Abstract
Maize has for many decades been both one of the most important crops worldwide and one of the primary genetic model organisms. More recently, maize breeding has been impacted by rapid technological advances in sequencing and genotyping technology, transformation including genome editing, doubled haploid technology, parallelled by progress in data sciences and the development of novel breeding approaches utilizing genomic information. Herein, we report on past, current and future developments relevant for maize breeding with regard to (1) genome analysis, (2) germplasm diversity characterization and utilization, (3) manipulation of genetic diversity by transformation and genome editing, (4) inbred line development and hybrid seed production, (5) understanding and prediction of hybrid performance, (6) breeding methodology and (7) synthesis of opportunities and challenges for future maize breeding.
Similar content being viewed by others
References
Akdemir D, Sanchez JI (2016) Efficient breeding by genomic mating. Front Genet 7:1–12
Akdemir D, Beavis W, Fritsche-Neto R, Singh AK, Isidro-Sánchez J (2018) Multi-objective optimized genomic breeding strategies for sustainable food improvement. Heredity. https://doi.org/10.1038/s41437-018-0147-1
Amano E, Smith HH (1965) Mutations induced by ethyl methanesulfonate in maize. Mutat Res 2:344–354
Anderson E, Cutler HC (1942) Races of Zea mays. I. Their recognition and classification. Ann Mo Bot Gard 29:69–89
Andorf CM, Cannon EK, Portwood JL 2nd, Gardiner JM, Harper LC, Schaeffer ML, Braun BL, Campbell DA, Vinnakota AG, Sribalusu VV, Huerta M, Cho KT, Wimalanathan K, Richter JD, Mauch ED, Rao BS, Birkett SM, Sen TZ, Lawrence-Dill CJ (2016) MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Res 44:D1195–D1201
Baldauf JA, Marcon C, Lithio A, Vedder L, Altrogge L, Piepho H-P, Schoof H, Nettleton D, Hochholdinger F (2018) Single-parent expression is a general mechanism driving extensive complementation of non-syntenic genes in maize hybrids. Curr Biol 28:431–437
Barnabás B, Obert B, Kovács G (1999) Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero. Plant Cell Rep 18:858–862
Bauer E, Falque M, Walter H, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Rincent R, Schipprack W, Altmann T, Flament P, Melchinger AE, Menz M, Moreno-Gonzalez J, Ouzunova M, Revilla P, Charcosset A, Martin OC, Schön CC (2013) Intraspecific variation of recombination rate in maize. Genome Biol 14(9):R103
Beavis WD, Grant D (1991) A linkage map based on information from four F2 populations of maize. Theor Appl Genet 82:636–644
Beckett TJ, Morales AJ, Koehler KL, Rocheford TR (2017) Genetic relatedness of previously Plant-variety-protected commercial maize inbreds. PLoS ONE 12(12):e0189277
Bedoya CA, Dreisigacker S, Hearne S, Franco J, Mir C, Prasanna BM et al (2017) Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS ONE 12(4):e0173488
Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58:268–276
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42
Bernardo R (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci 34:20–25
Bernardo R (1996a) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56
Bernardo R (1996b) Best linear unbiased prediction of the performance of crosses between untested maize inbreds. Crop Sci 36:872–876
Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425
Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090
Betran FJ, Ribaut JM, Beck D, Gonzalez de Leon D (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797–806
Birchler JA (1980) The cytogenetic localization of the alcohol dehydrogenase-1 locus in maize. Genetics 94:687–700
Bird RM, Neuffer MG (1987) Induced mutations in maize. In: Janick J (ed) Plant breeding reviews. Van Nostrand Reinhold, New York, pp 139–180
Birge JR, Louveaux V (2011) Introduction to stochastic programming. Springer, New York
Boles JN (1955) Linear programming and farm management analysis. J Farm Econ 37:1–37
Bolser DM, Staines DM, Perry E, Kersey PJ (2017) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. Methods Mol Biol 1533:1–31
Bommert P, Nagasawa NS, Jackson D (2013) Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet 45:334–337
Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS ONE 8(8):e71377
Brandenburg J-T, Mary-Huard T, Rigaill G, Hearne SJ, Corti H, Joets J, Vitte C, Charcosset A, Nicolas S, Tenaillon M (2017) Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts. PLoS Genet 13(3):e1006666
Brown WL, Goodman MM (1977) Races of corn. In: Sprague GF (ed) Corn and corn improvement. Amer Soc Agron, Madison, pp 49–88
Brown AHD, Hodgkin T (2015) Indicators of genetic diversity, genetic erosion, and genetic vulnerability for plant genetic resources. In: Ahuja MR Jain SM (eds) Genetic diversity and erosion in plants, sustainable development and biodiversity vol 7, pp 25–53
Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628
Brunelle DC, Clark JK, Sheridan WF (2017) Genetics screening for EMS-induced maize embryo-specific mutants altered in embryo morphogenesis. G3 7:3559–3570
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718
Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, Wang B, Xu D, Yang B, Xie C, Fan L, Gao S, Xu X, Zhang G, Li Y, Jiao Y, Doebley JF, Ross-Ibarra J, Lorant A, Buffalo V, Romay MC, Buckler ES, Ware D, Lai J, Sun Q, Xu Y (2018) Construction of the third-generation Zea mays haplotype map. GigaScience 7:1–12
Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105:201–211
Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526
Byrum J, Davis C, Doonan G, Doubler T, Foster D, Luzzi B, Mowers R, Zinselmeier C, Klober J, Culhane D, Mack S (2016) Advanced analytics for agricultural product development. Interfaces 46:5–17
Byrum J, Davis C, Doonan G, Doubler T, Foster D et al (2017) Genetic gain performance metric accelerates agricultural productivity. Interfaces 47:442–453
Cameron JN, Han Y, Wang L, Beavis WD (2017) Systematic design for trait introgression projects. Theor Appl Genet 130:1993–2004
Canzar S, El-Kebir M (2011) A mathematical programming approach to marker-assisted gene pyramiding. In: Proceedings of the 11th workshop on algorithms in bioinformatics. Springer, pp 26–38
Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group ditsribution. Theor Appl Gen 99:425–431
CGC (2018) Crop germplasm committees. Briefings 2010–2018 USDA-ARS GRIN. https://www.ars-grin.gov/npgs/cgcweb.html
Chalyk ST (1994) Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica 79:13–18
Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M, Spalding MH, Vollbrecht E, Wang K, Yang B (2015) Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol J 13:1002–1010
Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268
Chase SS (1949) Monoploid frequencies in a commercial double cross hybrid maize, and in its component single cross hybrids and inbred lines. Genetics 34:328–332
Chase SS (1951) Efficient methods of developing and improving inbred lines. The monoploid method of developing inbred lines. Report of 6th hybrid corn industry research conference, pp 29–34
Chase SS (1952) Production of homozygous diploids of maize from monoploids. Agron 44:263–267
Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 132:1199–1210
Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhajarvi T, Rong T, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang Z, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang G, Xu Y, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807
Chilcoat D, Liu Z-B, Sander J (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci 149:27–46
Chojnacki S, Cowley A, Lee J, Foix A, Lopez R (2017) Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 45:W550–W553
Chourey PS, Schwartz D (1971) Ethyl methanesulfonate-induced mutations of the Sh1 protein in maize. Mutat Res 12:151–157
Ci X, Li M, Liang X, Xie Z, Zhang D, Li X, Lu Z, Ru G, Bai L, Xie C, Hao Z, Zhang S (2011) Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci 51:13–20
Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270
Coe EH Jr, Sarkar KR (1964) The detection of haploids in maize. Heredity 555:231–233
Coe EH, Sarkar KR (1966) Preparation of nucleic acids and a genetic transformation attempt in maize. Crop Sci 6:432–435
Coe E, Cone K, McMullen M, Chen SS, Davis G, Gardiner J, Liscum E, Polacco M, Paterson A, Sanchez-Villeda H, Soderlund C, Wing R (2002) Access to the maize genome: an integrated physical and genetic map. Plant Physiol 128:9–12
Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360–367
Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH Jr (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605
Cooper M, Podlich DW (2002) The E(NK) model: extending the NK model to incorporate gene by environment interactions and epistasis for diploid genomes. Compexity 7:31–47
Cooper M, Podlich DW, Micallef KP, Smith OS, Jensen NM et al. (2002) Complexity, quantitative traits and plant breeding: a role for simulation modeling in the genetic improvement of crops. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB
Cooper M, Gho C, Leafgren R, Tang T, Messina C (2014) Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J Exp Bot 65:6191–6204
Cress CE (1967) Reciprocal recurrent selection and modifications in simulated populations. Crop Sci 7:561–567
Crow JF (1998) 90 years ago: the beginning of hybrid maize. Genetics 148:923–928
Crow JF (1999) Dominance and overdominance. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA, CSSA, Madison, pp 49–58
Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031
Darrah DL, Zuber MS (1986) 1985 United States farm maize germplasm base and commercial breeding strategies. Crop Sci 26:1109–1113
Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28:454–455
De Beukelaer H, De Meyer G, Fack V (2015) Heuristic exploitation of genetic structure in marker-assisted gene pyramiding problems. BMC Genet 16:2–16
Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601
Dicke FF, Guthrie WD (1988) The most important corn insects. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. American Society of Agronomy, Madison, pp 767–868
Doebley J, Wendel JF, Smith JSC, Stuber CW, Goodman MM (1988) The origin of Cornbelt maize: the isozyme evidence. Econ Bot 42:120–131
Dollinger EJ (1954) Studies on induced mutation in maize. Genetics 39:750–766
Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V (2010) Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 11:R107
Dong Q, Roy L, Freeling M, Walbot V, Brendel V (2003) ZmDB, an integrated database for maize genome research. Nucleic Acids Res 31:244–247
Dubreuil P, Dufour P, Krejci E, Causse M, deVienne D, Gallais A, Charcosset A (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799
Duvick DN (1965) Cytoplasmic pollen sterility in corn. Adv Genet 13:1–56
Duvick DN (1984) Genetic diversity in major farm crops on the farm and in reserve. Econ Bot 38:161–178
Duvick DN (2005a) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202
Duvick DN (2005b) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145
Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci 39:1622–1630
East EM (1908) Inbreeding in corn. Rep Conn Agric Exp Stn 1907:419–428
Eberhart SA (1970) Factors affecting efficiencies of breeding methods. Afr Soils 15:669–680
Eder J, Chalyk ST (2002) In vivo haploid induction in maize. Theor Appl Genet 104:703–708
Edmeades GO, Trevisan W, Prasanna BM, Campos H (2017) Tropical maize (Zea mays L.). In: Campos H, Caligari PDS (eds) Genetic improvement of tropical crops. Springer, New York, pp 57–109
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138
Einset J (1942) Chromosome length in relation to transmission frequency in maize trisomes. Genetics 28:349–364
Eisenstein M (2015) Startups use short-read data to expand long-read sequencing market. Nat Biotechnol 33:433–435
Emerson RA (1917) Genetical studies of variegated pericarp in maize. Genetics 2:1–35
Eynard SE, Croiseau P, Laloe D, Fritz S, Calus MPL, Restoux G (2018) Which individuals to choose to update the reference population? Minimizing the loss of genetic diversity in animal genomic selection programs. G3 8:113–121
FAOSTAT (2018) Crop data. FAO United Nations, Rome. http://www.fao.org/faostat/en/#data/QC
Fehr, WR (1991) Maximizing genetic improvement. In: Principles of cultivar development: theory and technique. Macmillian, USA, pp. 219–246
Feng L, Sebastian S, Smith S, Cooper M (2006) Temporal trends in SSR allele frequencies associated with long-term selection for yield of maize. Maydica 51:293–300
Feng PC, Qi Y, Chiu T, Stoecker MA, Schuster CL, Johnson SC, Fonseca AE, Huang J (2014) Improving hybrid seed production in corn with glyphosate-mediated male sterility. Pest Manag Sci 70:212–218
Fernandez J, Toro MA (1999) The use of mathematical programming to control inbreeding in selection schemes. J Anim Breed Genet 116:447–466
