Skip to main content

Advertisement

Inhibition of foam cell formation using a soluble CD68-Fc fusion protein

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The appearance of lipid-rich foam cells is a major feature of vulnerable atherosclerotic plaque formation. The transformation of macrophages into foam cells results from excessive uptake of cholesterol-rich particles by scavenger receptors such as CD68. We cloned a CD68-Fc immunoadhesin, a fusion protein consisting of the extracellular domain of the human CD68 and a human Fc domain, and investigated the function in vitro. Specific binding of CD68-Fc to OxLDL with an affinity of 10 nmol/L was determined by surface plasmon resonance and increased binding to lipid-rich human and ApoE−/− mice plaque tissue. This was confirmed both by immunohistochemical staining of CD68-Fc-treated paraffin sections from human plaques and by ELISA-based quantification of CD68-Fc binding to human atherosclerotic plaque extracts. In an in vitro model of macrophage/foam cell formation, CD68-Fc reduced foam cell formation significantly. This was caused both by interference of CD68-Fc with OxLDL uptake into macrophages and platelets and by the inhibition of platelet/OxLDL phagocytosis. Finally, expression of metalloproteinases by macrophages/foam cells was inhibited by CD68-Fc. In conclusion, CD68-Fc seems to be a promising new tool for preventing macrophage/foam cell formation. Thus, CD68-Fc might offer a novel therapeutic strategy for patients with acute coronary syndrome by modulating the generation of vulnerable plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Badimon L, Martinez-Gonzalez J, Llorente-Cortes V, Rodriguez C, Padro T (2006) Cell biology and lipoproteins in atherosclerosis. Curr Mol Med 6:439–456

    Article  CAS  PubMed  Google Scholar 

  2. Stoll G, Bendszus M (2006) Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 37:1923–1932

    Article  CAS  PubMed  Google Scholar 

  3. Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702–1711

    Article  CAS  PubMed  Google Scholar 

  4. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  CAS  PubMed  Google Scholar 

  5. Gough PJ, Gordon S, Greaves DR (2001) The use of human CD68 transcriptional regulatory sequences to direct high-level expression of class A scavenger receptor in macrophages in vitro and in vivo. Immunology 103:351–361

    Article  CAS  PubMed  Google Scholar 

  6. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47:C7–12

    Article  CAS  PubMed  Google Scholar 

  7. Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D (1996) Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci USA 93:14833–14838

    Article  CAS  PubMed  Google Scholar 

  8. Greaves DR, Gordon S (2005) Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J Lipid Res 46:11–20

    Article  CAS  PubMed  Google Scholar 

  9. Li AC, Glass CK (2002) The macrophage foam cell as a target for therapeutic intervention. Nat Med 8:1235–1242

    Article  CAS  PubMed  Google Scholar 

  10. Llaverias G, Rebollo A, Pou J, Vazquez-Carrera M, Sanchez RM, Laguna JC, Alegret M (2006) Effects of rosiglitazone and atorvastatin on the expression of genes that control cholesterol homeostasis in differentiating monocytes. Biochem Pharmacol 71:605–614

    Article  CAS  PubMed  Google Scholar 

  11. Han J, Zhou X, Yokoyama T, Hajjar DP, Gotto AM Jr, Nicholson AC (2004) Pitavastatin downregulates expression of the macrophage type B scavenger receptor, CD36. Circulation 109:790–796

    Article  CAS  PubMed  Google Scholar 

  12. Van Berkel TJ, Out R, Hoekstra M, Kuiper J, Biessen E, Van Eck M (2005) Scavenger receptors: friend or foe in atherosclerosis? Curr Opin Lipidol 16:525–535

    Article  PubMed  Google Scholar 

  13. Fuhrman B, Koren L, Volkova N, Keidar S, Hayek T, Aviram M (2002) Atorvastatin therapy in hypercholesterolemic patients suppresses cellular uptake of oxidized-LDL by differentiating monocytes. Atherosclerosis 164:179–185

    Article  CAS  PubMed  Google Scholar 

  14. Bruni F, Pasqui AL, Pastorelli M, Bova G, Cercignani M, Palazzuoli A, Sawamura T, Gioffre WR, Auteri A, Puccetti L (2005) Different effect of statins on platelet oxidized-LDL receptor (CD36 and LOX-1) expression in hypercholesterolemic subjects. Clin Appl Thromb Hemost 11:417–428

    Article  CAS  PubMed  Google Scholar 

  15. Bays H (2006) Statin safety: an overview and assessment of the data—2005. Am J Cardiol 97:6C–26C

    Article  CAS  PubMed  Google Scholar 

  16. Massberg S, Konrad I, Bültmann A, Schulz C, Münch G, Peluso M, Lorenz M, Schneider S, Besta F, Müller I, Hu B, Langer H, Kremmer E, Rudelius M, Heinzmann U, Ungerer M, Gawaz M (2004) Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J 18:397–399

