Skip to main content
Log in

Technological advances in maize breeding: past, present and future

  • Review Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Maize has for many decades been both one of the most important crops worldwide and one of the primary genetic model organisms. More recently, maize breeding has been impacted by rapid technological advances in sequencing and genotyping technology, transformation including genome editing, doubled haploid technology, parallelled by progress in data sciences and the development of novel breeding approaches utilizing genomic information. Herein, we report on past, current and future developments relevant for maize breeding with regard to (1) genome analysis, (2) germplasm diversity characterization and utilization, (3) manipulation of genetic diversity by transformation and genome editing, (4) inbred line development and hybrid seed production, (5) understanding and prediction of hybrid performance, (6) breeding methodology and (7) synthesis of opportunities and challenges for future maize breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Troyer and Wellin (2009), Crop Science 49:1969–1976

Fig. 6

Adapted from (Gaynor et al. 2017) (color figure online)

Similar content being viewed by others

References

  • Akdemir D, Sanchez JI (2016) Efficient breeding by genomic mating. Front Genet 7:1–12

    Article  CAS  Google Scholar 

  • Akdemir D, Beavis W, Fritsche-Neto R, Singh AK, Isidro-Sánchez J (2018) Multi-objective optimized genomic breeding strategies for sustainable food improvement. Heredity. https://doi.org/10.1038/s41437-018-0147-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Amano E, Smith HH (1965) Mutations induced by ethyl methanesulfonate in maize. Mutat Res 2:344–354

    Article  CAS  PubMed  Google Scholar 

  • Anderson E, Cutler HC (1942) Races of Zea mays. I. Their recognition and classification. Ann Mo Bot Gard 29:69–89

    Article  Google Scholar 

  • Andorf CM, Cannon EK, Portwood JL 2nd, Gardiner JM, Harper LC, Schaeffer ML, Braun BL, Campbell DA, Vinnakota AG, Sribalusu VV, Huerta M, Cho KT, Wimalanathan K, Richter JD, Mauch ED, Rao BS, Birkett SM, Sen TZ, Lawrence-Dill CJ (2016) MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Res 44:D1195–D1201

    Article  CAS  PubMed  Google Scholar 

  • Baldauf JA, Marcon C, Lithio A, Vedder L, Altrogge L, Piepho H-P, Schoof H, Nettleton D, Hochholdinger F (2018) Single-parent expression is a general mechanism driving extensive complementation of non-syntenic genes in maize hybrids. Curr Biol 28:431–437

    Article  CAS  PubMed  Google Scholar 

  • Barnabás B, Obert B, Kovács G (1999) Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero. Plant Cell Rep 18:858–862

    Article  Google Scholar 

  • Bauer E, Falque M, Walter H, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Rincent R, Schipprack W, Altmann T, Flament P, Melchinger AE, Menz M, Moreno-Gonzalez J, Ouzunova M, Revilla P, Charcosset A, Martin OC, Schön CC (2013) Intraspecific variation of recombination rate in maize. Genome Biol 14(9):R103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beavis WD, Grant D (1991) A linkage map based on information from four F2 populations of maize. Theor Appl Genet 82:636–644

    Article  CAS  PubMed  Google Scholar 

  • Beckett TJ, Morales AJ, Koehler KL, Rocheford TR (2017) Genetic relatedness of previously Plant-variety-protected commercial maize inbreds. PLoS ONE 12(12):e0189277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedoya CA, Dreisigacker S, Hearne S, Franco J, Mir C, Prasanna BM et al (2017) Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS ONE 12(4):e0173488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58:268–276

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci 34:20–25

    Article  Google Scholar 

  • Bernardo R (1996a) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56

    Article  Google Scholar 

  • Bernardo R (1996b) Best linear unbiased prediction of the performance of crosses between untested maize inbreds. Crop Sci 36:872–876

    Article  Google Scholar 

  • Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425

    Article  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Betran FJ, Ribaut JM, Beck D, Gonzalez de Leon D (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797–806

    Article  Google Scholar 

  • Birchler JA (1980) The cytogenetic localization of the alcohol dehydrogenase-1 locus in maize. Genetics 94:687–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bird RM, Neuffer MG (1987) Induced mutations in maize. In: Janick J (ed) Plant breeding reviews. Van Nostrand Reinhold, New York, pp 139–180

    Google Scholar 

  • Birge JR, Louveaux V (2011) Introduction to stochastic programming. Springer, New York

    Book  Google Scholar 

  • Boles JN (1955) Linear programming and farm management analysis. J Farm Econ 37:1–37

    Article  Google Scholar 

  • Bolser DM, Staines DM, Perry E, Kersey PJ (2017) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. Methods Mol Biol 1533:1–31

    Article  CAS  PubMed  Google Scholar 

  • Bommert P, Nagasawa NS, Jackson D (2013) Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet 45:334–337

    Article  CAS  PubMed  Google Scholar 

  • Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S (2013) Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS ONE 8(8):e71377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandenburg J-T, Mary-Huard T, Rigaill G, Hearne SJ, Corti H, Joets J, Vitte C, Charcosset A, Nicolas S, Tenaillon M (2017) Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts. PLoS Genet 13(3):e1006666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown WL, Goodman MM (1977) Races of corn. In: Sprague GF (ed) Corn and corn improvement. Amer Soc Agron, Madison, pp 49–88

    Google Scholar 

  • Brown AHD, Hodgkin T (2015) Indicators of genetic diversity, genetic erosion, and genetic vulnerability for plant genetic resources. In: Ahuja MR Jain SM (eds) Genetic diversity and erosion in plants, sustainable development and biodiversity vol 7, pp 25–53

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628

    Article  CAS  PubMed  Google Scholar 

  • Brunelle DC, Clark JK, Sheridan WF (2017) Genetics screening for EMS-induced maize embryo-specific mutants altered in embryo morphogenesis. G3 7:3559–3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, Wang B, Xu D, Yang B, Xie C, Fan L, Gao S, Xu X, Zhang G, Li Y, Jiao Y, Doebley JF, Ross-Ibarra J, Lorant A, Buffalo V, Romay MC, Buckler ES, Ware D, Lai J, Sun Q, Xu Y (2018) Construction of the third-generation Zea mays haplotype map. GigaScience 7:1–12

    Article  PubMed  Google Scholar 

  • Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105:201–211

    Article  Google Scholar 

  • Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrum J, Davis C, Doonan G, Doubler T, Foster D, Luzzi B, Mowers R, Zinselmeier C, Klober J, Culhane D, Mack S (2016) Advanced analytics for agricultural product development. Interfaces 46:5–17

    Article  Google Scholar 

  • Byrum J, Davis C, Doonan G, Doubler T, Foster D et al (2017) Genetic gain performance metric accelerates agricultural productivity. Interfaces 47:442–453

    Article  Google Scholar 

  • Cameron JN, Han Y, Wang L, Beavis WD (2017) Systematic design for trait introgression projects. Theor Appl Genet 130:1993–2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Canzar S, El-Kebir M (2011) A mathematical programming approach to marker-assisted gene pyramiding. In: Proceedings of the 11th workshop on algorithms in bioinformatics. Springer, pp 26–38

  • Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group ditsribution. Theor Appl Gen 99:425–431

    Article  CAS  Google Scholar 

  • CGC (2018) Crop germplasm committees. Briefings 2010–2018 USDA-ARS GRIN. https://www.ars-grin.gov/npgs/cgcweb.html

  • Chalyk ST (1994) Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica 79:13–18

    Article  Google Scholar 

  • Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M, Spalding MH, Vollbrecht E, Wang K, Yang B (2015) Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol J 13:1002–1010

    Article  CAS  PubMed  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268

    Article  CAS  PubMed  Google Scholar 

  • Chase SS (1949) Monoploid frequencies in a commercial double cross hybrid maize, and in its component single cross hybrids and inbred lines. Genetics 34:328–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chase SS (1951) Efficient methods of developing and improving inbred lines. The monoploid method of developing inbred lines. Report of 6th hybrid corn industry research conference, pp 29–34

  • Chase SS (1952) Production of homozygous diploids of maize from monoploids. Agron 44:263–267

    Article  Google Scholar 

  • Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 132:1199–1210

    PubMed  PubMed Central  Google Scholar 

  • Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhajarvi T, Rong T, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang Z, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang G, Xu Y, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807

    Article  CAS  PubMed  Google Scholar 

  • Chilcoat D, Liu Z-B, Sander J (2017) Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci 149:27–46

    Article  PubMed  Google Scholar 

  • Chojnacki S, Cowley A, Lee J, Foix A, Lopez R (2017) Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 45:W550–W553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chourey PS, Schwartz D (1971) Ethyl methanesulfonate-induced mutations of the Sh1 protein in maize. Mutat Res 12:151–157

    Article  CAS  PubMed  Google Scholar 

  • Ci X, Li M, Liang X, Xie Z, Zhang D, Li X, Lu Z, Ru G, Bai L, Xie C, Hao Z, Zhang S (2011) Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci 51:13–20

    Article  Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    Article  CAS  PubMed  Google Scholar 

  • Coe EH Jr, Sarkar KR (1964) The detection of haploids in maize. Heredity 555:231–233

    Article  Google Scholar 

  • Coe EH, Sarkar KR (1966) Preparation of nucleic acids and a genetic transformation attempt in maize. Crop Sci 6:432–435

    Article  CAS  Google Scholar 

  • Coe E, Cone K, McMullen M, Chen SS, Davis G, Gardiner J, Liscum E, Polacco M, Paterson A, Sanchez-Villeda H, Soderlund C, Wing R (2002) Access to the maize genome: an integrated physical and genetic map. Plant Physiol 128:9–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360–367

    Article  Google Scholar 

  • Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH Jr (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper M, Podlich DW (2002) The E(NK) model: extending the NK model to incorporate gene by environment interactions and epistasis for diploid genomes. Compexity 7:31–47

    Article  Google Scholar 

  • Cooper M, Podlich DW, Micallef KP, Smith OS, Jensen NM et al. (2002) Complexity, quantitative traits and plant breeding: a role for simulation modeling in the genetic improvement of crops. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB

  • Cooper M, Gho C, Leafgren R, Tang T, Messina C (2014) Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J Exp Bot 65:6191–6204

    Article  CAS  PubMed  Google Scholar 

  • Cress CE (1967) Reciprocal recurrent selection and modifications in simulated populations. Crop Sci 7:561–567

    Article  Google Scholar 

  • Crow JF (1998) 90 years ago: the beginning of hybrid maize. Genetics 148:923–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crow JF (1999) Dominance and overdominance. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. ASA, CSSA, Madison, pp 49–58

    Google Scholar 

  • Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darrah DL, Zuber MS (1986) 1985 United States farm maize germplasm base and commercial breeding strategies. Crop Sci 26:1109–1113

    Article  Google Scholar 

  • Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28:454–455

    Article  CAS  PubMed  Google Scholar 

  • De Beukelaer H, De Meyer G, Fack V (2015) Heuristic exploitation of genetic structure in marker-assisted gene pyramiding problems. BMC Genet 16:2–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Dicke FF, Guthrie WD (1988) The most important corn insects. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. American Society of Agronomy, Madison, pp 767–868

    Google Scholar 

  • Doebley J, Wendel JF, Smith JSC, Stuber CW, Goodman MM (1988) The origin of Cornbelt maize: the isozyme evidence. Econ Bot 42:120–131

    Article  Google Scholar 

  • Dollinger EJ (1954) Studies on induced mutation in maize. Genetics 39:750–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V (2010) Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 11:R107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Q, Roy L, Freeling M, Walbot V, Brendel V (2003) ZmDB, an integrated database for maize genome research. Nucleic Acids Res 31:244–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubreuil P, Dufour P, Krejci E, Causse M, deVienne D, Gallais A, Charcosset A (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799

    Article  Google Scholar 

  • Duvick DN (1965) Cytoplasmic pollen sterility in corn. Adv Genet 13:1–56

    Article  Google Scholar 

  • Duvick DN (1984) Genetic diversity in major farm crops on the farm and in reserve. Econ Bot 38:161–178

    Article  Google Scholar 

  • Duvick DN (2005a) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202

    Google Scholar 

  • Duvick DN (2005b) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci 39:1622–1630

    Article  Google Scholar 

  • East EM (1908) Inbreeding in corn. Rep Conn Agric Exp Stn 1907:419–428

    Google Scholar 

  • Eberhart SA (1970) Factors affecting efficiencies of breeding methods. Afr Soils 15:669–680

    Google Scholar 

  • Eder J, Chalyk ST (2002) In vivo haploid induction in maize. Theor Appl Genet 104:703–708

    Article  CAS  PubMed  Google Scholar 

  • Edmeades GO, Trevisan W, Prasanna BM, Campos H (2017) Tropical maize (Zea mays L.). In: Campos H, Caligari PDS (eds) Genetic improvement of tropical crops. Springer, New York, pp 57–109

    Chapter  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Einset J (1942) Chromosome length in relation to transmission frequency in maize trisomes. Genetics 28:349–364

    Google Scholar 

  • Eisenstein M (2015) Startups use short-read data to expand long-read sequencing market. Nat Biotechnol 33:433–435

    Article  CAS  PubMed  Google Scholar 

  • Emerson RA (1917) Genetical studies of variegated pericarp in maize. Genetics 2:1–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eynard SE, Croiseau P, Laloe D, Fritz S, Calus MPL, Restoux G (2018) Which individuals to choose to update the reference population? Minimizing the loss of genetic diversity in animal genomic selection programs. G3 8:113–121

    Article  PubMed  Google Scholar 

  • FAOSTAT (2018) Crop data. FAO United Nations, Rome. http://www.fao.org/faostat/en/#data/QC

  • Fehr, WR (1991) Maximizing genetic improvement. In: Principles of cultivar development: theory and technique. Macmillian, USA, pp. 219–246

  • Feng L, Sebastian S, Smith S, Cooper M (2006) Temporal trends in SSR allele frequencies associated with long-term selection for yield of maize. Maydica 51:293–300

    Google Scholar 

  • Feng PC, Qi Y, Chiu T, Stoecker MA, Schuster CL, Johnson SC, Fonseca AE, Huang J (2014) Improving hybrid seed production in corn with glyphosate-mediated male sterility. Pest Manag Sci 70:212–218