Fischer T, Byerlee D, Edmeades G (2014) Crop yields and global food security: will yield increase continue to feed the world? ACIAR monograph no. 158. Australian Centre for International Agricultural Research, Canberra, xxii + 634 pp
Fisher RA (1930) The fundamental theorem of natural selection. The genetical theory of natural selection. Oxford University Press, Oxford, pp 22–47
Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM (2009) Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS ONE 4:e7433
Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22
Fraser AS, Burnell DG (1970) Computer models in genetics. McGraw-Hill, San Franscisco
Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301
Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793
Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578
Gabay-Laughnan S, Laughnan JR (1994) The male sterility and restorer genes in maize. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 418–423
Gaffney J, Anderson J, Franks C, Collinson S, MacRobert J, Woldemariam W, Albertsen MC (2016) Robust seed systems, emerging technologies and hybrid crops for Africa. Food Secur. 9:36–44
Gama EEG, Hallauer AR (1977) Relation between inbred and hybrid traits in maize. Crop Sci 17:703–706
Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schon CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:28334
Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:275–276
Garcia AAF, Wang S, Melchinger AE, Zeng Z-B (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180:1707–1724
Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134:917–930
Gardner CA (2012) Maize diversification by capturing useful alleles from exotic germplasm. In: Proceedings 48th Annual Illinois Corn Breeding School, March 5–6, 2012. Urbana-Champaign, IL, p 172
Garing F (2000) Inbred corn plant 90QDD1 and seeds thereof. United States Patent No. US 6,034,305. US Patent Office, Washington, DC
Gaynor RC, Gorjanc G, Bentley AR, Ober ES, Howell P, Jackson R, Mackay IJ, Hickey JM (2017) A two-part strategy for using genomic selection to develop inbred lines. Crop Sci 57:2372–2386
Geiger HH (2009) Doubled haploids. Maize handbook—volume ii: genetics and genomics. Springer, New York, pp 641–657
Geiger HH, Braun MD, Gordillo GA, Koch S, Jesse J, Krutzfeldt BAE (2006) Variation for female fertility among haploid maize lines. Maize Genet Newsl 80:28–29
Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crops & Food 8:1–12
Gibson PB, Brink RA, Stahmann MA (1950) The mutagenic action of mustard gas on Zea mays. J Hered 41:232–238
Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Schipprack W, Flament P, Melchinger AE, Menz M, Moreno-González J, Ouzunova M, Charcosset A, Schön C, Moreau L (2014) Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the Flint and Dent heterotic groups of maize. Genetics 198:1717–1734
Giraud H, Bauland C, Falque M, Madur D, Combes V, Jamin P, Monteil C, Laborde J, Palaffre C, Gaillard A, Blanchard P, Charcosset A, Moreau L (2017) Reciprocal genetics: identifying QTLs for general and specific combining abilities in hybrids between multiparental populations from two maize (Zea mays L.) heterotic groups. Genetics 207:1167–1180
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100
Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol J 14:1099–1105
Golovkin MV, Abraham M, Morocz S, Bottka S, Feder A, Dudits D (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic proroplasts. Plant Sci 90:41–52
Gonzalez VH, Tollenaar M, Bowman A, Good B, Lee EA (2018) Maize yield potential and density tolerance. Crop Sci 58:472–485
Goodman MM (1978) A brief survey of the races of maize and current attempts to infer racial relationships. In: Walden DB (ed) Maize breeding and genetics, pp143–184
Goodman MM (1999) Broadening the genetic diversity in maize breeding by use of exotic germplasm. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops, pp139–148
Goodman MM (2005) Broadening the U.S. maize germplasm base. Maydica 50:203–214
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186
Gordillo GA, Geiger HH (2008) Optimization of DH-line based recurrent selection procedures in maize under a restricted annual loss of genetic variance. Euphytica 161:141–154
Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR Jr, Willets NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618
Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117
Gorjanc G, Gaynor RC, Hickey JM (2018) Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet 131:1953–1966
Gowen JW (1952) Heterosis. Iowa State College Press, Ames
Graham GI, Wolff DW, Stuber CW (1997) Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci 37:1601
Grimsley N, Hohn T, Davies JW, Hohn B (1987) Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179
Gurian-Sherman D (2009) Failure to yield: evaluating the performance of genetically engineered crops. Union of Concerned Scientists. http://www.ucsusa.org/assets/documents/food_and_agriculture/failure–to–yield.pdf
Haegele JW, Cook KA, Nichols DM, Below FE (2013) Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. Crop Sci 53:1256–1268
Hallauer AR, Miranda F (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames
Hallauer AR, M. J. Carena, Filho JBM (2010) Selection: experimental results. In: Quantitative genetics in maize breeding. Handbook of plant breeding, vol 6. Springer, New York, pp 291–383
Han Y, Cameron JN, Wang L, Beavis WD (2017) The predicted cross value for genetic introgression of multiple alleles. Genetics 205:1409–1423
Häntzschel KR, Weber G (2010) Blockage of mitosis in maize root tips using colchicine-alternatives. Protoplasma 241:99–104
Hazel LN (1943) The genetic basis for constructing selection indices. Genetics 28:476–490
Heady EO (1954) Simplified presentation and logical aspects of linear programming technique. J Farm Econ 36:1035–1048
Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8
Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection of crop improvement. Crop Sci 49:1–12
Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Gen 72:761–769
Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447
Herzog E, Frisch M (2011) Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor Appl Genet 123:251–260
Herzog E, Falke KC, Presterl T, Scheuermann D, Ouzunova M, Frisch M (2014) Selection strategies for the development of maize introgression populations. PLoS ONE 9:e92429
Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–152
Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231
