Skip to main content

Advertisement

Log in

Lipid-mediated muscle insulin resistance: different fat, different pathways?

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Increased dietary fat intake and lipolysis result in excessive lipid availability, which relates to impaired insulin sensitivity. Over the last years, several mechanisms possibly underlying lipid-mediated insulin resistance evolved. Lipid intermediates such as diacylglycerols (DAG) associate with changes in insulin sensitivity in many models. DAG activate novel protein kinase C (PKC) isoforms followed by inhibitory serine phosphorylation of insulin receptor substrate 1 (IRS1). Activation of Toll-like receptor 4 (TLR4) raises another lipid class, ceramides (CER), which induce pro-inflammatory pathways and lead to inhibition of Akt phosphorylation. Inhibition of glucosylceramide and ganglioside synthesis results in improved insulin sensitivity and increased activatory tyrosine phosphorylation of IRS1 in the muscle. Incomplete fat oxidation can increase acylcarnitines (ACC), which in turn stimulate pro-inflammatory pathways. This review analyzed the effects of lipid metabolites on insulin action in skeletal muscle of humans and rodents. Despite the evidence for the association of both DAG and CER with insulin resistance, its causal relevance may differ depending on the subcellular localization and the tested cohorts, e.g., athletes. Nevertheless, recent data indicate that individual lipid species and their degree of fatty acid saturation, particularly membrane and cytosolic C18:2 DAG, specifically activate PKCθ and induce both acute lipid-induced and chronic insulin resistance in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roden M (2006) Mechanisms of disease: hepatic steatosis in type 2 diabetes—pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab 2:335–348

    CAS  PubMed  Google Scholar 

  2. Szendroedi J, Roden M (2009) Ectopic lipids and organ function. Curr Opin Lipidol 20:50–56

    CAS  PubMed  Google Scholar 

  3. Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, Foti D, Chiefari E, Brunetti A (2012) Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res 789174. doi:10.1155/2012/789174

  4. Snel M, Jonker JT, Schoones J, Lamb H, de Roos A, Pijl H, Smit JW, Meinders AE, Jazet IM (2012) Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int J Endocrinol 983814. doi:10.1155/2012/983814

  5. Roden M (2004) How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci Int J Physiol Produced Jt Int Union Physiol Sci Am Physiol Soc 19:92–96

    CAS  Google Scholar 

  6. Jornayvaz FR, Shulman GI (2012) Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab 15:574–584

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, Roden M, Shulman GI (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42:113–116

    CAS  PubMed  Google Scholar 

  8. Roden M (2005) Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes (Lond) 29(Suppl 2):S111–115

    CAS  Google Scholar 

  9. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–871

    CAS  PubMed Central  PubMed  Google Scholar 

  10. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–163

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Buttet M, Traynard V, Tran TT, Besnard P, Poirier H, Niot I (2014) From fatty-acid sensing to chylomicron synthesis: role of intestinal lipid-binding proteins. Biochimie 96:37–47

    CAS  PubMed  Google Scholar 

  12. Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417

    CAS  PubMed  Google Scholar 

  13. Holland WL, Knotts TA, Chavez JA, Wang LP, Hoehn KL, Summers SA (2007) Lipid mediators of insulin resistance. Nutr Rev 65:S39–46

    PubMed  Google Scholar 

  14. Schooneman MG, Vaz FM, Houten SM, Soeters MR (2013) Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 62:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Aon MA, Bhatt N, Cortassa SC (2014) Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 5:282

    PubMed Central  PubMed  Google Scholar 

  16. Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Goni FM, Alonso A (1999) Structure and functional properties of diacylglycerols in membranes. Prog Lipid Res 38:1–48

    CAS  PubMed  Google Scholar 

  18. Carrasco S, Merida I (2007) Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32:27–36

    CAS  PubMed  Google Scholar 

  19. Athenstaedt K, Daum G (1999) Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem FEBS 266:1–16

    CAS  Google Scholar 

  20. Roos DS, Choppin PW (1985) Biochemical studies on cell fusion. I. Lipid composition of fusion-resistant cells. J Cell Biol 101:1578–1590

