Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a vital member of the Eph tyrosine kinase receptor family and has been associated with developmental processes. However, it is often overexpressed in tumors and correlates with cancer progression and worse prognosis due to the activation of its noncanonical signaling pathway. Throughout cancer treatment, the emergence of drug-resistant tumor cells is relatively common. Since the early 2000s, researchers have focused on understanding the role of EphA2 in promoting drug resistance in different types of cancer, as well as finding efficient and secure EphA2 inhibitors. In this review, the current knowledge regarding induced resistance by EphA2 in cancer treatment is summarized, and the types of cancer that lead to the most cancer-related deaths are highlighted. Some EphA2 inhibitors were also investigated. Regardless of whether the cancer treatment has reached a drug-resistance stage in EphA2-overexpressing tumors, once EphA2 is involved in cancer progression and aggressiveness, targeting EphA2 is a promising therapeutic strategy, especially in combination with other target-drugs for synergistic effect. For that reason, monoclonal antibodies against EphA2 and inhibitors of this receptor should be investigated for efficacy and drug toxicity.
Similar content being viewed by others
Availability of data and material
Not applicable.
Code availability
Not applicable.
References
Ferlay J, Colombet M, Soerjomataram I et al (2021) Cancer statistics for the year 2020: an overview. Int J cancer. https://doi.org/10.1002/ijc.33588
Desai A, Scheckel C, Jensen CJ et al (2022) Trends in prices of drugs used to treat metastatic non-small cell lung cancer in the US from 2015 to 2020. JAMA Netw open 5:e2144923. https://doi.org/10.1001/jamanetworkopen.2021.44923
Peng L, Wang Z, Stebbing J, Yu Z (2022) Novel immunotherapeutic drugs for the treatment of lung cancer. Curr Opin Oncol 34:89–94. https://doi.org/10.1097/CCO.0000000000000800
Xu M, Peng R, Min Q et al (2022) Bisindole natural products: a vital source for the development of new anticancer drugs. Eur J Med Chem 243:114748. https://doi.org/10.1016/j.ejmech.2022.114748
Zigrossi A, Hong LK, Ekyalongo RC et al (2022) SELENOF is a new tumor suppressor in breast cancer. Oncogene 41:1263–1268. https://doi.org/10.1038/s41388-021-02158-w
Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, Fabisiewicz A (2019) Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat 173:489–497. https://doi.org/10.1007/s10549-018-5023-4
Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms21093233
Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477
Zhu C, Guan X, Zhang X et al (2022) Targeting KRAS mutant cancers: from druggable therapy to drug resistance. Mol Cancer 21:159. https://doi.org/10.1186/s12943-022-01629-2
Vachtenheim J, Ondrušová L (2021) Many distinct ways lead to drug resistance in BRAF- and NRAS-mutated melanomas. Life (Basel, Switzerland). https://doi.org/10.3390/life11050424
Li Q-H, Wang Y-Z, Tu J et al (2020) Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol Rep 8:179–191. https://doi.org/10.1093/gastro/goaa026
Nussinov R, Tsai C-J, Jang H (2021) Anticancer drug resistance: an update and perspective. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 59:100796. https://doi.org/10.1016/j.drup.2021.100796
Kinch MS, Moore M-B, Harpole DHJ (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin cancer Res an Off J Am Assoc Cancer Res 9:613–618
Garcia-Monclús S, López-Alemany R, Almacellas-Rabaiget O et al (2018) EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma. Int J Cancer 143:1188–1201. https://doi.org/10.1002/ijc.31405
Hirai H, Maru Y, Hagiwara K et al (1987) A novel putative tyrosine kinase receptor encoded by the EPH gene. Science 238:1717–1720. https://doi.org/10.1126/science.2825356
Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180. https://doi.org/10.1038/nrc2806
Sahoo AR, Buck M (2021) Structural and functional insights into the transmembrane domain association of Eph receptors. Int J Mol Sci. https://doi.org/10.3390/ijms22168593
Liang LY, Patel O, Janes PW et al (2019) Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 38:6567–6584. https://doi.org/10.1038/s41388-019-0931-2