Hillel J, Schaap T, Haberfeld A, Jeffreys AJ, Plotzky Y, Cahaner A, Lavi U (1990) DNA fingerprints applied to gene introgression in breeding programs. Genetics 124:783–789
Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Penagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N, Kaeppler SM, Buell CR (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–135
Holland JB (2004) Breeding: incorporation of exotic germplasm. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 222–224
Holland J, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112
Hospital F (2001) Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics 158:1363–1379
Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485
Hospital F, Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 132:1199–1210
Howard R, Carriquiry AL, Beavis WD (2014) Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3 (Bethesda) 4:1027–1046
Howard JT, Pryce JE, Baes C, Maltecca C (2017) Invited review: inbreeding in the genomics era: inbreeding, inbreeding depression, and management of genomic variability. J Dairy Sci 100:6009–6024
Huang CR, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:651–675
Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibara J (2013) Correction: the genomic signature of crop-wild introgression in maize. PLOS Genetics. https://doi.org/10.1371/annotation/2eef7b5b-29b2-412f-8472-8fd7f9bd65ab
Hull RH (1945) Recurrent selection and specific combining ability in corn. J Am Soc Agron 37:134–145
Inghelandt DV, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299
Initiative AG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815
ISAAA (2017) Global status of commercialized Biotech/GM Crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief no. 53, ISAAA: Ithaca, NY
Ishida Y, Saito H, Ohta SH, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750
Ishii T, Yonezawa K (2007) Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: I. Schedule of crossing between the donor lines. Crop Sci 47:537–547
Jannink J-L (2010) Dynamics of long-term genomic selection. Genet Sel Evol 42:11
Jeffrey B, Lübberstedt T (2014) Molecular breeding of bioenergy traits. In: Corn S, Goldman (ed.) Compendium of bioenergy plantsscience. Publishers/Taylor & Francis/CRC PRESS, Boca Raton, FL, USA, pp.198–215
Jenkins MT (1940) The segregation of genes affecting yield of grain in maize. J Am Soc Agron 32:55–63
Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815
Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527
Johnson I, Eldredge J (1953) Performance of recovered popcorn inbred lines derived from outcrosses to dent corn. Agron J 45:105–110
Johnson B, Gardner CO, Wrede KC (1988) Application of an optimization model to multi-trait selection programs. Crop Sci 28:723–728
Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479
Jugenheimer RJ (1985) Corn improvement, seed production and uses. RE Krieger, Malabar, p 794
Kadam DC, Potts SM, Bohn MO, Lipka AE, Lorenz AJ (2016) Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline. G3(6):3443–3453
Kaeppler S (2012) Heterosis: many genes, many mechanisms—end the search for an undiscovered unifying theory. ISRN Bot 2012:1–12
Karush W (1939) Minima of functions of several variables with inequalities as side constraints. University of Chicago, Chicago
Kassie GT, Erenstein O, Mwangi W, La Rovere R, Setimela P, Langyintuo A (2012) Characterization of maize production in southern Africa: synthesis of CIMMYT/DTMA household level farming system surveys in Angola, Malawi, Mozambique, Zambia and Zimbabwe. Socio-economics program working paper 4. CIMMYT, Mexico, D.F
Kato A (2002) Chromosome doubling of haploid maize seedling using nitrous oxide gas at the flower primordial stage. Plant Breed 1215:370–377
Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109
Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424
Kermicle JL (1994) Indeterminate gametophyte ig biology and use. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 388–393
Kinghorn BP (1998) Mate selection by groups. J Dairy Sci 81:55–63
Kingsbury N (2009) Hybrid: the history and science of plant breeding. The University of Chicago Press, Chicago
Kleiber D, Prigge V, Melchinger AE, Burkard F, San Vicente F, Palomino G, Gordillo GA (2012) Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52:623–630
Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WI, Menz MA, Franks CD, Klein PE (2008) The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Sci 48:12
Klein RR, Miller FR, Bean S, Klein PE (2016) Registration of 40 converted germplasm sources from the reinstated sorghum conversion program. J Plant Regist 10:57
Kremling KAG, Chen S-Y, Su M-H, Lepak NK, Romay MC, Swarts KL, Lu F, Lorant A, Bradbury PJ, Buckler ES (2018) Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555:520–523
Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings of 2nd Berkeley symposium, pp 481–492
Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran S, Rani NS, Viraktamath B, Madhav M (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv 28:451–461
Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168
Laborda PR, Oliveira KM, Garcia AF, Paterniani MEAG, Souza AP (2005) Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers? Theor Appl Genet 111:1288–1299
Lanza LLB, de Souza CL Jr, Ottoboni LMM, Vieira MLC, de Souza AP (1997) Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theor Appl Genet 94:1023–1030
Larkins JR (2000) Inbred corn plant RQAA8 and seeds thereof. U.S. Patent No 6,143,961. US Patent Office, Washington DC
Lawrence CJ, Harper LC, Schaeffer ML, Sen TZ, Seigfried TE, Campbell DA (2008) MaizeGDB: the maize model organism database for basic, translational, and applied research. Int J Plant Genom 2008:496957
Le Clerc V, Bazante F, Baril C, Guiard J, Zhang D (2005) Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet 110:294–302
Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SLO, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790
Lee M, Phillips RL (1987) Genomic rearrangements in maize induced by tissue culture. Genome 29:123–128
Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48:453–461
Leung H, Raghavan C, Zhou B, Oliva R, Choi IR, Lacorte V, Jubay ML, Cruz CV, Gregorio G, Singh RK (2015) Allele mining and enhanced genetic recombination for rice breeding. Rice 8:1
Li Y, Ma X, Wang T, Li Y, Liu C, Liu Z, Sun B, Shi Y, Song Y, Carlone M, Bubeck D, Bhardwaj H, Whitaker D, Wilson W, Jones E, Wright K, Sun S, Niebur W, Smith S (2011) Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Sci 51:2391–2400