    CAS  PubMed  Google Scholar 

  21. Marignani PA, Epand RM, Sebaldt RJ (1996) Acyl chain dependence of diacylglycerol activation of protein kinase C activity in vitro. Biochem Biophys Res Commun 225:469–473

    CAS  PubMed  Google Scholar 

  22. Madani S, Hichami A, Legrand A, Belleville J, Khan NA (2001) Implication of acyl chain of diacylglycerols in activation of different isoforms of protein kinase C. FASEB J 15:2595–2601

    CAS  PubMed  Google Scholar 

  23. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236

    CAS  PubMed  Google Scholar 

  24. Li Y, Soos TJ, Li X, Wu J, Degennaro M, Sun X, Littman DR, Birnbaum MJ, Polakiewicz RD (2004) Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J Biol Chem 279:45304–45307

    CAS  PubMed  Google Scholar 

  25. Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011

    CAS  PubMed  Google Scholar 

  26. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N (2005) Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes 54:3458–3465

    CAS  PubMed  Google Scholar 

  27. Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang XM, Monia BP, Bhanot S, Shulman GI (2007) Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 117:739–745

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51:50–62

    PubMed  Google Scholar 

  29. Bikman BT, Summers SA (2011) Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 121:4222–4230

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Zierath JR (2007) The path to insulin resistance: paved with ceramides? Cell Metab 5:161–163

    CAS  PubMed  Google Scholar 

  31. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, Ray S, Majumdar SS, Bhattacharya S (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279–1285

    CAS  PubMed  Google Scholar 

  33. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, Knotts TA, Shui G, Clegg DJ, Wenk MR et al (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121:1858–1870

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Powell DJ, Turban S, Gray A, Hajduch E, Hundal HS (2004) Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J 382:619–629

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    CAS  PubMed  Google Scholar 

  36. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56

    CAS  PubMed  Google Scholar 

  37. Schrauwen P, Hesselink MK (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53:1412–1417

    CAS  PubMed  Google Scholar 

  38. Jelenik T, Roden M (2013) Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal 19:258–268

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Rutkowsky JM, Knotts TA, Ono-Moore KD, McCoin CS, Huang S, Schneider D, Singh S, Adams SH, Hwang DH (2014) Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab 306:E1378–1387

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15:635–645

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Lipina C, Hundal HS (2011) Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia 54:1596–1607

    CAS  PubMed  Google Scholar 

  42. Tagami S, Inokuchi Ji J, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y et al (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277:3085–3092

    CAS  PubMed  Google Scholar 

  43. Chavez JA, Siddique MM, Wang ST, Ching J, Shayman JA, Summers SA (2014) Ceramides and glucosylceramides are independent antagonists of insulin signaling. J Biol Chem 289:723–734

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y (2013) New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta 1831:1475–1485

    CAS  PubMed  Google Scholar 

  45. Gunstone FDH, John L, Dijkstra JA (2007) The lipid handbook with CD-ROM, 3rd edn. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  46. Nakamura T, Imamura K, Kasai F, Tsushima F, Kikuchi H, Takebe K (1993) Fecal excretions of hydroxy fatty acid and bile acid in diabetic diarrheal patients. J Diabetes Complications 7:8–11

    CAS  PubMed  Google Scholar 

  47. Soydan AS, Dokmetas HS, Cetin M, Koyuncu A, Kaptanoglu E, Elden H (2006) The evaluation of the role of beta-hydroxy fatty acids on chronic inflammation and insulin resistance. Mediators Inflamm 2006:64980

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, Patel RT, Lee J, Chen S, Peroni OD et al (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159:318–332

    CAS  PubMed  Google Scholar 

  49. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Flachs P, Rossmeisl M, Kopecky J (2014) The effect of n−3 fatty acids on glucose homeostasis and insulin sensitivity. Physiol Res Acad Sci Bohemoslov 63(Suppl 1):S93–118

    CAS  Google Scholar 

  51. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A et al (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–179