Himanen JP, Rajashankar KR, Lackmann M et al (2001) Crystal structure of an Eph receptor-ephrin complex. Nature 414:933–938. https://doi.org/10.1038/414933a
Ellis C, Kasmi F, Ganju P et al (1996) A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12:1727–1736
Holland SJ, Gale NW, Gish GD et al (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 16:3877–3888. https://doi.org/10.1093/emboj/16.13.3877
Schultz J, Ponting CP, Hofmann K, Bork P (1997) SAM as a protein interaction domain involved in developmental regulation. Protein Sci 6:249–253. https://doi.org/10.1002/pro.5560060128
Stapleton D, Balan I, Pawson T, Sicheri F (1999) The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol 6:44–49. https://doi.org/10.1038/4917
Thanos CD, Goodwill KE, Bowie JU (1999) Oligomeric structure of the human EphB2 receptor SAM domain. Science 283:833–836. https://doi.org/10.1126/science.283.5403.833
Hock B, Böhme B, Karn T et al (1998) PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the RAS-binding protein AF6 depends on the kinase activity of the receptor. Proc Natl Acad Sci USA 95:9779–9784. https://doi.org/10.1073/pnas.95.17.9779
Torres R, Firestein BL, Dong H et al (1998) PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21:1453–1463. https://doi.org/10.1016/s0896-6273(00)80663-7
Gong J, Körner R, Gaitanos L, Klein R (2016) Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol 214:35–44. https://doi.org/10.1083/jcb.201601085
Pasquale EB (2016) Exosomes expand the sphere of influence of Eph receptors and ephrins. J Cell Biol 214:5–7. https://doi.org/10.1083/jcb.201606074
Oricchio E, Nanjangud G, Wolfe AL et al (2011) The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 147:554–564. https://doi.org/10.1016/j.cell.2011.09.035
Lee J, Nakajima-Koyama M, Sone M et al (2015) Secreted ephrin receptor A7 promotes somatic cell reprogramming by inducing ERK activity reduction. Stem Cell Rep 5:480–489. https://doi.org/10.1016/j.stemcr.2015.09.001
Sato S, Vasaikar S, Eskaros A et al (2019) EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight. https://doi.org/10.1172/jci.insight.132447
Aasheim HC, Munthe E, Funderud S et al (2000) A splice variant of human ephrin-A4 encodes a soluble molecule that is secreted by activated human B lymphocytes. Blood 95:221–230. https://doi.org/10.1182/blood.v95.1.221.001k01_221_230
Wykosky J, Palma E, Gibo DM et al (2008) Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene 27:7260–7273. https://doi.org/10.1038/onc.2008.328
Alford S, Watson-Hurthig A, Scott N et al (2010) Soluble ephrin a1 is necessary for the growth of HeLa and SK-BR3 cells. Cancer Cell Int 10:1–13. https://doi.org/10.1186/1475-2867-10-41
Cui XD, Lee MJ, Yu GR et al (2010) EFNA1 ligand and its receptor EphA2: potential biomarkers for hepatocellular carcinoma. Int J Cancer 126:940–949. https://doi.org/10.1002/ijc.24798
Lee PC, Chen ST, Kuo TC et al (2020) C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene 39:2724–2740. https://doi.org/10.1038/s41388-020-1178-7
Neill T, Goyal A, Buraschi S et al (2016) EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol 215:687–703. https://doi.org/10.1083/jcb.201603079
Janes PW, Griesshaber B, Atapattu L et al (2011) Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors. J Cell Biol 195:1033–1045. https://doi.org/10.1083/jcb.201104037
Wimmer-Kleikamp SH, Janes PW, Squire A et al (2004) Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J Cell Biol 164:661–666. https://doi.org/10.1083/jcb.200312001
Miao H, Li DQ, Mukherjee A et al (2009) EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16:9–20. https://doi.org/10.1016/j.ccr.2009.04.009
Hiramoto-Yamaki N, Takeuchi S, Ueda S et al (2010) Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J Cell Biol 190:461–477. https://doi.org/10.1083/jcb.201005141
Sato S, Vasaikar S, Eskaros A et al (2019) EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight 4:1–18. https://doi.org/10.1172/jci.insight.132447
Gao Z, Han X, Zhu Y et al (2021) Drug-resistant cancer cell-derived exosomal EphA2 promotes breast cancer metastasis via the EphA2-Ephrin A1 reverse signaling. Cell Death Dis. https://doi.org/10.1038/s41419-021-03692-x