    Article  CAS  PubMed  Google Scholar 

  • Fernandez J, Toro MA (1999) The use of mathematical programming to control inbreeding in selection schemes. J Anim Breed Genet 116:447–466

    Article  Google Scholar 

  • Fischer T, Byerlee D, Edmeades G (2014) Crop yields and global food security: will yield increase continue to feed the world? ACIAR monograph no. 158. Australian Centre for International Agricultural Research, Canberra, xxii + 634 pp

  • Fisher RA (1930) The fundamental theorem of natural selection. The genetical theory of natural selection. Oxford University Press, Oxford, pp 22–47

    Google Scholar 

  • Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM (2009) Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS ONE 4:e7433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser AS, Burnell DG (1970) Computer models in genetics. McGraw-Hill, San Franscisco

    Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabay-Laughnan S, Laughnan JR (1994) The male sterility and restorer genes in maize. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 418–423

    Chapter  Google Scholar 

  • Gaffney J, Anderson J, Franks C, Collinson S, MacRobert J, Woldemariam W, Albertsen MC (2016) Robust seed systems, emerging technologies and hybrid crops for Africa. Food Secur. 9:36–44

    Article  Google Scholar 

  • Gama EEG, Hallauer AR (1977) Relation between inbred and hybrid traits in maize. Crop Sci 17:703–706

    Article  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schon CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:28334

    Article  CAS  Google Scholar 

  • Gao C (2018) The future of CRISPR technologies in agriculture. Nat Rev Mol Cell Biol 19:275–276

    Article  CAS  PubMed  Google Scholar 

  • Garcia AAF, Wang S, Melchinger AE, Zeng Z-B (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180:1707–1724

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134:917–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner CA (2012) Maize diversification by capturing useful alleles from exotic germplasm. In: Proceedings 48th Annual Illinois Corn Breeding School, March 5–6, 2012. Urbana-Champaign, IL, p 172

  • Garing F (2000) Inbred corn plant 90QDD1 and seeds thereof. United States Patent No. US 6,034,305. US Patent Office, Washington, DC

  • Gaynor RC, Gorjanc G, Bentley AR, Ober ES, Howell P, Jackson R, Mackay IJ, Hickey JM (2017) A two-part strategy for using genomic selection to develop inbred lines. Crop Sci 57:2372–2386

    Article  Google Scholar 

  • Geiger HH (2009) Doubled haploids. Maize handbook—volume ii: genetics and genomics. Springer, New York, pp 641–657

    Google Scholar 

  • Geiger HH, Braun MD, Gordillo GA, Koch S, Jesse J, Krutzfeldt BAE (2006) Variation for female fertility among haploid maize lines. Maize Genet Newsl 80:28–29

    Google Scholar 

  • Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crops & Food 8:1–12

    Article  Google Scholar 

  • Gibson PB, Brink RA, Stahmann MA (1950) The mutagenic action of mustard gas on Zea mays. J Hered 41:232–238

    Article  CAS  PubMed  Google Scholar 

  • Giraud H, Lehermeier C, Bauer E, Falque M, Segura V, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Schipprack W, Flament P, Melchinger AE, Menz M, Moreno-González J, Ouzunova M, Charcosset A, Schön C, Moreau L (2014) Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the Flint and Dent heterotic groups of maize. Genetics 198:1717–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud H, Bauland C, Falque M, Madur D, Combes V, Jamin P, Monteil C, Laborde J, Palaffre C, Gaillard A, Blanchard P, Charcosset A, Moreau L (2017) Reciprocal genetics: identifying QTLs for general and specific combining abilities in hybrids between multiparental populations from two maize (Zea mays L.) heterotic groups. Genetics 207:1167–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol J 14:1099–1105

    Article  PubMed  Google Scholar 

  • Golovkin MV, Abraham M, Morocz S, Bottka S, Feder A, Dudits D (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic proroplasts. Plant Sci 90:41–52

    Article  CAS  Google Scholar 

  • Gonzalez VH, Tollenaar M, Bowman A, Good B, Lee EA (2018) Maize yield potential and density tolerance. Crop Sci 58:472–485

    Article  Google Scholar 

  • Goodman MM (1978) A brief survey of the races of maize and current attempts to infer racial relationships. In: Walden DB (ed) Maize breeding and genetics, pp143–184

  • Goodman MM (1999) Broadening the genetic diversity in maize breeding by use of exotic germplasm. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops, pp139–148

  • Goodman MM (2005) Broadening the U.S. maize germplasm base. Maydica 50:203–214

    Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Gordillo GA, Geiger HH (2008) Optimization of DH-line based recurrent selection procedures in maize under a restricted annual loss of genetic variance. Euphytica 161:141–154

    Article  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR Jr, Willets NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Gorjanc G, Gaynor RC, Hickey JM (2018) Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet 131:1953–1966

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowen JW (1952) Heterosis. Iowa State College Press, Ames

    Google Scholar 

  • Graham GI, Wolff DW, Stuber CW (1997) Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci 37:1601

    Article  CAS  Google Scholar 

  • Grimsley N, Hohn T, Davies JW, Hohn B (1987) Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179

    Article  CAS  Google Scholar 

  • Gurian-Sherman D (2009) Failure to yield: evaluating the performance of genetically engineered crops. Union of Concerned Scientists. http://www.ucsusa.org/assets/documents/food_and_agriculture/failure–to–yield.pdf

  • Haegele JW, Cook KA, Nichols DM, Below FE (2013) Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. Crop Sci 53:1256–1268

    Article  CAS  Google Scholar 

  • Hallauer AR, Miranda F (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Hallauer AR, M. J. Carena, Filho JBM (2010) Selection: experimental results. In: Quantitative genetics in maize breeding. Handbook of plant breeding, vol 6. Springer, New York, pp 291–383

  • Han Y, Cameron JN, Wang L, Beavis WD (2017) The predicted cross value for genetic introgression of multiple alleles. Genetics 205:1409–1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Häntzschel KR, Weber G (2010) Blockage of mitosis in maize root tips using colchicine-alternatives. Protoplasma 241:99–104

    Article  CAS  PubMed  Google Scholar 

  • Hazel LN (1943) The genetic basis for constructing selection indices. Genetics 28:476–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heady EO (1954) Simplified presentation and logical aspects of linear programming technique. J Farm Econ 36:1035–1048

    Article  Google Scholar 

  • Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection of crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Gen 72:761–769

    Article  CAS  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447

    Article  CAS  PubMed  Google Scholar 

  • Herzog E, Frisch M (2011) Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor Appl Genet 123:251–260

    Article  PubMed  Google Scholar 

  • Herzog E, Falke KC, Presterl T, Scheuermann D, Ouzunova M, Frisch M (2014) Selection strategies for the development of maize introgression populations. PLoS ONE 9:e92429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–152

    Article  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  CAS  PubMed  Google Scholar 

  • Hillel J, Schaap T, Haberfeld A, Jeffreys AJ, Plotzky Y, Cahaner A, Lavi U (1990) DNA fingerprints applied to gene introgression in breeding programs. Genetics 124:783–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Penagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N, Kaeppler SM, Buell CR (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland JB (2004) Breeding: incorporation of exotic germplasm. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 222–224