    CAS  PubMed  Google Scholar 

  53. Hoy AJ, Brandon AE, Turner N, Watt MJ, Bruce CR, Cooney GJ, Kraegen EW (2009) Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation. Am J Physiol Endocrinol Metab 297:E67–75

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Vogel-van D, den Bosch J, Hoeks J, Timmers S, Houten SM, van Dijk PJ, Boon W, Van Beurden D, Schaart G, Kersten S et al (2011) The effects of long- or medium-chain fat diets on glucose tolerance and myocellular content of lipid intermediates in rats. Obesity 19:792–799

    Google Scholar 

  55. Bruce CR, Risis S, Babb JR, Yang C, Kowalski GM, Selathurai A, Lee-Young RS, Weir JM, Yoshioka K, Takuwa Y et al (2012) Overexpression of sphingosine kinase 1 prevents ceramide accumulation and ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes 61:3148–3155

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Turner N, Kowalski GM, Leslie SJ, Risis S, Yang C, Lee-Young RS, Babb JR, Meikle PJ, Lancaster GI, Henstridge DC et al (2013) Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 56:1638–1648

    CAS  PubMed  Google Scholar 

  57. Badin PM, Vila IK, Louche K, Mairal A, Marques MA, Bourlier V, Tavernier G, Langin D, Moro C (2013) High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology 154:1444–1453

    CAS  PubMed  Google Scholar 

  58. Hoeg LD, Sjoberg KA, Jeppesen J, Jensen TE, Frosig C, Birk JB, Bisiani B, Hiscock N, Pilegaard H, Wojtaszewski JF et al (2011) Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling. Diabetes 60:64–73

    PubMed Central  PubMed  Google Scholar 

  59. Nowotny B, Zahiragic L, Krog D, Nowotny PJ, Herder C, Carstensen M, Yoshimura T, Szendroedi J, Phielix E, Schadewaldt P et al (2013) Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes 62:2240–2248

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M, Zhang D, Jelenik T, Muller J, Herder C, Nowotny P (2014) Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A 111:9597–9602

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Hussey SE, Lum H, Alvarez A, Cipriani Y, Garduno-Garcia J, Anaya L, Dube J, Musi N (2014) A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle. Diabetologia 57:582–591

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Chow LS, Mashek DG, Austin E, Eberly LE, Persson XM, Mashek MT, Seaquist ER, Jensen MD (2014) Training status diverges muscle diacylglycerol accumulation during free fatty acid elevation. Am J Physiol Endocrinol Metab 307:E124–131

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Kinalska I, Baranowski M, Zendzian-Piotrowska M, Brzezinska Z, Gorski J (2004) Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 53:1215–1221

    CAS  PubMed  Google Scholar 

  64. Kien CL, Bunn JY, Poynter ME, Stevens R, Bain J, Ikayeva O, Fukagawa NK, Champagne CM, Crain KI, Koves TR et al (2013) A lipidomics analysis of the relationship between dietary fatty acid composition and insulin sensitivity in young adults. Diabetes 62:1054–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31

    CAS  PubMed  Google Scholar 

  66. Straczkowski M, Kowalska I, Baranowski M, Nikolajuk A, Otziomek E, Zabielski P, Adamska A, Blachnio A, Gorski J, Gorska M (2007) Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes. Diabetologia 50:2366–2373

    CAS  PubMed  Google Scholar 

  67. Skovbro M, Baranowski M, Skov-Jensen C, Flint A, Dela F, Gorski J, Helge JW (2008) Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia 51:1253–1260

    CAS  PubMed  Google Scholar 

  68. Anastasiou CA, Kavouras SA, Lentzas Y, Gova A, Sidossis LS, Melidonis A (2009) Diabetes mellitus is associated with increased intramyocellular triglyceride, but not diglyceride, content in obese humans. Metabolism 58:1636–1642

    CAS  PubMed  Google Scholar 

  69. Moro C, Galgani JE, Luu L, Pasarica M, Mairal A, Bajpeyi S, Schmitz G, Langin D, Liebisch G, Smith SR (2009) Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metab 94:3440–3447