Vreeken D, Bruikman CS, Cox SML et al (2020) EPH receptor B2 stimulates human monocyte adhesion and migration independently of its EphrinB ligands. J Leukoc Biol 108:999–1011. https://doi.org/10.1002/JLB.2A0320-283RR
Fujii H, Tatsumi K, Kosaka K et al (2006) Eph-ephrin A system regulates murine blastocyst attachment and spreading. Dev Dyn an Off Publ Am Assoc Anat 235:3250–3258. https://doi.org/10.1002/dvdy.20977
N’Tumba-Byn T, Yamada M, Seandel M (2020) Loss of tyrosine kinase receptor Ephb2 impairs proliferation and stem cell activity of spermatogonia in culture†. Biol Reprod 102:950–962. https://doi.org/10.1093/biolre/ioz222
Wang Z, Miura N, Bonelli A et al (2002) Receptor tyrosine kinase, EphB4 (HTK), accelerates differentiation of select human hematopoietic cells. Blood 99:2740–2747. https://doi.org/10.1182/blood.v99.8.2740
Ethell IM, Irie F, Kalo MS et al (2001) EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31:1001–1013. https://doi.org/10.1016/s0896-6273(01)00440-8
Henkemeyer M, Itkis OS, Ngo M et al (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163:1313–1326. https://doi.org/10.1083/jcb.200306033
Penzes P, Beeser A, Chernoff J et al (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37:263–274. https://doi.org/10.1016/s0896-6273(02)01168-6
Murai KK, Nguyen LN, Irie F et al (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6:153–160. https://doi.org/10.1038/nn994
Buensuceso AV, Deroo BJ (2013) The ephrin signaling pathway regulates morphology and adhesion of mouse granulosa cells in vitro. Biol Reprod 88:25. https://doi.org/10.1095/biolreprod.112.100123
Fujii H, Fujiwara H, Horie A et al (2011) Ephrin A1 induces intercellular dissociation in Ishikawa cells: possible implication of the Eph-ephrin A system in human embryo implantation. Hum Reprod 26:299–306. https://doi.org/10.1093/humrep/deq340
Wu B, Rockel JS, Lagares D, Kapoor M (2019) Ephrins and Eph receptor signaling in tissue repair and fibrosis. Curr Rheumatol Rep 21:23. https://doi.org/10.1007/s11926-019-0825-x
Darling TK, Lamb TJ (2019) Emerging roles for Eph receptors and ephrin ligands in immunity. Front Immunol 10:1473. https://doi.org/10.3389/fimmu.2019.01473
Vivanti A, Ozanne A, Grondin C et al (2018) Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation. Brain 141:979–988. https://doi.org/10.1093/brain/awy020
Chen D, Hughes ED, Saunders TL et al (2022) Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. JCI Insight. https://doi.org/10.1172/jci.insight.156928
Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4:403–414. https://doi.org/10.1016/s1097-2765(00)80342-1
Li J, Dong W, Gao X et al (2021) EphA4 is highly expressed in the atria of heart and its deletion leads to atrial hypertrophy and electrocardiographic abnormalities in rats. Life Sci 278:119595. https://doi.org/10.1016/j.lfs.2021.119595
Lindberg RA, Hunter T (1990) cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the Eph/elk family of protein kinases. Mol Cell Biol 10:6316–6324. https://doi.org/10.1128/mcb.10.12.6316-6324.1990
Sulman EP, Tang XX, Allen C et al (1997) ECK, a human EPH-related gene, maps to 1p36.1, a common region of alteration in human cancers. Genomics 40:371–374. https://doi.org/10.1006/geno.1996.4569
Dai D, Huang Q, Nussinov R, Ma B (2014) Promiscuous and specific recognition among ephrins and Eph receptors. Biochim Biophys Acta 1844:1729–1740. https://doi.org/10.1016/j.bbapap.2014.07.002
Himanen JP, Goldgur Y, Miao H et al (2009) Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO Rep 10:722–728. https://doi.org/10.1038/embor.2009.91
Seiradake E, Schaupp A, del Toro RD et al (2013) Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat Struct Mol Biol 20:958–964. https://doi.org/10.1038/nsmb.2617
Shi Y, De Maria A, Bennett T et al (2012) A role for epha2 in cell migration and refractive organization of the ocular lens. Invest Ophthalmol Vis Sci 53:551–559. https://doi.org/10.1167/iovs.11-8568
Cheng C, Ansari MM, Cooper JA, Gong X (2013) EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development 140:4237–4245. https://doi.org/10.1242/dev.100727
Irie N, Takada Y, Watanabe Y et al (2009) Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem 284:14637–14644. https://doi.org/10.1074/jbc.M807598200