    Chapter  Google Scholar 

  • Holland J, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Hospital F (2001) Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics 158:1363–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hospital F, Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 132:1199–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard R, Carriquiry AL, Beavis WD (2014) Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3 (Bethesda) 4:1027–1046

    Article  Google Scholar 

  • Howard JT, Pryce JE, Baes C, Maltecca C (2017) Invited review: inbreeding in the genomics era: inbreeding, inbreeding depression, and management of genomic variability. J Dairy Sci 100:6009–6024

    Article  CAS  PubMed  Google Scholar 

  • Huang CR, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:651–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibara J (2013) Correction: the genomic signature of crop-wild introgression in maize. PLOS Genetics. https://doi.org/10.1371/annotation/2eef7b5b-29b2-412f-8472-8fd7f9bd65ab

    Article  PubMed  PubMed Central  Google Scholar 

  • Hull RH (1945) Recurrent selection and specific combining ability in corn. J Am Soc Agron 37:134–145

    Article  Google Scholar 

  • Inghelandt DV, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299

    Article  PubMed  PubMed Central  Google Scholar 

  • Initiative AG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • ISAAA (2017) Global status of commercialized Biotech/GM Crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief no. 53, ISAAA: Ithaca, NY

  • Ishida Y, Saito H, Ohta SH, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Yonezawa K (2007) Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: I. Schedule of crossing between the donor lines. Crop Sci 47:537–547

    Article  Google Scholar 

  • Jannink J-L (2010) Dynamics of long-term genomic selection. Genet Sel Evol 42:11

    Article  CAS  Google Scholar 

  • Jeffrey B, Lübberstedt T (2014) Molecular breeding of bioenergy traits. In: Corn S, Goldman (ed.) Compendium of bioenergy plantsscience. Publishers/Taylor & Francis/CRC PRESS, Boca Raton, FL, USA, pp.198–215

  • Jenkins MT (1940) The segregation of genes affecting yield of grain in maize. J Am Soc Agron 32:55–63

    Article  Google Scholar 

  • Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson I, Eldredge J (1953) Performance of recovered popcorn inbred lines derived from outcrosses to dent corn. Agron J 45:105–110

    Article  Google Scholar 

  • Johnson B, Gardner CO, Wrede KC (1988) Application of an optimization model to multi-trait selection programs. Crop Sci 28:723–728

    Article  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jugenheimer RJ (1985) Corn improvement, seed production and uses. RE Krieger, Malabar, p 794

    Google Scholar 

  • Kadam DC, Potts SM, Bohn MO, Lipka AE, Lorenz AJ (2016) Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline. G3(6):3443–3453

    Google Scholar 

  • Kaeppler S (2012) Heterosis: many genes, many mechanisms—end the search for an undiscovered unifying theory. ISRN Bot 2012:1–12

    Article  Google Scholar 

  • Karush W (1939) Minima of functions of several variables with inequalities as side constraints. University of Chicago, Chicago

    Google Scholar 

  • Kassie GT, Erenstein O, Mwangi W, La Rovere R, Setimela P, Langyintuo A (2012) Characterization of maize production in southern Africa: synthesis of CIMMYT/DTMA household level farming system surveys in Angola, Malawi, Mozambique, Zambia and Zimbabwe. Socio-economics program working paper 4. CIMMYT, Mexico, D.F

  • Kato A (2002) Chromosome doubling of haploid maize seedling using nitrous oxide gas at the flower primordial stage. Plant Breed 1215:370–377

    Article  Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109

    Article  CAS  PubMed  Google Scholar 

  • Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424

    Article  CAS  PubMed  Google Scholar 

  • Kermicle JL (1994) Indeterminate gametophyte ig biology and use. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 388–393

    Chapter  Google Scholar 

  • Kinghorn BP (1998) Mate selection by groups. J Dairy Sci 81:55–63

    Article  CAS  PubMed  Google Scholar 

  • Kingsbury N (2009) Hybrid: the history and science of plant breeding. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kleiber D, Prigge V, Melchinger AE, Burkard F, San Vicente F, Palomino G, Gordillo GA (2012) Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52:623–630

    Article  Google Scholar 

  • Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WI, Menz MA, Franks CD, Klein PE (2008) The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Sci 48:12

    Article  Google Scholar 

  • Klein RR, Miller FR, Bean S, Klein PE (2016) Registration of 40 converted germplasm sources from the reinstated sorghum conversion program. J Plant Regist 10:57

    Article  Google Scholar 

  • Kremling KAG, Chen S-Y, Su M-H, Lepak NK, Romay MC, Swarts KL, Lu F, Lorant A, Bradbury PJ, Buckler ES (2018) Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555:520–523

    Article  CAS  PubMed  Google Scholar 

  • Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings of 2nd Berkeley symposium, pp 481–492

  • Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran S, Rani NS, Viraktamath B, Madhav M (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv 28:451–461

    Article  CAS  PubMed  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    Article  CAS  PubMed  Google Scholar 

  • Laborda PR, Oliveira KM, Garcia AF, Paterniani MEAG, Souza AP (2005) Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers? Theor Appl Genet 111:1288–1299

    Article  CAS  PubMed  Google Scholar 

  • Lanza LLB, de Souza CL Jr, Ottoboni LMM, Vieira MLC, de Souza AP (1997) Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theor Appl Genet 94:1023–1030

    Article  CAS  Google Scholar 

  • Larkins JR (2000) Inbred corn plant RQAA8 and seeds thereof. U.S. Patent No 6,143,961. US Patent Office, Washington DC

  • Lawrence CJ, Harper LC, Schaeffer ML, Sen TZ, Seigfried TE, Campbell DA (2008) MaizeGDB: the maize model organism database for basic, translational, and applied research. Int J Plant Genom 2008:496957

    Google Scholar 

  • Le Clerc V, Bazante F, Baril C, Guiard J, Zhang D (2005) Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet 110:294–302

    Article  CAS  PubMed  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SLO, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Phillips RL (1987) Genomic rearrangements in maize induced by tissue culture. Genome 29:123–128

    Google Scholar 

  • Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48:453–461

    Article  CAS  PubMed  Google Scholar 

  • Leung H, Raghavan C, Zhou B, Oliva R, Choi IR, Lacorte V, Jubay ML, Cruz CV, Gregorio G, Singh RK (2015) Allele mining and enhanced genetic recombination for rice breeding. Rice 8:1

    Article  Google Scholar 

  • Li Y, Ma X, Wang T, Li Y, Liu C, Liu Z, Sun B, Shi Y, Song Y, Carlone M, Bubeck D, Bhardwaj H, Whitaker D, Wilson W, Jones E, Wright K, Sun S, Niebur W, Smith S (2011) Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Sci 51:2391–2400

    Article  Google Scholar 

  • Li X, Zhu C, Wang J, Yu J (2012a) Computer simulation in plant breeding. Adv Agron 116:219–264