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Thrush AB, Brindley DN, Chabowski A, Heigenhauser GJ, Dyck DJ (2009) Skeletal muscle lipogenic protein expression is not different between lean and obese individuals: a potential factor in ceramide accumulation. J Clin Endocrinol Metab 94:5053–5061

    CAS  PubMed  Google Scholar 

  71. Bergman BC, Perreault L, Hunerdosse DM, Koehler MC, Samek AM, Eckel RH (2010) Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes. J Appl Physiol 108:1134–1141

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Coen PM, Dube JJ, Amati F, Stefanovic-Racic M, Ferrell RE, Toledo FG, Goodpaster BH (2010) Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes 59:80–88

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Amati F, Dube JJ, Alvarez-Carnero E, Edreira MM, Chomentowski P, Coen PM, Switzer GE, Bickel PE, Stefanovic-Racic M, Toledo FG et al (2011) Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes 60:2588–2597

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Coen PM, Hames KC, Leachman EM, DeLany JP, Ritov VB, Menshikova EV, Dube JJ, Stefanovic-Racic M, Toledo FG, Goodpaster BH (2013) Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity. Obesity (Silver Spring) 21:2362–2371

    CAS  Google Scholar 

  75. Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C (1991) Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 88:960–966

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Morris S, Simmer K, Gibson R (1998) Characterization of fatty acid clearance in premature neonates during intralipid infusion. Pediatr Res 43:245–249

    CAS  PubMed  Google Scholar 

  78. Meisel JA, Le HD, de Meijer VE, Nose V, Gura KM, Mulkern RV, Akhavan Sharif MR, Puder M (2011) Comparison of 5 intravenous lipid emulsions and their effects on hepatic steatosis in a murine model. J Pediatr Surg 46:666–673

    PubMed  Google Scholar 

  79. Boden G, Chen X, Rosner J, Barton M (1995) Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes 44:1239–1242

    CAS  PubMed  Google Scholar 

  80. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274

    CAS  PubMed  Google Scholar 

  81. Storlien LH, James DE, Burleigh KM, Chisholm DJ, Kraegen EW (1986) Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol 251:E576–583

    CAS  PubMed  Google Scholar 

  82. Orr JS, Puglisi MJ, Ellacott KL, Lumeng CN, Wasserman DH, Hasty AH (2012) Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages. Diabetes 61:2718–2727

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, Watt MJ (2006) Saturated, but not n−6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J Appl Physiol 100(1985):1467–1474

    CAS  PubMed  Google Scholar 

  84. Frangioudakis G, Garrard J, Raddatz K, Nadler JL, Mitchell TW, Schmitz-Peiffer C (2010) Saturated- and n−6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors. Endocrinology 151:4187–4196

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Jelenik T, Sequaris G, Kaul K, Ouwens DM, Phielix E, Kotzka J, Knebel B, Weiss J, Reinbeck AL, Janke L et al (2014) Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes. Diabetes 63:3856–3867

    CAS  PubMed  Google Scholar 

  86. Aerts JM, Ottenhoff R, Powlson AS, Grefhorst A, van Eijk M, Dubbelhuis PF, Aten J, Kuipers F, Serlie MJ, Wennekes T et al (2007) Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56:1341–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhao H, Przybylska M, Wu IH, Zhang J, Siegel C, Komarnitsky S, Yew NS, Cheng SH (2007) Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 56:1210–1218

    CAS  PubMed  Google Scholar 

  88. Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N et al (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci U S A 100:3445–3449

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Boden G, Chen X (1995) Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest 96:1261–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Kubo-Murai M, Hazeki K, Sukenobu N, Yoshikawa K, Nigorikawa K, Inoue K, Yamamoto T, Matsumoto M, Seya T, Inoue N et al (2007) Protein kinase Cdelta binds TIRAP/Mal to participate in TLR signaling. Mol Immunol 44:2257–2264