Vaught D, Chen J, Brantley-Sieders DM (2009) Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol Biol Cell 20:2572–2581. https://doi.org/10.1091/mbc.e08-04-0378
Walker-Daniels J, Coffman K, Azimi M et al (1999) Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 41:275–280. https://doi.org/10.1002/(sici)1097-0045(19991201)41:4%3c275::aid-pros8%3e3.0.co;2-t
Ogawa K, Pasqualini R, Lindberg RA et al (2000) The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19:6043–6052. https://doi.org/10.1038/sj.onc.1204004
Saito T, Masuda N, Miyazaki T et al (2004) Expression of EphA2 and E-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep 11:605–611. https://doi.org/10.3892/or.11.3.605
Lin YG, Han LY, Kamat AA et al (2007) EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer 109:332–340. https://doi.org/10.1002/cncr.22415
Song W, Hwang Y, Youngblood VM et al (2017) Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene 36:5620–5630. https://doi.org/10.1038/onc.2017.170
Dunne PD, Dasgupta S, Blayney JK et al (2016) EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clin Cancer Res 22:230–242. https://doi.org/10.1158/1078-0432.CCR-15-0603
Li J-Y, Xiao T, Yi H-M et al (2019) S897 phosphorylation of EphA2 is indispensable for EphA2-dependent nasopharyngeal carcinoma cell invasion, metastasis and stem properties. Cancer Lett 444:162–174. https://doi.org/10.1016/j.canlet.2018.12.011
Sachdeva A, Hart CA, Kim K et al (2022) Non-canonical EphA2 activation underpins PTEN-mediated metastatic migration and poor clinical outcome in prostate cancer. Br J Cancer. https://doi.org/10.1038/s41416-022-01914-3
Zhuang G, Brantley-Sieders DM, Vaught D et al (2010) Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res 70:299–308. https://doi.org/10.1158/0008-5472.CAN-09-1845
Ishigaki H, Minami T, Morimura O et al (2019) EphA2 inhibition suppresses proliferation of small-cell lung cancer cells through inducing cell cycle arrest. Biochem Biophys Res Commun 519:846–853. https://doi.org/10.1016/j.bbrc.2019.09.076
Yeddula N, Xia Y, Ke E et al (2015) Screening for tumor suppressors: loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma. Proc Natl Acad Sci USA 112:E6476–E6485. https://doi.org/10.1073/pnas.1520110112
Han B, Zhang H, Tian R et al (2022) Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through ephrin A1-EPHA2 forward signaling. Theranostics 12:4127–4146. https://doi.org/10.7150/THNO.72404
Miao H, Wei BR, Peehl DM et al (2001) Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 3:527–530. https://doi.org/10.1038/35074604
Guo H, Miao H, Gerber L et al (2006) Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res 66:7050–7058. https://doi.org/10.1158/0008-5472.CAN-06-0004
Walker-Daniels J, Riese DJ 2nd, Kinch MS (2002) c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res 1:79–87
Zhou Y, Yamada N, Tanaka T et al (2015) Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat Commun 6:7679. https://doi.org/10.1038/ncomms8679
Barquilla A, Lamberto I, Noberini R et al (2016) Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol Biol Cell 27:2757–2770. https://doi.org/10.1091/mbc.E16-01-0048
Wilson K, Shiuan E, Brantley-Sieders DM (2021) Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 40:2483–2495. https://doi.org/10.1038/s41388-021-01714-8
Buraschi S, Neill T, Xu S-Q et al (2020) Progranulin/EphA2 axis: a novel oncogenic mechanism in bladder cancer. Matrix Biol 93:10–24. https://doi.org/10.1016/j.matbio.2020.03.009
Larsen AB, Pedersen MW, Stockhausen M-T et al (2007) Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility. Mol Cancer Res 5:283–293. https://doi.org/10.1158/1541-7786.MCR-06-0321
Brantley-Sieders DM, Zhuang G, Hicks D et al (2008) The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest 118:64–78. https://doi.org/10.1172/JCI33154
Kim J, Chang I-Y, You HJ (2022) Interactions between EGFR and EphA2 promote tumorigenesis through the action of Ephexin1. Cell Death Dis 13:528. https://doi.org/10.1038/s41419-022-04984-6
Feng J, Lu S-S, Xiao T et al (2020) ANXA1 binds and stabilizes EphA2 to promote nasopharyngeal carcinoma growth and metastasis. Cancer Res 80:4386–4398. https://doi.org/10.1158/0008-5472.CAN-20-0560
Lu M, Miller KD, Gokmen-Polar Y et al (2003) EphA2 overexpression decreases estrogen dependence and tamoxifen sensitivity. Cancer Res 63:3425–3429
