Skip to main content

Advertisement

Log in

Effects of pramipexole on the reinforcing effectiveness of stimuli that were previously paired with cocaine reinforcement in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine D2-like agonists maintain responding when substituted for cocaine in laboratory animals. However, these effects appear to be mediated by an interaction with stimuli that were previously paired with cocaine reinforcement (CS).

Objectives

To evaluate the extent to which the pramipexole-maintained and pramipexole-induced responding are influenced by cocaine-paired stimuli.

Methods

Rats were trained to nosepoke for cocaine under fixed ratio 1 (FR1) or progressive ratio (PR) schedules of reinforcement. In FR1-trained rats, pramipexole was substituted for cocaine with injections either paired with CSs, or delivered in their absence. The capacity of experimenter-administered pramipexole to induce FR1 and PR responding for CS presentation was evaluated. The effects of altering stimulus conditions, as well as pretreatments with D2- (l-741,626) and D3-preferring (PG01037) antagonists on pramipexole-induced PR responding were also evaluated.

Results

When substituted for cocaine, pramipexole maintained responding at high rates when injections were paired with CSs, but low rates when CSs were omitted. Similarly, experimenter-administered pramipexole induced dose-dependent increases in FR1 or PR responding, with high rates of responding observed when the CS was presented, and low rates of responding when CS presentation was omitted. D2 and D3 antagonists differentially affected pramipexole-induced PR responding, with l-741,626 and PG01037 producing rightward, and downward shifts in the dose–response curve for CS-maintained responding, respectively.

Conclusions

These data indicate that pramipexole is capable of enhancing the reinforcing effectiveness of conditioned stimuli, and raise the possibility that similar mechanisms are responsible for the increased occurrence of impulse control disorders in patients being treated with pramipexole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrett AC, Morgan D, Izenwasser S, Picker MJ (2001) Cocaine-like discriminative stimulus effects and [3H]dopamine uptake inhibition produced by selected partial opioid agonists. Behav Pharmacol 12:225–235

    Article  PubMed  CAS  Google Scholar 

  • Beninger RJ, Hanson DR, Phillips AG (1981) The acquisition of responding with conditioned reinforcement: effects of cocaine, (+)-amphetamine and pipradrol. Br J Pharmacol 74:149–154

    PubMed  CAS  Google Scholar 

  • Boulougouris V, Castane A, Robbins TW (2009) Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior. Psychopharmacology (Berl) 202:611–620

    Article  CAS  Google Scholar 

  • Caine SB, Koob GF (1993) Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260:1814–1816

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Negus SS, Mello NK, Patel S, Bristow L, Kulagowski J, Vallone D, Saiardi A, Borrelli E (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 22:2977–2988

    PubMed  CAS  Google Scholar 

  • Carter LP, Griffiths RR (2009) Principles of laboratory assessment of drug abuse liability and implications for clinical development. Drug Alcohol Depend 105(Suppl 1):S14–S25

    Article  PubMed  CAS  Google Scholar 

  • Cervo L, Cocco A, Petrella C, Heidbreder CA (2007) Selective antagonism at dopamine D3 receptors attenuates cocaine-seeking behaviour in the rat. Int J Neuropsychopharmacol 10:167–181

    Article  PubMed  CAS  Google Scholar 

  • Collins GT, Woods JH (2007) Drug and reinforcement history as determinants of the response-maintaining effects of quinpirole in the rat. J Pharmacol Exp Ther 323:599–605

    Article  PubMed  CAS  Google Scholar 

  • Collins GT, Woods JH (2009) Influence of conditioned reinforcement on the response-maintaining effects of quinpirole in rats. Behav Pharmacol 20:492–504

    Article  PubMed  CAS  Google Scholar 

  • Collins GT, Witkin JM, Newman AH, Svensson KA, Grundt P, Cao J, Woods JH (2005) Dopamine agonist-induced yawning in rats: a dopamine D3 receptor-mediated behavior. J Pharmacol Exp Ther 314:310–319

    Article  PubMed  CAS  Google Scholar 

  • Collins GT, Newman AH, Grundt P, Rice KC, Husbands SM, Chauvignac C, Chen J, Wang S, Woods JH (2007) Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists. Psychopharmacology (Berl) 193:159–170

    Article  CAS  Google Scholar 

  • Collins GT, Calinski DM, Newman AH, Grundt P, Woods JH (2008) Food restriction alters N′-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (pramipexole)-induced yawning, hypothermia, and locomotor activity in rats: evidence for sensitization of dopamine D2 receptor-mediated effects. J Pharmacol Exp Ther 325:691–697

    Article  PubMed  CAS  Google Scholar 

  • Collins GT, Truccone A, Haji-Abdi F, Newman AH, Grundt P, Rice KC, Husbands SM, Greedy BM, Enguehard-Gueiffier C, Gueiffier A, Chen J, Wang S, Katz JL, Grandy DK, Sunahara RK, Woods JH (2009) Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice. J Pharmacol Exp Ther 329:210–217