    CAS  PubMed  Google Scholar 

  91. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28:886–892

    CAS  PubMed  Google Scholar 

  92. Krebs M, Krssak M, Nowotny P, Weghuber D, Gruber S, Mlynarik V, Bischof M, Stingl H, Furnsinn C, Waldhausl W et al (2001) Free fatty acids inhibit the glucose-stimulated increase of intramuscular glucose-6-phosphate concentration in humans. J Clin Endocrinol Metab 86:2153–2160

    CAS  PubMed  Google Scholar 

  93. Roden M, Krssak M, Stingl H, Gruber S, Hofer A, Furnsinn C, Moser E, Waldhausl W (1999) Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans. Diabetes 48:358–364

    CAS  PubMed  Google Scholar 

  94. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    CAS  PubMed  Google Scholar 

  95. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3rd, Kang L, Rabinovitch PS, Szeto HH et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Phielix E, Jelenik T, Nowotny P, Szendroedi J, Roden M (2014) Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: a randomised clinical trial. Diabetologia 57:572–581

    CAS  PubMed  Google Scholar 

  97. Muoio DM, Neufer PD (2012) Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab 15:595–605

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Barazzoni R, Zanetti M, Gortan Cappellari G, Semolic A, Boschelle M, Codarin E, Pirulli A, Cattin L, Guarnieri G (2012) Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-kappaB inhibitor (IkappaB)-nuclear factor-kappaB (NFkappaB) activation in rat muscle, in the absence of mitochondrial dysfunction. Diabetologia 55:773–782

    CAS  PubMed  Google Scholar 

  99. Boyle KE, Canham JP, Consitt LA, Zheng D, Koves TR, Gavin TP, Holbert D, Neufer PD, Ilkayeva O, Muoio DM et al (2011) A high-fat diet elicits differential responses in genes coordinating oxidative metabolism in skeletal muscle of lean and obese individuals. J Clin Endocrinol Metab 96:775–781

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56:1129–1139

    CAS  PubMed  Google Scholar 

  101. Boudina S, Sena S, Sloan C, Tebbi A, Han YH, O’Neill BT, Cooksey RC, Jones D, Holland WL, McClain DA et al (2012) Early mitochondrial adaptations in skeletal muscle to diet-induced obesity are strain dependent and determine oxidative stress and energy expenditure but not insulin sensitivity. Endocrinology 153:2677–2688

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Nishizuka Y (1984) Turnover of inositol phospholipids and signal transduction. Science 225:1365–1370

    CAS  PubMed  Google Scholar 

  103. van Hees AM, Jans A, Hul GB, Roche HM, Saris WH, Blaak EE (2011) Skeletal muscle fatty acid handling in insulin resistant men. Obesity (Silver Spring) 19:1350–1359

    Google Scholar 

  104. Bergman BC, Hunerdosse DM, Kerege A, Playdon MC, Perreault L (2012) Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia 55:1140–1150

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86:5755–5761

    CAS  PubMed  Google Scholar 

  106. van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287:E558–565

    PubMed  Google Scholar 

  107. Albers PH, Pedersen AJ, Birk JB, Kristensen DE, Vind BF, Baba O, Nohr J, Hojlund K, Wojtaszewski JF (2015) Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes. Diabetes 64:485–497

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ work is supported by the Ministry of Science and Research of the State of North Rhine-Westphalia (MIWF NRW), the German Federal Ministry of Health (BMG) and by grants of the Federal Ministry for Research (BMBF) to the German Center for Diabetes Research (DZD e.V.), the Helmholtz Alliance with Universities (Imaging and Curing Environmental Metabolic Diseases, ICEMED), the German Research Foundation (DFG; SFB 1116, B05) and the Schmutzler Stiftung, Germany. O.R. was supported by the research training group VIVID of Heinrich-Heine-University.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Roden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritter, O., Jelenik, T. & Roden, M. Lipid-mediated muscle insulin resistance: different fat, different pathways?. J Mol Med 93, 831–843 (2015). https://doi.org/10.1007/s00109-015-1310-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1310-2

Keywords

Navigation