Amato KR, Wang S, Tan L et al (2016) EPHA2 blockade overcomes acquired resistance to EGFR kinase inhibitors in lung cancer. Cancer Res 76:305–318. https://doi.org/10.1158/0008-5472.CAN-15-0717
Yao F, Huang X, Xie Z et al (2022) LINC02418 upregulates EPHA2 by competitively sponging miR-372-3p to promote 5-Fu/DDP chemoresistance in colorectal cancer. Carcinogenesis. https://doi.org/10.1093/carcin/bgac065
Cuyàs E, Queralt B, Martin-Castillo B et al (2017) EphA2 receptor activation with ephrin-A1 ligand restores cetuximab efficacy in NRAS-mutant colorectal cancer cells. Oncol Rep 38:263–270. https://doi.org/10.3892/or.2017.5682
De Robertis M, Loiacono L, Fusilli C et al (2017) Dysregulation of EGFR pathway in EphA2 cell subpopulation significantly associates with poor prognosis in colorectal cancer. Clin Cancer Res 23:159–170. https://doi.org/10.1158/1078-0432.CCR-16-0709
Martini G, Cardone C, Vitiello PP et al (2019) EPHA2 is a predictive biomarker of resistance and a potential therapeutic target for improving antiepidermal growth factor receptor therapy in colorectal cancer. Mol Cancer Ther 18:845–855. https://doi.org/10.1158/1535-7163.MCT-18-0539
Chen C-T, Liao L-Z, Lu C-H et al (2020) Quantitative phosphoproteomic analysis identifies the potential therapeutic target EphA2 for overcoming sorafenib resistance in hepatocellular carcinoma cells. Exp Mol Med 52:497–513. https://doi.org/10.1038/s12276-020-0404-2
Chen Z, Liu Z, Zhang M et al (2019) EPHA2 blockade reverses acquired resistance to afatinib induced by EPHA2-mediated MAPK pathway activation in gastric cancer cells and avatar mice. Int J Cancer 145:2440–2449. https://doi.org/10.1002/ijc.32313
Gökmen-Polar Y, Toroni RA, Hocevar BA et al (2011) Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer. Breast Cancer Res Treat 127:375–384. https://doi.org/10.1007/s10549-010-1004-y
Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
Weinstein IB, Joe AK (2006) Mechanisms of disease: oncogene addiction–a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3:448–457. https://doi.org/10.1038/ncponc0558
Skoulidis F, Heymach JV (2019) Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer 19:495–509. https://doi.org/10.1038/s41568-019-0179-8
Amato KR, Wang S, Hastings AK et al (2014) Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J Clin Invest 124:2037–2049. https://doi.org/10.1172/JCI72522
Koch H, Busto MEDC, Kramer K et al (2015) Chemical proteomics uncovers EPHA2 as a mechanism of acquired resistance to small molecule EGFR kinase inhibition. J Proteome Res 14:2617–2625. https://doi.org/10.1021/acs.jproteome.5b00161
Camidge DR, Pao W, Sequist LV (2014) Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 11:473–481. https://doi.org/10.1038/nrclinonc.2014.104
Brannan JM, Sen B, Saigal B et al (2009) EphA2 in the early pathogenesis and progression of non-small cell lung cancer. Cancer Prev Res (Phila) 2:1039–1049. https://doi.org/10.1158/1940-6207.CAPR-09-0212
Larsen AB, Stockhausen M-T, Poulsen HS (2010) Cell adhesion and EGFR activation regulate EphA2 expression in cancer. Cell Signal 22:636–644. https://doi.org/10.1016/j.cellsig.2009.11.018
Volz C, Breid S, Selenz C et al (2020) Inhibition of tumor VEGFR2 induces serine 897 EphA2-dependent tumor cell invasion and metastasis in NSCLC. Cell Rep 31:107568. https://doi.org/10.1016/j.celrep.2020.107568
Gong S, Li Y, Lv L, Men W (2021) Restored microRNA-519a enhances the radiosensitivity of non-small cell lung cancer via suppressing EphA2. Gene Ther. https://doi.org/10.1038/s41434-020-00213-x
Kaminskyy VO, Hååg P, Novak M et al (2021) EPHA2 interacts with DNA-PKcs in cell nucleus and controls ionizing radiation responses in non-small cell lung cancer cells. Cancers (Basel) 13:1010. https://doi.org/10.3390/cancers13051010
Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536. https://doi.org/10.1038/nature11156
Van der Jeught K, Xu H-C, Li Y-J et al (2018) Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 24:3834–3848. https://doi.org/10.3748/wjg.v24.i34.3834
Lu Y, Zhao X, Liu Q et al (2017) lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 23:1331–1341. https://doi.org/10.1038/nm.4424