Li X, Zhu C, Wang J, Yu J (2012a) Computer simulation in plant breeding. Adv Agron 116:219–264
Li X, Zhu C, Yeh CT, Wu W, Takacs EM, Petsch KA, Tian F, Bai G, Buckler ES, Muehlbauer GJ, Timmermans MC, Scanlon MJ, Schnable PS, Yu J (2012b) Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res 22:2436–2444
Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS, Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang Y, Ruan H, Yeung CK, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052
Li R, Hsieh CL, Young A, Zhang Z, Ren X, Zhao Z (2015) Illumina synthetic long read sequencing allows recovery of missing sequences even in the “Finished” C. elegans Genome. Sci Rep 5:10814
Li YX, Li C, Bradbury PJ, Liu X, Lu F, Romay CM, Glaubitz JC, Wu X, Peng B, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Li Y, Wang T (2016) Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J 86:391–402
Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186
Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom 41:63–68
Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128
Liu F, Zhu Y, Yi Y, Lu N, Zhu B, Hu Y (2014) Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genom 15:1163
Liu Z, Ren J, Trampe B, Frei UK, Lübberstedt T (2016) Doubled haploids: from obscure phenomenon to key technology of current maize breeding programs. Plant Breed Rev 40:123–166
Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10:520–522
Longin CFH, Utz HF, Reif JC, Wegenast T, Schipprack W, Melchinger AE (2007) Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for tescross performance. Theor Appl Genet 115:519–527
Longin CFH, Mi X, Wurschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao ZY, Xu D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015
Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Parentoni SN, Shah T, Rong T, Crouch JH, Xu Y (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115
Lu Y, Shah T, Hao Z, Taba S, Zhang S, Gao S, Liu J, Cao M, Wang J, Bhanu Pralash A, Rong TXuY (2011) Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize. PLoS ONE 6(9):e24861
Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang T, Li Y, Li Y, Semagn K, Zhang X, Hernandez AG, Mikel MA, Soifer I, Barad O, Buckler ES (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:6914
Magorokosho C (2006) Genetic diversity and performance of maize varieties from Zimbabwe, Zambia and Malawi. PhD thesis Texas A&M University, College Station, TX, 179 pp
Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915
Mangelsdorf PC (1961) Introgression in maize. Euphytica 10:157–168
Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741
Markelz RJ, Strellner RS, Leakey ADB (2011) Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated CO2 in maize. J Exp Bot 62:3235–3246
Marulanda JJ, Mi X, Melchinger AE, Xu JL, Wurschum T, Longin CF (2016) Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet 129:1901–1913
Mastrodomenico AT, Hendrix CC, Below FE (2018) Nitrogen use efficiency and the genetic variation of maize expired plant variety protection germplasm. Agric Agric 8:3
Masuka B, Atlin GN, Olsen M, Magorokosho C, Labuschagne M, Crossa J, Banziger M, Pixley KV, Vivek B, Biljon A, MacRobert JF, Alvarado G, Prasanna BM, Makumbi D, Makumbi D, Tarekegne AT, Das B, Zaman-Allah M, Cairns JE (2017a) Gains in maize genetic improvement in Eastern and Southern Africa : I. CIMMYT hybrid breeding pipeline. Crop Sci 57:168–179
Masuka B, Magorokosho C, Olsen M, Atlin GN, Bänziger M, Pixley KV, Vivek BS, Labuschagne M, Matemba-Mutasa R, Burgueño J, Macrobert J, Prasanna BM, Das B, Makumbi D, Tarekegne A, Crossa J, Zaman-Allah M, van Biljon A, Cairns JE (2017b) Gains in maize genetic improvement in Eastern and Southern Africa: II. CIMMYT open-pollinated variety breeding pipeline. Crop Sci 57:180–191
Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084
May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, Roh D, Pan X, Stein L, Freeling M, Alexander D, Martienssen R (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546
McCarty DR, Suzuki M, Hunter C, Collins J, Avigne WT, Koch KE (2013) Genetic and molecular analyses of UniformMu transposon insertion lines. Methods Mol Biol 1057:157–166
McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355
MCGC (2016) Maize crop germplasm committee. USDA-ARS GRIN. Vulnerability statement recommendations. https://www.ars-grin.gov/npgs/cgc_reports/maizevuln2016.pdf. Accessed 12 Dec 2016
Melchinger AE, Geiger HH, Schnell FW (1986) Epistasis in maize (Zea mays L.). Theor Appl Genet 72:231–239
Melchinger AE, Schipprack W, Mi X, Mirdita V (2015) Oil content is superior to oil mass for identification of haploid seeds in maize produced with high-oil inducers. Crop Sci 55:188–195
Merrill WL, Hard RJ, Mabry JB, Fritz GJ, Adams KR, Roney JR, MacWilliams AC (2009) The diffusion of maize to the southwestern United States and its impact. Proc Natl Acad Sci USA 106:21019–21026
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829
Mi X, Utz HF, Technow F, Melchinger AE (2014) Optimizing resource allocation for multistage selection in plant breeding with R package. Crop Sci 54:1413
Mikel MA, Dudley JW (2006) Evolution of North American dent corn from public to proprietary germplasm. Crop Sci 46:1193–1205
Mir C, Zerjal T, Combes V, Dumas F, Madur D, Bedoya C, Dreisigacker S, Franco J, Grudloyma P, Hao P, Hearne S, Jampatong C, Laloë D, Muthamia Z, Nguyen T, Prasanna B, Taba S, Xie C, Yunus M, Zhang S, Warburton M, Charcosset A (2013) Out of America: tracing the genetic footprints of the global diffusion of maize. Theor Appl Genet 126:2671–2682
National Corn Growers Association (2018) World corn production, National Corn Growers Association (sourced from USDA, FAS Grain: World Markets and Trade) http://www.worldofcorn.com/#world-corn-production. Accessed 12 Jan 2018
Nelson PT, Goodman MM (2008) Evaluation of elite exotic maize inbreds for use in temperate breeding. Crop Sci 48:85–92
Nelson PT, Krakowsky MD, Coles ND, Holland JB, Bubeck DM, Smith JSC, Goodman MM (2016) Genetic characterization of the North Carolina State University maize lines. Crop Sci 56:259–275
Neuffer MG (1957) Additional evidence on the effect of X-ray and ultraviolet radiation on mutation in maize. Genetics 42:273–282
Neuffer MG (1994) Mutagenesis. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 212–218