    Article  Google Scholar 

  • Li X, Zhu C, Yeh CT, Wu W, Takacs EM, Petsch KA, Tian F, Bai G, Buckler ES, Muehlbauer GJ, Timmermans MC, Scanlon MJ, Schnable PS, Yu J (2012b) Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res 22:2436–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS, Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang Y, Ruan H, Yeung CK, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Li R, Hsieh CL, Young A, Zhang Z, Ren X, Zhao Z (2015) Illumina synthetic long read sequencing allows recovery of missing sequences even in the “Finished” C. elegans Genome. Sci Rep 5:10814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YX, Li C, Bradbury PJ, Liu X, Lu F, Romay CM, Glaubitz JC, Wu X, Peng B, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Li Y, Wang T (2016) Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J 86:391–402

    Article  CAS  PubMed  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom 41:63–68

    Article  CAS  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Zhu Y, Yi Y, Lu N, Zhu B, Hu Y (2014) Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. BMC Genom 15:1163

    Article  CAS  Google Scholar 

  • Liu Z, Ren J, Trampe B, Frei UK, Lübberstedt T (2016) Doubled haploids: from obscure phenomenon to key technology of current maize breeding programs. Plant Breed Rev 40:123–166

    Article  Google Scholar 

  • Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10:520–522

    Article  CAS  PubMed  Google Scholar 

  • Longin CFH, Utz HF, Reif JC, Wegenast T, Schipprack W, Melchinger AE (2007) Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for tescross performance. Theor Appl Genet 115:519–527

    Article  PubMed  Google Scholar 

  • Longin CFH, Mi X, Wurschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306

    Article  PubMed  Google Scholar 

  • Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao ZY, Xu D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Parentoni SN, Shah T, Rong T, Crouch JH, Xu Y (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Shah T, Hao Z, Taba S, Zhang S, Gao S, Liu J, Cao M, Wang J, Bhanu Pralash A, Rong TXuY (2011) Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize. PLoS ONE 6(9):e24861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang T, Li Y, Li Y, Semagn K, Zhang X, Hernandez AG, Mikel MA, Soifer I, Barad O, Buckler ES (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:6914

    Article  CAS  PubMed  Google Scholar 

  • Magorokosho C (2006) Genetic diversity and performance of maize varieties from Zimbabwe, Zambia and Malawi. PhD thesis Texas A&M University, College Station, TX, 179 pp

  • Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangelsdorf PC (1961) Introgression in maize. Euphytica 10:157–168

    Google Scholar 

  • Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Markelz RJ, Strellner RS, Leakey ADB (2011) Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated CO2 in maize. J Exp Bot 62:3235–3246

    Article  CAS  PubMed  Google Scholar 

  • Marulanda JJ, Mi X, Melchinger AE, Xu JL, Wurschum T, Longin CF (2016) Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet 129:1901–1913

    Article  CAS  PubMed  Google Scholar 

  • Mastrodomenico AT, Hendrix CC, Below FE (2018) Nitrogen use efficiency and the genetic variation of maize expired plant variety protection germplasm. Agric Agric 8:3

    Google Scholar 

  • Masuka B, Atlin GN, Olsen M, Magorokosho C, Labuschagne M, Crossa J, Banziger M, Pixley KV, Vivek B, Biljon A, MacRobert JF, Alvarado G, Prasanna BM, Makumbi D, Makumbi D, Tarekegne AT, Das B, Zaman-Allah M, Cairns JE (2017a) Gains in maize genetic improvement in Eastern and Southern Africa : I. CIMMYT hybrid breeding pipeline. Crop Sci 57:168–179

    Article  Google Scholar 

  • Masuka B, Magorokosho C, Olsen M, Atlin GN, Bänziger M, Pixley KV, Vivek BS, Labuschagne M, Matemba-Mutasa R, Burgueño J, Macrobert J, Prasanna BM, Das B, Makumbi D, Tarekegne A, Crossa J, Zaman-Allah M, van Biljon A, Cairns JE (2017b) Gains in maize genetic improvement in Eastern and Southern Africa: II. CIMMYT open-pollinated variety breeding pipeline. Crop Sci 57:180–191

    Article  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PD, Roh D, Pan X, Stein L, Freeling M, Alexander D, Martienssen R (2003) Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarty DR, Suzuki M, Hunter C, Collins J, Avigne WT, Koch KE (2013) Genetic and molecular analyses of UniformMu transposon insertion lines. Methods Mol Biol 1057:157–166

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MCGC (2016) Maize crop germplasm committee. USDA-ARS GRIN. Vulnerability statement recommendations. https://www.ars-grin.gov/npgs/cgc_reports/maizevuln2016.pdf. Accessed 12 Dec 2016

  • Melchinger AE, Geiger HH, Schnell FW (1986) Epistasis in maize (Zea mays L.). Theor Appl Genet 72:231–239

    Article  CAS  PubMed  Google Scholar 

  • Melchinger AE, Schipprack W, Mi X, Mirdita V (2015) Oil content is superior to oil mass for identification of haploid seeds in maize produced with high-oil inducers. Crop Sci 55:188–195

    Article  Google Scholar 

  • Merrill WL, Hard RJ, Mabry JB, Fritz GJ, Adams KR, Roney JR, MacWilliams AC (2009) The diffusion of maize to the southwestern United States and its impact. Proc Natl Acad Sci USA 106:21019–21026

    Article  PubMed  PubMed Central  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi X, Utz HF, Technow F, Melchinger AE (2014) Optimizing resource allocation for multistage selection in plant breeding with R package. Crop Sci 54:1413

    Article  Google Scholar 

  • Mikel MA, Dudley JW (2006) Evolution of North American dent corn from public to proprietary germplasm. Crop Sci 46:1193–1205

    Article  Google Scholar 

  • Mir C, Zerjal T, Combes V, Dumas F, Madur D, Bedoya C, Dreisigacker S, Franco J, Grudloyma P, Hao P, Hearne S, Jampatong C, Laloë D, Muthamia Z, Nguyen T, Prasanna B, Taba S, Xie C, Yunus M, Zhang S, Warburton M, Charcosset A (2013) Out of America: tracing the genetic footprints of the global diffusion of maize. Theor Appl Genet 126:2671–2682

    Article  CAS  PubMed  Google Scholar 

  • National Corn Growers Association (2018) World corn production, National Corn Growers Association (sourced from USDA, FAS Grain: World Markets and Trade) http://www.worldofcorn.com/#world-corn-production. Accessed 12 Jan 2018

  • Nelson PT, Goodman MM (2008) Evaluation of elite exotic maize inbreds for use in temperate breeding. Crop Sci 48:85–92

    Article  Google Scholar 

  • Nelson PT, Krakowsky MD, Coles ND, Holland JB, Bubeck DM, Smith JSC, Goodman MM (2016) Genetic characterization of the North Carolina State University maize lines. Crop Sci 56:259–275

    Article  CAS  Google Scholar 

  • Neuffer MG (1957) Additional evidence on the effect of X-ray and ultraviolet radiation on mutation in maize. Genetics 42:273–282

    Google Scholar 

  • Neuffer MG (1994) Mutagenesis. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 212–218

    Chapter  Google Scholar 

  • Neuffer MG, Coe EH (1978) Paraffin oil technique for treating mature corn pollen with chemical mutagens. Maydica 23:21–28