Torlot L, Jarzab A, Albert J et al (2023) Proteomics uncover EPHA2 as a potential novel therapeutic target in colorectal cancer cell lines with acquired cetuximab resistance. J Cancer Res Clin Oncol 149:669–682. https://doi.org/10.1007/s00432-022-04416-0
Colapietro A, Gravina GL, Petragnano F et al (2020) Antitumorigenic effects of inhibiting ephrin receptor kinase signaling by GLPG1790 against colorectal cancer cell lines in vitro and in vivo. J Oncol 2020:9342732. https://doi.org/10.1155/2020/9342732
Fu J, Wang H (2018) Precision diagnosis and treatment of liver cancer in China. Cancer Lett 412:283–288. https://doi.org/10.1016/j.canlet.2017.10.008
Jin Q, Li XJ, Cao PG (2016) MicroRNA-26b enhances the radiosensitivity of hepatocellular carcinoma cells by targeting EphA2. Tohoku J Exp Med 238:143–151. https://doi.org/10.1620/tjem.238.143
Saung MT, Pelosof L, Casak S et al (2021) FDA approval summary: nivolumab plus ipilimumab for the treatment of patients with hepatocellular carcinoma previously treated with sorafenib. Oncologist 26:797–806. https://doi.org/10.1002/onco.13819
Asakura N, Nakamura N, Muroi A et al (2021) Expression of cancer stem cell markers EpCAM and CD90 is correlated with anti- and pro-oncogenic EphA2 signaling in hepatocellular carcinoma. Int J Mol Sci. https://doi.org/10.3390/ijms22168652
Husain A, Chiu Y-T, Sze KM-F et al (2022) Ephrin-A3/EphA2 axis regulates cellular metabolic plasticity to enhance cancer stemness in hypoxic hepatocellular carcinoma. J Hepatol 77:383–396. https://doi.org/10.1016/j.jhep.2022.02.018
Yang P, Yuan W, He J et al (2009) Overexpression of EphA2, MMP-9, and MVD-CD34 in hepatocellular carcinoma: implications for tumor progression and prognosis. Hepatol Res 39:1169–1177. https://doi.org/10.1111/j.1872-034X.2009.00563.x
Huang C, Yuan W, Lai C et al (2020) EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance. Int J Cancer 146:1937–1949. https://doi.org/10.1002/ijc.32609
Arienti C, Pignatta S, Tesei A (2019) Epidermal growth factor receptor family and its role in gastric cancer. Front Oncol 9:1308. https://doi.org/10.3389/fonc.2019.01308
Mao L, Yuan W, Cai K et al (2022) Correction to: EphA2-YES1-ANXA2 pathway promotes gastric cancer progression and metastasis. Oncogene 41:1228–1230
Zelinski DP, Zantek ND, Stewart JC et al (2001) EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 61:2301–2306
Kikawa KD, Vidale DR, Van Etten RL, Kinch MS (2002) Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem 277:39274–39279. https://doi.org/10.1074/jbc.M207127200
Youngblood VM, Kim LC, Edwards DN et al (2016) The ephrin-A1/EPHA2 signaling axis regulates glutamine metabolism in HER2-positive breast cancer. Cancer Res 76:1825–1836. https://doi.org/10.1158/0008-5472.CAN-15-0847
Du J, He Y, Wu W et al (2019) Targeting EphA2 with miR-124 mediates Erlotinib resistance in K-RAS mutated pancreatic cancer. J Pharm Pharmacol 71:196–205. https://doi.org/10.1111/jphp.12941
Ruan H, Li S, Bao L, Zhang X (2020) Enhanced YB1/EphA2 axis signaling promotes acquired resistance to sunitinib and metastatic potential in renal cell carcinoma. Oncogene 39:6113–6128. https://doi.org/10.1038/s41388-020-01409-6
Paraiso KHT, Das Thakur M, Fang B et al (2015) Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov 5:264–273. https://doi.org/10.1158/2159-8290.CD-14-0293
Miao B, Ji Z, Tan L et al (2015) EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov 5:274–287. https://doi.org/10.1158/2159-8290.CD-14-0295
Azimi A, Tuominen R, Costa Svedman F et al (2017) Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells. Cell Death Dis 8:e3029. https://doi.org/10.1038/cddis.2017.406
Zhang C, Smalley I, Emmons MF et al (2021) Noncanonical EphA2 signaling is a driver of tumor-endothelial cell interactions and metastatic dissemination in BRAF inhibitor-resistant melanoma. J Invest Dermatol 141:840-851.e4. https://doi.org/10.1016/j.jid.2020.08.012
Fan J, Wei Q, Koay EJ et al (2018) Chemoresistance transmission via exosome-mediated EphA2 Transfer in pancreatic cancer. Theranostics 8:5986–5994. https://doi.org/10.7150/thno.26650
Wang Y, Liu Y, Li G et al (2015) Ephrin type-A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3-kinase/Akt signalling pathway. Mol Med Rep 11:924–930. https://doi.org/10.3892/mmr.2014.2799