Neuffer MG, Coe EH (1978) Paraffin oil technique for treating mature corn pollen with chemical mutagens. Maydica 23:21–28
Neuffer MG, Fiscor G (1963) Mutagenic action of ethyl methanesulfonate in maize. Science 139:1296–1297
Neuffer MG, Johal G, Chang MT, Hake S (2009) Mutagenesis—the key to genetic analysis. In: Bennetzen JL, Hake S (eds) The maize handbook. Springer, New York, pp 63–84
Niu X, Xie R, Liu X, Zhang F, Li S, Gao S (2013) Maize yield gains in Northeast China in the last six decades. J Integr Agric 12:630–637
NRC (1972) Committee on genetic vulnerability of major crops. (1972) Genetic vulnerability of major crops. Natl Acad Sci Washington DC, 307 pp
NRC (1993) Committee on managing global genetic resources: agricultural imperatives. Board on agriculture. Natl Res Council National Academy Press, Washington DC
Pace J, Gardner C, Romay C, Ganapathsybrumanian B, Lübberstedt T (2015) Genome-wide association analysis of seedling root development in maize. BMC Genom 16:47
Paten B, Novak AM, Eizenga JM, Garrison E (2017) Genome graphs and the evolution of genome inference. Genome Res 27:665–676
Peccoud J, Velden KV, Podlich D, Winkler C, Arthur L, Cooper M (2004) The selective values of alleles in a molecular network model are context dependent. Genetics 166:1715–1725
Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, Gardner CA, McMullen MD, Holland JB, Bradbury PJ, Buckler ES (2014) The genetic architecture of maize height. Genetics 196:1337–1356
Peng T, Sun X, Mumm RH (2014a) Optimized breeding strategies for multiple trait integration: I Minimizing linkage drag in single event introgression. Mol Breed 33:89–104
Peng T, Sun C, Mumm RH (2014b) Optimized breeding strategies for multiple trait integration: II Process efficiency in event pyramiding and trait fixation. Mol Breed 33:105–115
Peterson P (1953) A mutable pale green locus in maize. Genetics 38:682–683
Piepho H-P (2009) Ridge regression and extensions for genomewide selection in maize. Crop Sci 49:1165–1176
Piperno DR, Ranere AJ, Holst I, Inarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley. Mexico. Proc Natl Acad Sci USA 106:5019–5024
Pixley KV (2006) Hybrid and open-pollinated varieties in modern agriculture. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R. Hallauer international symposium. Blackwell Publishing, Ames
Podlich DW, Cooper M (1998) Qu-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics 14:632–653
Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898
Pollacsek M (1992) Management of the ig gene for haploid induction in maize. Agronomie 12:247–251
Pong-Wong R, Woolliams JA (2007) Optimisation of contribution of candidate parents to maximise genetic gain and restricting inbreeding using semidefinite programming. Genet Sel Evol 39:3–25
Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855
Puchta H, Hohn B (2010) Breaking news: plants mutate right on target. Proc Natl Acad Sci USA 107:1165–11658
Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW, Haussler D, Rokhsar DS, Green RE (2016) Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26:342–350
Qin X, Feng F, Li Y, Xu S, Siddique KHM, Liao Y (2016) Maize yield improvements in China: past trends and future directions. Plant Breed 135:166–176
Randolph LF (1940) Note on haploid frequencies. Maize Genet Coop Newsl 14:23–24
Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293
Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck S, Bohn M, Frisch M (2003) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957
Reif JC, Fischer S, Schrag TA, Lamkey KR, Klein D, Dhillon BS, Utz HF, Melchinger AE (2010) Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. Theor Appl Genet 120:301–310
Ren J, Wu P, Tian X, Lübberstedt T, Chen SJ (2017) Fine mapping of quantitative trait locus qhmf4 causing haploid male fertility in maize based on segregation distortion. Theor Appl Genet 130:1349–1359
Rendel JM, Robertson A (1950) Estimation of gnetic gain in milk yield by selection ina closed herd of dairy cattle. Journal of Genetics 50:1–8
Rhoades M (1931) Cytoplasmic inheritance of male sterility in Zea mays. Science 73:340–341
Rhoades MM (1938) Effect of Dt gene on the mutability of the a1 allele in maize. Genetics 23:377–397
Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207
Robertson A (1957) Optimum group size in progeny testing and family selection. Biometrics 13:442–450
Robertson A (1960) A theory of limits in artificial selection. Proc R Soc Lond 153:234–249
Rogers DL, McGuire PE (2015) Genetic erosion: context is key. In: Ahuja MR, Jain SM (eds) Genetic diversity and erosion in plants. Springer, New York, pp 1–24
Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:R55
Romero Navarro JA, Willcox M, RomayC Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V, OrtegaA Banda AE, Montiel NO, Ortiz-Monasterio I, Vicente FS, EspinozaAG Atlin G, WenzlP Hearne S, Buckler S (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet 49:476–480
Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281(363):365
Rotarenco VA, Dicu G, State D, Fuia S (2010) New inducers of maternal haploids in maize. Maize Genet Coop Newslett 84:1–7
Sanchez D, Liu S, Ibrahim R, Blanco M, Lübberstedt T (2018) Association mapping of seedling root traits in exotic derived doubled haploid lines of maize. Plant Sci 268:30–38
Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
Sarvella P, Grogan CO (1967) The mutagenic effects of gamma rays on Zea mays in relation to ear location. Radiat Bot 7:107–111
Schnable JC, Freeling M (2011) Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. PLoS ONE 6:e17855
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115
Schneerman MC, Charbonneau M, Weber DF (2000) A survey of ig containing materials. Maize Genet Coop Newslett 74:92–93
Schrag TA, Westhues M, Schipprack W, Seifert F, Thiemann A, Scholten S, Melchinger AE (2018) Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize. Genetics 208:1373–1385
Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ, Wang YK (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262:110–114
Segerman B (2012) The genetic integrity of bacterial species: the core genome and the accessory genome, two different stories. Front Cell Infect Microbiol 2:116
Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyriamiding. Genetics 168:513–523
Shi J, Gao H, Wang H, Lafitte R, Archibald RL, Yang M, Hakimi SH, Mo H, Habben J (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain under field drought stress conditions. Plant Biotechnol J 15:2017–2216