    CAS  Google Scholar 

  • Neuffer MG, Fiscor G (1963) Mutagenic action of ethyl methanesulfonate in maize. Science 139:1296–1297

    Article  CAS  PubMed  Google Scholar 

  • Neuffer MG, Johal G, Chang MT, Hake S (2009) Mutagenesis—the key to genetic analysis. In: Bennetzen JL, Hake S (eds) The maize handbook. Springer, New York, pp 63–84

    Chapter  Google Scholar 

  • Niu X, Xie R, Liu X, Zhang F, Li S, Gao S (2013) Maize yield gains in Northeast China in the last six decades. J Integr Agric 12:630–637

    Article  Google Scholar 

  • NRC (1972) Committee on genetic vulnerability of major crops. (1972) Genetic vulnerability of major crops. Natl Acad Sci Washington DC, 307 pp

  • NRC (1993) Committee on managing global genetic resources: agricultural imperatives. Board on agriculture. Natl Res Council National Academy Press, Washington DC

    Google Scholar 

  • Pace J, Gardner C, Romay C, Ganapathsybrumanian B, Lübberstedt T (2015) Genome-wide association analysis of seedling root development in maize. BMC Genom 16:47

    Article  CAS  Google Scholar 

  • Paten B, Novak AM, Eizenga JM, Garrison E (2017) Genome graphs and the evolution of genome inference. Genome Res 27:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peccoud J, Velden KV, Podlich D, Winkler C, Arthur L, Cooper M (2004) The selective values of alleles in a molecular network model are context dependent. Genetics 166:1715–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, Gardner CA, McMullen MD, Holland JB, Bradbury PJ, Buckler ES (2014) The genetic architecture of maize height. Genetics 196:1337–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng T, Sun X, Mumm RH (2014a) Optimized breeding strategies for multiple trait integration: I Minimizing linkage drag in single event introgression. Mol Breed 33:89–104

    Article  PubMed  Google Scholar 

  • Peng T, Sun C, Mumm RH (2014b) Optimized breeding strategies for multiple trait integration: II Process efficiency in event pyramiding and trait fixation. Mol Breed 33:105–115

    Article  CAS  PubMed  Google Scholar 

  • Peterson P (1953) A mutable pale green locus in maize. Genetics 38:682–683

    Google Scholar 

  • Piepho H-P (2009) Ridge regression and extensions for genomewide selection in maize. Crop Sci 49:1165–1176

    Article  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Inarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley. Mexico. Proc Natl Acad Sci USA 106:5019–5024

    Article  PubMed  Google Scholar 

  • Pixley KV (2006) Hybrid and open-pollinated varieties in modern agriculture. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R. Hallauer international symposium. Blackwell Publishing, Ames

    Google Scholar 

  • Podlich DW, Cooper M (1998) Qu-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics 14:632–653

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollacsek M (1992) Management of the ig gene for haploid induction in maize. Agronomie 12:247–251

    Article  Google Scholar 

  • Pong-Wong R, Woolliams JA (2007) Optimisation of contribution of candidate parents to maximise genetic gain and restricting inbreeding using semidefinite programming. Genet Sel Evol 39:3–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855

    Article  CAS  PubMed  Google Scholar 

  • Puchta H, Hohn B (2010) Breaking news: plants mutate right on target. Proc Natl Acad Sci USA 107:1165–11658

    Article  Google Scholar 

  • Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW, Haussler D, Rokhsar DS, Green RE (2016) Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Feng F, Li Y, Xu S, Siddique KHM, Liao Y (2016) Maize yield improvements in China: past trends and future directions. Plant Breed 135:166–176

    Article  Google Scholar 

  • Randolph LF (1940) Note on haploid frequencies. Maize Genet Coop Newsl 14:23–24

    Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck S, Bohn M, Frisch M (2003) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Fischer S, Schrag TA, Lamkey KR, Klein D, Dhillon BS, Utz HF, Melchinger AE (2010) Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. Theor Appl Genet 120:301–310

    Article  PubMed  Google Scholar 

  • Ren J, Wu P, Tian X, Lübberstedt T, Chen SJ (2017) Fine mapping of quantitative trait locus qhmf4 causing haploid male fertility in maize based on segregation distortion. Theor Appl Genet 130:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Rendel JM, Robertson A (1950) Estimation of gnetic gain in milk yield by selection ina closed herd of dairy cattle. Journal of Genetics 50:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rhoades M (1931) Cytoplasmic inheritance of male sterility in Zea mays. Science 73:340–341

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MM (1938) Effect of Dt gene on the mutability of the a1 allele in maize. Genetics 23:377–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207

    Article  CAS  PubMed  Google Scholar 

  • Robertson A (1957) Optimum group size in progeny testing and family selection. Biometrics 13:442–450

    Article  Google Scholar 

  • Robertson A (1960) A theory of limits in artificial selection. Proc R Soc Lond 153:234–249

    Article  Google Scholar 

  • Rogers DL, McGuire PE (2015) Genetic erosion: context is key. In: Ahuja MR, Jain SM (eds) Genetic diversity and erosion in plants. Springer, New York, pp 1–24

    Google Scholar 

  • Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:R55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero Navarro JA, Willcox M, RomayC Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V, OrtegaA Banda AE, Montiel NO, Ortiz-Monasterio I, Vicente FS, EspinozaAG Atlin G, WenzlP Hearne S, Buckler S (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet 49:476–480

    Article  CAS  PubMed  Google Scholar 

  • Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281(363):365

    Google Scholar 

  • Rotarenco VA, Dicu G, State D, Fuia S (2010) New inducers of maternal haploids in maize. Maize Genet Coop Newslett 84:1–7

    Google Scholar 

  • Sanchez D, Liu S, Ibrahim R, Blanco M, Lübberstedt T (2018) Association mapping of seedling root traits in exotic derived doubled haploid lines of maize. Plant Sci 268:30–38

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvella P, Grogan CO (1967) The mutagenic effects of gamma rays on Zea mays in relation to ear location. Radiat Bot 7:107–111

    Article  Google Scholar 

  • Schnable JC, Freeling M (2011) Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. PLoS ONE 6:e17855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schneerman MC, Charbonneau M, Weber DF (2000) A survey of ig containing materials. Maize Genet Coop Newslett 74:92–93

    Google Scholar 

  • Schrag TA, Westhues M, Schipprack W, Seifert F, Thiemann A, Scholten S, Melchinger AE (2018) Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize. Genetics 208:1373–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ, Wang YK (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262:110–114

    Article  CAS  PubMed  Google Scholar 

  • Segerman B (2012) The genetic integrity of bacterial species: the core genome and the accessory genome, two different stories. Front Cell Infect Microbiol 2:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyriamiding. Genetics 168:513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte R, Archibald RL, Yang M, Hakimi SH, Mo H, Habben J (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain under field drought stress conditions. Plant Biotechnol J 15:2017–2216

    Article  CAS  Google Scholar 

  • Shukla VP, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breeders Assoc Rep 4:296–301

    Google Scholar 

  • Singleton WR (1941) Hybrid vigor and its utilization in sweet corn breeding. Am Nat 75:48–60

    Article  Google Scholar 

  • Smith HF (1936) A discriminant function for plant selections. Ann Eugenetics 7:240–250