Gai Q-J, Fu Z, He J et al (2022) EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduct Target Ther 7:33. https://doi.org/10.1038/s41392-021-00855-2
Moyano-Galceran L, Pietilä EA, Turunen SP et al (2020) Adaptive RSK-EphA2-GPRC5A signaling switch triggers chemotherapy resistance in ovarian cancer. EMBO Mol Med 12:e11177. https://doi.org/10.15252/emmm.201911177
Shen H, Rodriguez-Aguayo C, Xu R et al (2013) Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery. Clin Cancer Res 19:1806–1815. https://doi.org/10.1158/1078-0432.CCR-12-2764
Huang C, Chen Z, He Y et al (2021) EphA2 promotes tumorigenicity of cervical cancer by up-regulating CDK6. J Cell Mol Med 25:2967–2975. https://doi.org/10.1111/jcmm.16337
Villamor JG, Kaschani F, Colby T et al (2013) Profiling protein kinases and other ATP binding proteins in arabidopsis using acyl-ATP probes. Mol Cell Proteomics 12:2481–2496. https://doi.org/10.1074/mcp.M112.026278
Bethke E, Pinchuk B, Renn C et al (2016) From type I to type II: design, synthesis, and characterization of potent pyrazin-2-ones as DFG-out inhibitors of PDGFRβ. ChemMedChem 11:2664–2674. https://doi.org/10.1002/cmdc.201600494
Peng YH, Shiao HY, Tu CH et al (2013) Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: the role of the DFG motif in the design of epidermal growth factor receptor inhibitors. J Med Chem 56:3889–3903. https://doi.org/10.1021/jm400072p
Vijayan RSK, He P, Modi V et al (2015) Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem 58:466–479. https://doi.org/10.1021/jm501603h
Kufareva I, Abagyan R (2008) Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J Med Chem 51:7921–7932. https://doi.org/10.1021/jm8010299
Melnick JS, Janes J, Kim S et al (2006) An efficient rapid system for profiling the cellular activities of molecular libraries. Proc Natl Acad Sci USA 103:3153–3158. https://doi.org/10.1073/pnas.0511292103
Choi Y, Syeda F, Walker JR et al (2009) Discovery and structural analysis of Eph receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 19:4467–4470. https://doi.org/10.1016/j.bmcl.2009.05.029
Okun R (1983) Effectiveness of prazosin as initial antihypertensive therapy. Am J Cardiol 51:644–650. https://doi.org/10.1016/S0002-9149(83)80202-1
Kung S, Espinel Z, Lapid MI (2012) Treatment of nightmares with prazosin: a systematic review. Mayo Clin Proc 87:890–900. https://doi.org/10.1016/j.mayocp.2012.05.015
Assad Kahn S, Costa SL, Gholamin S et al (2016) The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway. EMBO Mol Med 8:511–526. https://doi.org/10.15252/emmm.201505421
Zhang J, Fan J (2020) Prazosin inhibits the proliferation, migration and invasion, but promotes the apoptosis of U251 and U87 cells via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 20:1145–1152. https://doi.org/10.3892/etm.2020.8772
Huber G, Levy J (2001) Development of verteporfin therapy: a collaboration between pharmaceutical companies, device manufacturers and clinical investigators. Semin Ophthalmol 16:213–217. https://doi.org/10.1076/soph.16.4.213.10294
Chan WM, Lim TH, Pece A et al (2010) Verteporfin PDT for non-standard indications-a review of current literature. Graefe’s Arch Clin Exp Ophthalmol 248:613–626. https://doi.org/10.1007/s00417-010-1307-z
Ma YW, Liu YZ, Pan JX (2016) Verteporfin induces apoptosis and eliminates cancer stem-like cells in uveal melanoma in the absence of light activation. Am J Cancer Res 6:2816–2830
Zhang Y, Wang X, Zhou X (2022) Functions of Yes-association protein (YAP) in cancer progression and anticancer therapy resistance. Brain Sci Adv 8:1–18. https://doi.org/10.26599/bsa.2022.9050008
AlAmri MA, Kadri H, Alderwick LJ et al (2018) The photosensitising clinical agent verteporfin is an inhibitor of SPAK and OSR1 kinases. ChemBioChem 19:2072–2080. https://doi.org/10.1002/cbic.201800272
Wei C, Li X (2020) The role of photoactivated and non-photoactivated verteporfin on tumor. Front Pharmacol 11:1–15. https://doi.org/10.3389/fphar.2020.557429
Zahavi D, Weiner L (2020) Monoclonal antibodies in cancer therapy. Antibodies (Basel, Switzerland). https://doi.org/10.3390/antib9030034
Liu JKH (2014) The history of monoclonal antibody development - progress, remaining challenges and future innovations. Ann Med Surg 3:113–116