Shukla VP, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441
Shull GH (1908) The composition of a field of maize. Am Breeders Assoc Rep 4:296–301
Singleton WR (1941) Hybrid vigor and its utilization in sweet corn breeding. Am Nat 75:48–60
Smith HF (1936) A discriminant function for plant selections. Ann Eugenetics 7:240–250
Smith OS (1986) Covariance between line per se and testcross performance. Crop Sci 26:540–543
Smith JSC, Smith OS (1991) Restriction fragment length polymorphisms can differentiate among U.S. maize hybrids. Crop Sci 31:893–899
Smith DR, White DG (1988) Diseases of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, III edn. American Society of Agronomy, Madison, pp 687–766
Smith JSC, Smith OS, Wright S, Wall SJ, Walton W (1992) Diversity of U.S. hybrid maize germplasm as revealed by restriction fragment length polymorphisms. Crop Sci 32:598–604
Smith S, Cooper M, Gogerty J, Löffler C, Borcherding D, Wright K (2014) Maize. In: Smith et al (ed) Yield gains in major U.S. field crops. CSSA Spec. Publ. 33. ASA, CSSA, and SSSA, Madison, pp 125–171
Smith JS, Gardner CA, Costich DE (2017) Ensuring the genetic diversity of maize and its wild relatives. In: Watson D (ed) Achieving sustainable cultivation of maize. Burleigh Dodds, Cambridge
Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275
Springer N, Anderson SN, Andorf C, Ahern K, Bai F, Barad O, Barbazuk WB, Bass HW, Baruch K, Ben-Zvi G, Buckler ES, Bukowski R, Campbell MS, Cannon EKS, Chomet P, Dawe RK, Davenport R, Dooner HK, Du LH, Du C, Easterling KA, Gault C, Guan J-C, Jander G, Hunter CT, Jiao Y, Koch KE, Kol G, Kudo T, Li Q, Lu F, Mayfield-Jones D, Mei W, McCarty DR, Noshay J, Ronen G, Settles MA, Shem-Tov D, Shi J, Soifer I, Stein JC, Suzuki M, Vera DL, Vollbrecht E, Vrebalov JT, Ware D, Wei X, Wimalanathan K, Woodhouse MR, Xiong W, Brutnell TP (2018) The W22 genome: a foundation for maize functional genomics and transposon biology. Nat Genet 50(9):1282–1288
St Martin SA, Skavaril RV (1984) Computer simulation as a tool in teaching introductory plant breeding. J Agron Educ 13:43–47
Stadler LJ (1949) A note on haploidy in maize (unpublished)
Stadler LJ, Sprague GF (1936) Genetic effects of ultra-violet radition in maize. II. Filtered raditions. Genetics 22:579–583
Stadler LJ, Uber F (1942) Genetic effects of ultra-violet radiation in maize.IV. Comparison of monochromatic radiations. Genetics 27:84–118
Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839
Sun X, Peng T, Mumm RH (2011) The role and basics of computer simulation in support of critical decision in plant breeding. Mol Breed 28:421–436
Sun C, Hu Z, Zheng T, Lu K, Zhao Y, Wang W, Shi J, Wang C, Lu J, Zhang D, Li Z, Wei C (2017) RPAN: rice pan-genome browser for approximately 3000 rice genomes. Nucleic Acids Res 45:597–605
Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, Song W, Zhang M, Cui Y, Dong X, Liu H, Ma X, Jiao Y, Wang B, Wei X, Stein JC, Glaubitz JC, Lu F, Yu G, Liang C, Fengler K, Li B, Rafalski A, Schnable PS, Ware DH, Buckler ES, Lai J (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50:1289–1295
Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan MA (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 guide RNA. Plant Physiol 169:931–945
Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan MA (2016) Genome editing in maize by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274
Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R, Holland J, Kruse-Peeples M, Lepak N, Prim L, Cinta Romay M, Ross-Ibarra J, de Jesus Sanchez-Gonzalez J, Schmidt C, Schuenemann VJ, Krause J, Matson RG, Weigel D, Buckler ES, Burbano HA (2017) Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357:512–515
Technow F, Messina CD, Totir LR, Cooper M (2015) Integrating crop growth models with whole genome prediction through approximate Bayesian computation. PLoS ONE 10:e0130855
Tello-Ruiz MK, Naithani S, Stein JC, Gupta P, Campbell M, Olson A, Wei S, Preece J, Geniza MJ, Jiao Y, Lee YK, Wang B, Mulvaney J, Chougule K, Elser J, Al-Bader N, Kumari S, Thomason J, Kumar V, Bolser DM, Naamati G, Tapanari E, Fonseca N, Huerta L, Iqbal H, Keays M, Munoz-Pomer Fuentes A, Tang A, Fabregat A, D’Eustachio P, Weiser J, Stein LD, Petryszak R, Papatheodorou I, Kersey PJ, Lockhart P, Taylor C, Jaiswal P, Ware D (2018) Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res 46:D1181–D1189
Tenaillon MI, Charcosset A (2011) A European perspective on maize history. CR Biol 334:221–228
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955
Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162
Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12
Tinker NA, Mather DE (1993) GREGOR: software for genetic simulation. J Hered 84:237
Troyer AF (1999) Background of U.S. hybrid corn. Crop Sci 39:601–626
Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:528–543
Troyer AF, Wellin EJ (2009) Heterosis decreasing in hybrids: yield test inbreds. Crop Sci 49:1969–1976
Unterseer S, Pophaly SD, Peis R, Westermeier P, Manfred M, Seidel MA, Haberer G, Mayer KFX, Ordas B, Pausch H, Tellier A, Bauer E, Schon C-C (2016) A comprehensive study of the genomic differentiation between temperate Dent and Flint maize. Genome Biol 17:137
Unterseer S, Seidel MA, Bauer E, Haberer G, Hochholdinger F, Opitz N, Marcon C, Baruch K, Spannagl M, Mayer KFX, Schön C-C (2017) European Flint reference sequences complement the maize pan-genome. bioRxiv https://doi.org/10.1101/103747
van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci USA 108:1088–1092
van Heerwaarden J, Hufford MB, Ross-Ibarra J (2012) Historical genomics of North American maize. Proc Natl Acad Sci USA 109:12420–12425
Vanous A, Gardner C, Blanco M, Martin-Schwarze A, Flint-Garcia S, Bohn M, Edwards J, Lübberstedt T (2018) Association mapping of flowering and plant height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. The Plant Genome 11:170083
Vernikos G, Medini D, Riley DR, Tettelin H (2015) Ten years of pan-genome analyses. Curr Opin Microbiol 23:148–154
Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253
Visscher PM, Haley CS, Thompson R (1996) Marker-assisted introgression in backcross breeding programs. Genetics 144:1923–1932
Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658
Vollbrecht E, Duvick J, Schares JP, Ahern KR, Deewatthanawong P, Xu L, Conrad LJ, Kikuchi K, Kubinec TA, Hall BD, Weeks R, Unger-Wallace E, Muszynski M, Brendel VP, Brutnell TP (2010) Genome-wide distribution of transposed Dissociation elements in maize. Plant Cell 22:1667–1685