    Article  PubMed  CAS  Google Scholar 

  • Collins GT, Truong YN, Levant B, Chen J, Wang S, Woods JH (2011) Behavioral sensitization to cocaine in rats: evidence for temporal differences in dopamine D(3) and D(2) receptor sensitivity. Psychopharmacology (Berl) 215:609–620

    Article  CAS  Google Scholar 

  • Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270

    Article  PubMed  CAS  Google Scholar 

  • De Vries TJ, Schoffelmeer AN, Binnekade R, Vanderschuren LJ (1999) Dopaminergic mechanisms mediating the incentive to seek cocaine and heroin following long-term withdrawal of IV drug self-administration. Psychopharmacology (Berl) 143:254–260

    Article  Google Scholar 

  • De Vries TJ, Schoffelmeer AN, Binnekade R, Raaso H, Vanderschuren LJ (2002) Relapse to cocaine- and heroin-seeking behavior mediated by dopamine D2 receptors is time-dependent and associated with behavioral sensitization. Neuropsychopharmacology 26:18–26

    Article  PubMed  Google Scholar 

  • Di Ciano P, Underwood RJ, Hagan JJ, Everitt BJ (2003) Attenuation of cue-controlled cocaine-seeking by a selective D3 dopamine receptor antagonist SB-277011-A. Neuropsychopharmacology 28:329–3382

    Article  PubMed  Google Scholar 

  • Donny EC, Chaudhri N, Caggiula AR, Evans-Martin FF, Booth S, Gharib MA, Clements LA, Sved AF (2003) Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology (Berl) 169:68–76

    Article  CAS  Google Scholar 

  • Driver-Dunckley E, Samanta J, Stacy M (2003) Pathological gambling associated with dopamine agonist therapy in Parkinson’s disease. Neurology 61:422–423

    PubMed  CAS  Google Scholar 

  • Driver-Dunckley ED, Noble BN, Hentz JG, Evidente VG, Caviness JN, Parish J, Krahn L, Adler CH (2007) Gambling and increased sexual desire with dopaminergic medications in restless legs syndrome. Clin Neuropharmacol 30:249–255

    Article  PubMed  CAS  Google Scholar 

  • Evans AH, Katzenschlager R, Paviour D, O’Sullivan JD, Appel S, Lawrence AD, Lees AJ (2004) Punding in Parkinson’s disease: its relation to the dopamine dysregulation syndrome. Mov Disord 19:397–405

    Article  PubMed  Google Scholar 

  • Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363:3125–3135

    Article  PubMed  Google Scholar 

  • Grundt P, Carlson EE, Cao J, Bennett CJ, McElveen E, Taylor M, Luedtke RR, Newman AH (2005) Novel heterocyclic trans olefin analogues of N-{4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl}arylcarboxamides as selective probes with high affinity for the dopamine D3 receptor. J Med Chem 48:839–848

    Article  PubMed  CAS  Google Scholar 

  • Grundt P, Prevatt KM, Cao J, Taylor M, Floresca CZ, Choi JK, Jenkins BG, Luedtke RR, Newman AH (2007) Heterocyclic analogues of N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: potential substance abuse therapeutic agents. J Med Chem 50:4135–4146

    Article  PubMed  CAS  Google Scholar 

  • Hamidovic A, Kang UJ, de Wit H (2008) Effects of low to moderate acute doses of pramipexole on impulsivity and cognition in healthy volunteers. J Clin Psychopharmacol 28:45–51

    Article  PubMed  CAS  Google Scholar 

  • Haney M, Foltin RW, Fischman MW (1998) Effects of pergolide on intravenous cocaine self-administration in men and women. Psychopharmacology (Berl) 137:15–24

    Article  CAS  Google Scholar 

  • Heidbreder CA, Newman AH (2010) Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders. Ann N Y Acad Sci 1187:4–34

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder CA, Gardner EL, Xi ZX, Thanos PK, Mugnaini M, Hagan JJ, Ashby CR Jr (2005) The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res Brain Res Rev 49:77–105

    Article  PubMed  CAS  Google Scholar 

  • Higley AE, Spiller K, Grundt P, Newman AH, Kiefer SW, Xi ZZ, Gardner EL (2010) PG01037, a novel dopamine D3 receptor antagonist, inhibits the effects of methamphetamine in rats. J Psychopharmacol 25:263–273

    Article  PubMed  Google Scholar 

  • Holman AJ (2009) Impulse control disorder behaviors associated with pramipexole used to treat fibromyalgia. J Gambl Stud 25:425–431

    Article  PubMed  Google Scholar 

  • Institute of Laboratory Animal Research CoLS, National Research Council (1996) Guide for the care and use of laboratory animals, 7th edition. The National Academies Press

  • Joel D, Avisar A, Doljansky J (2001) Enhancement of excessive lever-pressing after post-training signal attenuation in rats by repeated administration of the D1 antagonist SCH 23390 or the D2 agonist quinpirole, but not the D1 agonist SKF 38393 or the D2 antagonist haloperidol. Behav Neurosci 115:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Khaled MA, Farid Araki K, Li B, Coen KM, Marinelli PW, Varga J, Gaal J, Le Foll B (2009) The selective dopamine D3 receptor antagonist SB 277011-A, but not the partial agonist BP 897, blocks cue-induced reinstatement of nicotine-seeking. Int J Neuropsychopharmacol: 1–10