Li S, Schmitz KR, Jeffrey PD et al (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311. https://doi.org/10.1016/j.ccr.2005.03.003
Hasegawa J, Sue M, Yamato M et al (2016) Novel anti-EPHA2 antibody, DS-8895a for cancer treatment. Cancer Biol Ther 17:1158–1167. https://doi.org/10.1080/15384047.2016.1235663
Sakamoto A, Kato K, Hasegawa T, Ikeda S (2018) An agonistic antibody to EPHA2 εxhibits antitumor effects on human melanoma cells. Anticancer Res 38:3273–3282. https://doi.org/10.21873/anticanres.12592
Zantek ND, Azimi M, Fedor-Chaiken M et al (1999) E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ 10:629–638
Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS (2002) Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 62:2840–2847
Bruckheimer EM, Fazenbaker CA, Gallagher S et al (2009) Antibody-dependent cell-mediated cytotoxicity effector-enhanced EphA2 agonist monoclonal antibody demonstrates potent activity against human tumors. Neoplasia 11:509–517. https://doi.org/10.1593/neo.81578
Kuo MT, Long Y, Tsai W-B et al (2020) Collaboration between RSK-EphA2 and Gas6-Axl RTK signaling in arginine starvation response that confers resistance to EGFR inhibitors. Transl Oncol 13:355–364. https://doi.org/10.1016/j.tranon.2019.12.003
Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954
Jiang H, Hegde S, Knolhoff BL et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22:851–860. https://doi.org/10.1038/nm.4123
Markosyan N, Li J, Sun YH et al (2019) Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2). J Clin Invest 129:3594–3609. https://doi.org/10.1172/JCI127755
Cioce M, Fazio VM (2021) Be a predictive biomarker of response to anti-EGFR agents? 1–24
Strimpakos A, Pentheroudakis G, Kotoula V et al (2013) The prognostic role of ephrin A2 and endothelial growth factor receptor pathway mediators in patients with advanced colorectal cancer treated with cetuximab. Clin Colorectal Cancer 12:267-274.e2. https://doi.org/10.1016/j.clcc.2013.07.001
Zhang T, Li J, Ma X et al (2018) Inhibition of HDACs-EphA2 signaling axis with WW437 demonstrates promising preclinical antitumor activity in breast cancer. EBioMedicine 31:276–286. https://doi.org/10.1016/j.ebiom.2018.05.003
Lee H-Y, Mohammed KA, Goldberg EP et al (2016) Silencing receptor EphA2 enhanced sensitivity to Lipoplatin™ in lung tumor and MPM cells. Cancer Invest 34:293–304. https://doi.org/10.1080/07357907.2016.1201678
Salem AF, Wang S, Billet S et al (2018) Reduction of circulating cancer cells and metastases in breast-cancer models by a potent EphA2-agonistic peptide-drug conjugate. J Med Chem 61:2052–2061. https://doi.org/10.1021/acs.jmedchem.7b01837
Landen CNJ, Chavez-Reyes A, Bucana C et al (2005) Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65:6910–6918. https://doi.org/10.1158/0008-5472.CAN-05-0530
Wagner MJ, Mitra R, McArthur MJ et al (2017) Preclinical mammalian safety studies of EPHARNA (DOPC nanoliposomal EphA2-targeted siRNA). Mol Cancer Ther 16:1114–1123. https://doi.org/10.1158/1535-7163.MCT-16-0541
Baggio C, Udompholkul P, Gambini L, Pellecchia M (2022) Targefrin: a potent agent targeting the ligand binding domain of EphA2. J Med Chem. https://doi.org/10.1021/acs.jmedchem.2c01391
Jannu AK, Puppala ER, Gawali B et al (2021) Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. Int J Pharm 605:120819. https://doi.org/10.1016/j.ijpharm.2021.120819
Xiao T, Xiao Y, Wang W et al (2020) Targeting EphA2 in cancer. J Hematol Oncol 13:114. https://doi.org/10.1186/s13045-020-00944-9
Acknowledgements
The authors would like to thank Caetano Krassuski Negrão for proofreading the English version of this piece of work.
Funding
This piece of research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Author information
Authors and Affiliations
Contributions
RNV designed and wrote the article. DFG and JCO supervised the work and critically revised the manuscript. RNV, DFG, and JCO reviewed and edited the manuscript.
Corresponding author
Ethics declarations
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Veiga, R.N., de Azevedo, A.L.K., de Oliveira, J.C. et al. Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer. J Mol Med 102, 479–493 (2024). https://doi.org/10.1007/s00109-024-02431-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00109-024-02431-x