Voss-Fels K, Snowdon RJ (2016) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J 14:1086–1094
Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES (2014) Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genetics 10:e1004845
Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649
Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan JL (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19:654–660
Wang K, Frame B, Marcell L (2003a) Maize genetic transformation. In: Jaiwal PK, Singh RP (eds) Plant genetic engineering, vol 2. Improvement of food crops. Sci-Tech Publication, Houston, pp 175–217
Wang X, Van Ginkel M, Podlich D, Ye G, Trethowan R, Pfeiffer W, DeLacy IH, Cooper M, Rajaram S (2003b) Comparison of two breeding strategies by computer simulation. Crop Sci 43:1764–1773
Wang J, van Ginkel M, Trethowan R, Ye G, DeLacy I, PodlichD Cooper M (2004) Simulating the effects of dominance and epistasis on selection response in the CIMMYT wheat breeding program using QuCim. Crop Sci 44:2006–2018
Wang J, Chapman SC, Bonnett DG, Rebetzke GJ, Crouch J (2007) Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci 47:582–590
Watson A, Ghosh S, Williams M, Cuddy WS, Simmonds J, Rey M-D, Hatta MAM, Hinchlife A, Steed A, Reynolds D, Adamski N, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulf BBH, Hickey LT (2017) Speed breeding: a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29
Weber D, Helentjaris T (1989) Mapping RFLP loci in maize using B–A translocations. Genetics 121:583–590
Wei F, Zhang J, Zhou S, He R, Schaeffer M, Collura K, Kudrna D, Faga BP, Wissotski M, Golser W, Rock SM, Graves TA, Fulton RS, Coe E, Schnable PS, Schwartz DC, Ware D, Clifton SW, Wilson RK, Wing RA (2009) The physical and genetic framework of the maize B73 genome. PLoS Genet 5:e1000715
Wellhausen EJ, Roberts LM, Hernandez X, Mangelsdorf PC (1952) Races of maize in Mexico: their origin, characteristics and distribution. Bussey Inst Harvard Univ Cambridge, Mass, p 222
Wen W, Araus JL, Shah T, Cairns J, Mahuku G, Bänziger M, Torres JL, Sánchez C, Yan J (2011) Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement. Crop Sci 51:2569–2581
Westengen OT, Berg PR, Kent MP, Brysting AK (2012) Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels. PLoS ONE 7(10):e47832
Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252
Wilcox JR, Cavins JF (1995) Backcrossing high seed protein to a soybean cultivar. Crop Sci 35:1036–1041
Williams ME (2016) Alternative mutagens for maize (Zea mays L.). Maize Genom Genet 7:1–8
Winston WL, VenkataramananM, Goldberg JB (2003) Introduction to mathematical programming, vol 1. Operations Research, 4 edn. Brooks/Cole, Pacific Grove, CA
Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 8:e1000409
Woolliams JA, Berg P, Dagnachew BS, Meuwissen TH (2015) Genetic contributions and their optimization. J Anim Breed Genet 132:89–99
Wu Y, Frei UK, Liu H, De La Fuente G, Huang K, Wei Y, Lübberstedt T (2015) Combining genomic selection and doubled haploid technology increases efficiency of maize breeding. In: Govil JN (ed) Recent developments in biotechnology, vol 2. Plant Biotechnology. Studium Press, pp 215–237
Wu Y, Fox TW, Trimnell MR, Wang L, Xu RJ, Cigan AM, Huffman GA et al (2016) Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J 14:1046–1054
Wych RD (1988) Production of hybrid seed corn. In: Sprague GF (ed) Corn and corn improvement. American Society of Agronomy Inc, Crop Science Society of America, and Soil Science Society of America, Madison, pp 565–607
Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327
Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet 129:653–673
Xu P, Wang L, Beavis WD (2011) An optimization approach to gene stacking. Eur J Oper Res 214:168–178
Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666
Yang N, Xu X-W, Wang R-R, Peng W-L, Cai L, Song J-M, Li W, Luo X, Niu L, Wang Y, Jin M, Chen L, Luo J, Deng M, Wang L, Pan Q, Liu F, Jackson D, Yang X, Chen L-L, Yan J (2017a) Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat Commun 8:1874
Yang J, Mezmouk S, Baumgarten A, Buckler ES, Guill KE, McMullen MD, Mumm RH, Ross-Ibarra J (2017b) Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genet 13:e1007019
Ye G, Smith KF (2008) Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. Int J Plant Breed 2:1–10
Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH Jr (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696
Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92
Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–555
Yu X, Li X, Guo T, Zhu C, Wu Y, Mitchell SE, Roozeboom KL, Wang D, Wang ML, Pederson GA, Tesso TT, Schnable PS, Bernardo R, Yu J (2016) Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat Plants 2:16150
Zabirova ER, Shatskaya OA, Shcherbak VS (1993) Line 613/2 as a source of a high frequency of spontaneous diploidization in corn. Maize Genet Coop Newsl 67:67
Zhang X, Zhang H, Li L, Lan H, Ren Z, Liu D, Wu L, Liu H, Jaqueth J, Li B, Pan G, Gao S (2016) Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genom 17:697
Zhang D, Wu S, An X, Xie K, Dong Z, Zhou Y, Xu L, Fang W, Liu S, Liu S, Zhu T, Li J, Rao L, Zhao J, Wan X (2018) Male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotech J 16:459–471
Zhao Z-Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333
Zhao Y, Mette MF, Reif JC (2015) Genomic selection in hybrid breeding. Plant Breed 134:1–10
Zila CT, Ogut F, Romay MC, Gardner CA, Buckler ES, Holland JB (2014) Genome-wide association study of Fusarium ear rot disease in the. BMC Plant Biol 14:372
Zuber MS, Darrah DL (1981) 1979 U.S. corn germplasm base. In: Proceedings of the 35th Ann Corn and Sorghum Ind Res Conf. ,Washington DC American Seed Trade Association, pp 234–249
Acknowledgements
The authors would like to thank USDA’s National Institute of Food and Agriculture (Project numbers: IOW04314, IOW05520), as well as the RF Baker Center for Plant Breeding at Iowa State University for supporting this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Rajeev K. Varshney.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Andorf, C., Beavis, W.D., Hufford, M. et al. Technological advances in maize breeding: past, present and future. Theor Appl Genet 132, 817–849 (2019). https://doi.org/10.1007/s00122-019-03306-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00122-019-03306-3