  • Kumor K, Sherer M, Jaffe J (1989) Effects of bromocriptine pretreatment on subjective and physiological responses to i.v. cocaine. Pharmacol Biochem Behav 33:829–837

    Article  PubMed  CAS  Google Scholar 

  • Kurylo DD (2004) Effects of quinpirole on operant conditioning: perseveration of behavioral components. Behav Brain Res 155:117–124

    Article  PubMed  CAS  Google Scholar 

  • Kurylo DD, Tanguay S (2003) Effects of quinpirole on behavioral extinction. Physiol Behav 80:1–7

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Dekeyne A, Rivet JM, Dubuffet T, Lavielle G, Brocco M (2000) S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: II. Functional and behavioral profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther 293:1063–1073

    PubMed  CAS  Google Scholar 

  • Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther 303:791–804

    Article  PubMed  CAS  Google Scholar 

  • Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169–174

    Article  PubMed  CAS  Google Scholar 

  • Newman AH, Grundt P, Nader MA (2005) Dopamine D3 receptor partial agonists and antagonists as potential drug abuse therapeutic agents. J Med Chem 48:3663–3679

    Article  PubMed  CAS  Google Scholar 

  • O’Connor EC, Chapman K, Butler P, Mead AN (2011) The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev 35:912–938

    Article  PubMed  Google Scholar 

  • O’Sullivan SS, Evans AH, Lees AJ (2009) Dopamine dysregulation syndrome: an overview of its epidemiology, mechanisms and management. CNS Drugs 23:157–170

    Article  PubMed  Google Scholar 

  • Pilla M, Perachon S, Sautel F, Garrido F, Mann A, Wermuth CG, Schwartz JC, Everitt BJ, Sokoloff P (1999) Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400:371–375

    Article  PubMed  CAS  Google Scholar 

  • Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (1976) Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature 264:57–59

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (1978) The acquisition of responding with conditioned reinforcement: effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacology (Berl) 58:79–87

    Article  CAS  Google Scholar 

  • Robbins TW, Koob GF (1978) Pipradrol enhances reinforcing properties of stimuli paired with brain stimulation. Pharmacol Biochem Behav 8:219–222

    Article  PubMed  CAS  Google Scholar 

  • Schenk S, Partridge B (2001) Influence of a conditioned light stimulus on cocaine self-administration in rats. Psychopharmacology (Berl) 154:390–396

    Article  CAS  Google Scholar 

  • Self DW, Barnhart WJ, Lehman DA, Nestler EJ (1996) Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 271:1586–1589

    Article  PubMed  CAS  Google Scholar 

  • Terry P, Witkin JM, Katz JL (1994) Pharmacological characterization of the novel discriminative stimulus effects of a low dose of cocaine. J Pharmacol Exp Ther 270:1041–1048

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Gifford A, Hitzemann R, Ding YS, Pappas N (1999) Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry 156:1440–1443

    PubMed  CAS  Google Scholar 

  • Voon V, Fox SH (2007) Medication-related impulse control and repetitive behaviors in Parkinson disease. Arch Neurol 64:1089–1096

    Article  PubMed  Google Scholar 

  • Voon V, Hassan K, Zurowski M, de Souza M, Thomsen T, Fox S, Lang AE, Miyasaki J (2006) Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology 67:1254–1257

    Article  PubMed  CAS  Google Scholar 

  • Voon V, Potenza MN, Thomsen T (2007) Medication-related impulse control and repetitive behaviors in Parkinson’s disease. Curr Opin Neurol 20:484–492

    Article  PubMed  Google Scholar 

  • Weintraub D (2008) Dopamine and impulse control disorders in Parkinson’s disease. Ann Neurol 64(Suppl 2):S93–S100

    PubMed  Google Scholar 

  • Weintraub D, Potenza MN (2006) Impulse control disorders in Parkinson’s disease. Curr Neurol Neurosci Rep 6:302–306

    Article  PubMed  Google Scholar 

  • Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, Whetteckey J, Wunderlich GR, Lang AE (2010) Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 67589–595

  • Wolterink G, Phillips G, Cador M, Donselaar-Wolterink I, Robbins TW, Everitt BJ (1993) Relative roles of ventral striatal D1 and D2 dopamine receptors in responding with conditioned reinforcement. Psychopharmacology (Berl) 110355–364

  • Woolverton WL, Goldberg LI, Ginos JZ (1984) Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J Pharmacol Exp Ther 230:678–683

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by NIDA grants DA 024897, DA 020669, as well as the NIDA-IRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory T. Collins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, G.T., Cunningham, A.R., Chen, J. et al. Effects of pramipexole on the reinforcing effectiveness of stimuli that were previously paired with cocaine reinforcement in rats. Psychopharmacology 219, 123–135 (2012). https://doi.org/10.1007/s00213-011-2382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2382-5

Keywords

Navigation