    Article  Google Scholar 

  • Smith OS (1986) Covariance between line per se and testcross performance. Crop Sci 26:540–543

    Article  Google Scholar 

  • Smith JSC, Smith OS (1991) Restriction fragment length polymorphisms can differentiate among U.S. maize hybrids. Crop Sci 31:893–899

    Article  Google Scholar 

  • Smith DR, White DG (1988) Diseases of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, III edn. American Society of Agronomy, Madison, pp 687–766

    Google Scholar 

  • Smith JSC, Smith OS, Wright S, Wall SJ, Walton W (1992) Diversity of U.S. hybrid maize germplasm as revealed by restriction fragment length polymorphisms. Crop Sci 32:598–604

    Article  CAS  Google Scholar 

  • Smith S, Cooper M, Gogerty J, Löffler C, Borcherding D, Wright K (2014) Maize. In: Smith et al (ed) Yield gains in major U.S. field crops. CSSA Spec. Publ. 33. ASA, CSSA, and SSSA, Madison, pp 125–171

  • Smith JS, Gardner CA, Costich DE (2017) Ensuring the genetic diversity of maize and its wild relatives. In: Watson D (ed) Achieving sustainable cultivation of maize. Burleigh Dodds, Cambridge

    Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  CAS  PubMed  Google Scholar 

  • Springer N, Anderson SN, Andorf C, Ahern K, Bai F, Barad O, Barbazuk WB, Bass HW, Baruch K, Ben-Zvi G, Buckler ES, Bukowski R, Campbell MS, Cannon EKS, Chomet P, Dawe RK, Davenport R, Dooner HK, Du LH, Du C, Easterling KA, Gault C, Guan J-C, Jander G, Hunter CT, Jiao Y, Koch KE, Kol G, Kudo T, Li Q, Lu F, Mayfield-Jones D, Mei W, McCarty DR, Noshay J, Ronen G, Settles MA, Shem-Tov D, Shi J, Soifer I, Stein JC, Suzuki M, Vera DL, Vollbrecht E, Vrebalov JT, Ware D, Wei X, Wimalanathan K, Woodhouse MR, Xiong W, Brutnell TP (2018) The W22 genome: a foundation for maize functional genomics and transposon biology. Nat Genet 50(9):1282–1288

    Article  CAS  PubMed  Google Scholar 

  • St Martin SA, Skavaril RV (1984) Computer simulation as a tool in teaching introductory plant breeding. J Agron Educ 13:43–47

    Google Scholar 

  • Stadler LJ (1949) A note on haploidy in maize (unpublished)

  • Stadler LJ, Sprague GF (1936) Genetic effects of ultra-violet radition in maize. II. Filtered raditions. Genetics 22:579–583

    CAS  Google Scholar 

  • Stadler LJ, Uber F (1942) Genetic effects of ultra-violet radiation in maize.IV. Comparison of monochromatic radiations. Genetics 27:84–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Peng T, Mumm RH (2011) The role and basics of computer simulation in support of critical decision in plant breeding. Mol Breed 28:421–436

    Article  Google Scholar 

  • Sun C, Hu Z, Zheng T, Lu K, Zhao Y, Wang W, Shi J, Wang C, Lu J, Zhang D, Li Z, Wei C (2017) RPAN: rice pan-genome browser for approximately 3000 rice genomes. Nucleic Acids Res 45:597–605

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, Song W, Zhang M, Cui Y, Dong X, Liu H, Ma X, Jiao Y, Wang B, Wei X, Stein JC, Glaubitz JC, Lu F, Yu G, Liang C, Fengler K, Li B, Rafalski A, Schnable PS, Ware DH, Buckler ES, Lai J (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan MA (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 guide RNA. Plant Physiol 169:931–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan MA (2016) Genome editing in maize by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R, Holland J, Kruse-Peeples M, Lepak N, Prim L, Cinta Romay M, Ross-Ibarra J, de Jesus Sanchez-Gonzalez J, Schmidt C, Schuenemann VJ, Krause J, Matson RG, Weigel D, Buckler ES, Burbano HA (2017) Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357:512–515

    Article  CAS  PubMed  Google Scholar 

  • Technow F, Messina CD, Totir LR, Cooper M (2015) Integrating crop growth models with whole genome prediction through approximate Bayesian computation. PLoS ONE 10:e0130855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tello-Ruiz MK, Naithani S, Stein JC, Gupta P, Campbell M, Olson A, Wei S, Preece J, Geniza MJ, Jiao Y, Lee YK, Wang B, Mulvaney J, Chougule K, Elser J, Al-Bader N, Kumari S, Thomason J, Kumar V, Bolser DM, Naamati G, Tapanari E, Fonseca N, Huerta L, Iqbal H, Keays M, Munoz-Pomer Fuentes A, Tang A, Fabregat A, D’Eustachio P, Weiser J, Stein LD, Petryszak R, Papatheodorou I, Kersey PJ, Lockhart P, Taylor C, Jaiswal P, Ware D (2018) Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res 46:D1181–D1189

    Article  CAS  PubMed  Google Scholar 

  • Tenaillon MI, Charcosset A (2011) A European perspective on maize history. CR Biol 334:221–228

    Article  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinker NA, Mather DE (1993) GREGOR: software for genetic simulation. J Hered 84:237

    Article  Google Scholar 

  • Troyer AF (1999) Background of U.S. hybrid corn. Crop Sci 39:601–626

    Article  Google Scholar 

  • Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:528–543

    Article  Google Scholar 

  • Troyer AF, Wellin EJ (2009) Heterosis decreasing in hybrids: yield test inbreds. Crop Sci 49:1969–1976

    Article  Google Scholar 

  • Unterseer S, Pophaly SD, Peis R, Westermeier P, Manfred M, Seidel MA, Haberer G, Mayer KFX, Ordas B, Pausch H, Tellier A, Bauer E, Schon C-C (2016) A comprehensive study of the genomic differentiation between temperate Dent and Flint maize. Genome Biol 17:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unterseer S, Seidel MA, Bauer E, Haberer G, Hochholdinger F, Opitz N, Marcon C, Baruch K, Spannagl M, Mayer KFX, Schön C-C (2017) European Flint reference sequences complement the maize pan-genome. bioRxiv https://doi.org/10.1101/103747

  • van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci USA 108:1088–1092

    Article  PubMed  Google Scholar 

  • van Heerwaarden J, Hufford MB, Ross-Ibarra J (2012) Historical genomics of North American maize. Proc Natl Acad Sci USA 109:12420–12425

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanous A, Gardner C, Blanco M, Martin-Schwarze A, Flint-Garcia S, Bohn M, Edwards J, Lübberstedt T (2018) Association mapping of flowering and plant height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. The Plant Genome 11:170083

    Article  CAS  Google Scholar 

  • Vernikos G, Medini D, Riley DR, Tettelin H (2015) Ten years of pan-genome analyses. Curr Opin Microbiol 23:148–154

