar 

  134. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    CAS  PubMed  Google Scholar 

  135. Kawaguchi H et al (1995) The role of prostaglandins in the regulation of bone metabolism. Clin Orthop Relat Res 313:36–46

    PubMed  Google Scholar 

  136. Li L et al (2006) Regulation of bone biology by prostaglandin endoperoxide H synthases (PGHS): a rose by any other name. Cytokine Growth Factor Rev 17(3):203–216

    PubMed  Google Scholar 

  137. Xie C et al (2008) COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone 43(6):1075–1083

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Nagata T et al (1994) Effect of prostaglandin E2 on mineralization of bone nodules formed by fetal rat calvarial cells. Calcif Tissue Int 55(6):451–457

    CAS  PubMed  Google Scholar 

  139. Ninomiya T et al (2011) Prostaglandin E2 receptor EP4-selective agonist (ONO-4819) increases bone formation by modulating mesenchymal cell differentiation. Eur J Pharmacol 650(1):396–402

    CAS  PubMed  Google Scholar 

  140. Weinreb M, Suponitzky I, Keila S (1997) Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20(6):521–526

    CAS  PubMed  Google Scholar 

  141. Repovic P, Benveniste EN (2002) Prostaglandin E2 is a novel inducer of oncostatin-M expression in macrophages and microglia. J Neurosci 22(13):5334–5343

    CAS  PubMed  Google Scholar 

  142. Bystrom J et al (2008) Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112(10):4117–4127

    CAS  PubMed  Google Scholar 

  143. Rajakariar R et al (2008) Novel biphasic role for lymphocytes revealed during resolving inflammation. Blood 111(8):4184–4192

    CAS  PubMed  Google Scholar 

  144. Pettit AR et al (2008) Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43(6):976–982

    PubMed  Google Scholar 

  145. Ren G et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150

    CAS  PubMed  Google Scholar 

  146. Chen L et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886

    PubMed Central  PubMed  Google Scholar 

  147. Xu W et al (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107(12):4930–4937

    CAS  PubMed  Google Scholar 

  148. Kawanaka N et al (2002) CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum 46(10):2578–2586

    CAS  PubMed  Google Scholar 

  149. Rossol M et al (2012) The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. Arthritis Rheum 64(3):671–677

    CAS  PubMed  Google Scholar 

  150. Chiappetta N, Gruber B (2006) The role of mast cells in osteoporosis. Semin Arthritis Rheum 36(1):32–36

    CAS  PubMed  Google Scholar 

  151. Seitz S et al (2013) Increased osteoblast and osteoclast indices in individuals with systemic mastocytosis. Osteoporos Int 24:2325–2334

    CAS  PubMed  Google Scholar 

  152. Martin T, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19(1):73–88

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have stated that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole J. Horwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wythe, S.E., Nicolaidou, V. & Horwood, N.J. Cells of the Immune System Orchestrate Changes in Bone Cell Function. Calcif Tissue Int 94, 98–111 (2014). https://doi.org/10.1007/s00223-013-9764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9764-0

Keywords

Navigation