    Article  CAS  PubMed  Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253

    Article  PubMed  Google Scholar 

  • Visscher PM, Haley CS, Thompson R (1996) Marker-assisted introgression in backcross breeding programs. Genetics 144:1923–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E, Duvick J, Schares JP, Ahern KR, Deewatthanawong P, Xu L, Conrad LJ, Kikuchi K, Kubinec TA, Hall BD, Weeks R, Unger-Wallace E, Muszynski M, Brendel VP, Brutnell TP (2010) Genome-wide distribution of transposed Dissociation elements in maize. Plant Cell 22:1667–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss-Fels K, Snowdon RJ (2016) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES (2014) Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genetics 10:e1004845

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan JL (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19:654–660

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Frame B, Marcell L (2003a) Maize genetic transformation. In: Jaiwal PK, Singh RP (eds) Plant genetic engineering, vol 2. Improvement of food crops. Sci-Tech Publication, Houston, pp 175–217

    Google Scholar 

  • Wang X, Van Ginkel M, Podlich D, Ye G, Trethowan R, Pfeiffer W, DeLacy IH, Cooper M, Rajaram S (2003b) Comparison of two breeding strategies by computer simulation. Crop Sci 43:1764–1773

    Article  Google Scholar 

  • Wang J, van Ginkel M, Trethowan R, Ye G, DeLacy I, PodlichD Cooper M (2004) Simulating the effects of dominance and epistasis on selection response in the CIMMYT wheat breeding program using QuCim. Crop Sci 44:2006–2018

    Article  Google Scholar 

  • Wang J, Chapman SC, Bonnett DG, Rebetzke GJ, Crouch J (2007) Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci 47:582–590

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams M, Cuddy WS, Simmonds J, Rey M-D, Hatta MAM, Hinchlife A, Steed A, Reynolds D, Adamski N, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulf BBH, Hickey LT (2017) Speed breeding: a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  Google Scholar 

  • Weber D, Helentjaris T (1989) Mapping RFLP loci in maize using B–A translocations. Genetics 121:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F, Zhang J, Zhou S, He R, Schaeffer M, Collura K, Kudrna D, Faga BP, Wissotski M, Golser W, Rock SM, Graves TA, Fulton RS, Coe E, Schnable PS, Schwartz DC, Ware D, Clifton SW, Wilson RK, Wing RA (2009) The physical and genetic framework of the maize B73 genome. PLoS Genet 5:e1000715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellhausen EJ, Roberts LM, Hernandez X, Mangelsdorf PC (1952) Races of maize in Mexico: their origin, characteristics and distribution. Bussey Inst Harvard Univ Cambridge, Mass, p 222

    Google Scholar 

  • Wen W, Araus JL, Shah T, Cairns J, Mahuku G, Bänziger M, Torres JL, Sánchez C, Yan J (2011) Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement. Crop Sci 51:2569–2581

    Article  Google Scholar 

  • Westengen OT, Berg PR, Kent MP, Brysting AK (2012) Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels. PLoS ONE 7(10):e47832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    Article  CAS  PubMed  Google Scholar 

  • Wilcox JR, Cavins JF (1995) Backcrossing high seed protein to a soybean cultivar. Crop Sci 35:1036–1041

    Article  Google Scholar 

  • Williams ME (2016) Alternative mutagens for maize (Zea mays L.). Maize Genom Genet 7:1–8

    Google Scholar 

  • Winston WL, VenkataramananM, Goldberg JB (2003) Introduction to mathematical programming, vol 1. Operations Research, 4 edn. Brooks/Cole, Pacific Grove, CA

  • Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 8:e1000409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolliams JA, Berg P, Dagnachew BS, Meuwissen TH (2015) Genetic contributions and their optimization. J Anim Breed Genet 132:89–99

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Frei UK, Liu H, De La Fuente G, Huang K, Wei Y, Lübberstedt T (2015) Combining genomic selection and doubled haploid technology increases efficiency of maize breeding. In: Govil JN (ed) Recent developments in biotechnology, vol 2. Plant Biotechnology. Studium Press, pp 215–237

  • Wu Y, Fox TW, Trimnell MR, Wang L, Xu RJ, Cigan AM, Huffman GA et al (2016) Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J 14:1046–1054

    Article  CAS  PubMed  Google Scholar 

  • Wych RD (1988) Production of hybrid seed corn. In: Sprague GF (ed) Corn and corn improvement. American Society of Agronomy Inc, Crop Science Society of America, and Soil Science Society of America, Madison, pp 565–607

    Google Scholar 

  • Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet 129:653–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Wang L, Beavis WD (2011) An optimization approach to gene stacking. Eur J Oper Res 214:168–178

    Article  Google Scholar 

  • Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Xu X-W, Wang R-R, Peng W-L, Cai L, Song J-M, Li W, Luo X, Niu L, Wang Y, Jin M, Chen L, Luo J, Deng M, Wang L, Pan Q, Liu F, Jackson D, Yang X, Chen L-L, Yan J (2017a) Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat Commun 8:1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Mezmouk S, Baumgarten A, Buckler ES, Guill KE, McMullen MD, Mumm RH, Ross-Ibarra J (2017b) Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genet 13:e1007019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye G, Smith KF (2008) Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. Int J Plant Breed 2:1–10

    Article  Google Scholar 

  • Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH Jr (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–555

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu X, Li X, Guo T, Zhu C, Wu Y, Mitchell SE, Roozeboom KL, Wang D, Wang ML, Pederson GA, Tesso TT, Schnable PS, Bernardo R, Yu J (2016) Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat Plants 2:16150

    Article  CAS  PubMed  Google Scholar 

  • Zabirova ER, Shatskaya OA, Shcherbak VS (1993) Line 613/2 as a source of a high frequency of spontaneous diploidization in corn. Maize Genet Coop Newsl 67:67

    Google Scholar 

  • Zhang X, Zhang H, Li L, Lan H, Ren Z, Liu D, Wu L, Liu H, Jaqueth J, Li B, Pan G, Gao S (2016) Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genom 17:697

    Article  Google Scholar 

  • Zhang D, Wu S, An X, Xie K, Dong Z, Zhou Y, Xu L, Fang W, Liu S, Liu S, Zhu T, Li J, Rao L, Zhao J, Wan X (2018) Male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotech J 16:459–471

    Article  CAS  Google Scholar 

  • Zhao Z-Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  • Zhao Y, Mette MF, Reif JC (2015) Genomic selection in hybrid breeding. Plant Breed 134:1–10

    Article  Google Scholar 

  • Zila CT, Ogut F, Romay MC, Gardner CA, Buckler ES, Holland JB (2014) Genome-wide association study of Fusarium ear rot disease in the. BMC Plant Biol 14:372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber MS, Darrah DL (1981) 1979 U.S. corn germplasm base. In: Proceedings of the 35th Ann Corn and Sorghum Ind Res Conf. ,Washington DC American Seed Trade Association, pp 234–249

Download references

Acknowledgements

The authors would like to thank USDA’s National Institute of Food and Agriculture (Project numbers: IOW04314, IOW05520), as well as the RF Baker Center for Plant Breeding at Iowa State University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lübberstedt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Rajeev K. Varshney.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andorf, C., Beavis, W.D., Hufford, M. et al. Technological advances in maize breeding: past, present and future. Theor Appl Genet 132, 817–849 (2019). https://doi.org/10.1007/s00122-019-03306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03306-3

Navigation