    CAS  PubMed  Google Scholar 

  17. Daub K, Langer H, Seizer P, Stellos K, May AE, Goyal P, Bigalke B, Schönberger T, Geisler T, Siegel-Axel D, Oostendorp RA, Lindemann S, Gawaz M (2006) Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. FASEB J 20:2559–2561

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt R, Bültmann A, Ungerer M, Joghetaei N, Bulbul O, Thieme S, Chavakis T, Toole BP, Gawaz M, Schömig A, May AE (2006) Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction. Circulation 113:834–841

    Article  CAS  PubMed  Google Scholar 

  19. Axel DI, Frigge A, Dittmann J, Runge H, Spyridopoulos I, Riessen R, Viebahn R, Karsch KR (2001) All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells. Cardiovasc Res 49:851–862

    Article  CAS  PubMed  Google Scholar 

  20. Schönberger T, Siegel-Axel D, Bussl R, Richter S, Judenhofer MS, Haubner R, Reischl G, Klingel K, Münch G, Seizer P, Pichler BJ, Gawaz M (2008) The immunoadhesin glycoprotein VI-Fc regulates arterial remodelling after mechanical injury in ApoE−/− mice. Cardiovasc Res 80:131–137

    Article  PubMed  Google Scholar 

  21. Schulz C, Penz S, Hoffmann C, Langer H, Gillitzer A, Schneider S, Brandl R, Seidl S, Massberg S, Pichler B, Kremmer E, Stellos K, Schönberger T, Siess W, Gawaz M (2008) Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. Basic Res Cardiol 103:356–367

    Article  CAS  PubMed  Google Scholar 

  22. Brewer HB Jr (2000) The lipid-laden foam cell: an elusive target for therapeutic intervention. J Clin Invest 105:703–705

    Article  CAS  PubMed  Google Scholar 

  23. Brekke OH, Sandlie I (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2:52–62

    Article  CAS  PubMed  Google Scholar 

  24. Choudhury RP, Lee JM, Greaves DR (2005) Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med 2:309–315

    Article  CAS  PubMed  Google Scholar 

  25. Stockwin LH, Holmes S (2003) The role of therapeutic antibodies in drug discovery. Biochem Soc Trans 31:433–436

    Article  CAS  PubMed  Google Scholar 

  26. Oksjoki R, Kovanen PT, Lindstedt KA, Jansson B, Pentikainen MO (2006) OxLDL–IgG immune complexes induce survival of human monocytes. Arterioscler Thromb Vasc Biol 26:576–583

    Article  CAS  PubMed  Google Scholar 

  27. Griffith RL, Virella GT, Stevenson HC, Lopes-Virella MF (1988) Low density lipoprotein metabolism by human macrophages activated with low density lipoprotein immune complexes. A possible mechanism of foam cell formation. J Exp Med 168:1041–1059

    Article  CAS  PubMed  Google Scholar 

  28. Yuan ZY, Liu Y, Kishimoto C, Shioji K, Yokode M, Liu ZQ (2003) The Fc region of immunoglobulin suppresses atherosclerosis in apolipoprotein E knockout mice. Zhonghua Yi Xue Za Zhi 83:489–493

    CAS  PubMed  Google Scholar 

  29. Nicoletti A, Paulsson G, Caligiuri G, Zhou X, Hansson GK (2000) Induction of neonatal tolerance to oxidized lipoprotein reduces atherosclerosis in ApoE knockout mice. Mol Med 6:283–290

    CAS  PubMed  Google Scholar 

  30. Miura Y, Takahashi T, Jung SM, Moroi M (2002) Analysis of the interaction of platelet collagen receptor glycoprotein VI (GPVI) with collagen. A dimeric form of GPVI, but not the monomeric form, shows affinity to fibrous collagen. J Biol Chem 277:46197–46204

    Article  CAS  PubMed  Google Scholar 

  31. Ashkenazi A, Chamow SM (1997) Immunoadhesins as research tools and therapeutic agents. Curr Opin Immunol 9:195–200

    Article  CAS  PubMed  Google Scholar 

  32. Yung RL (2001) Etanercept Immunex. Curr Opin Investig Drugs 2:216–221

    CAS  PubMed  Google Scholar 

  33. de Beer MC, Zhao Z, Webb NR, van der Westhuyzen DR, de Villiers WJ (2003) Lack of a direct role for macrosialin in oxidized LDL metabolism. J Lipid Res 44:674–685

    Article  PubMed  Google Scholar 

  34. Rouis M (2005) Matrix metalloproteinases: a potential therapeutic target in atherosclerosis. Curr Drug Targets Cardiovasc Haematol Disord 5:541–548

    Article  CAS  PubMed  Google Scholar 

  35. Laukkanen J, Lehtolainen P, Gough PJ, Greaves DR, Gordon S, Yla-Herttuala S (2000) Adenovirus-mediated gene transfer of a secreted form of human macrophage scavenger receptor inhibits modified low-density lipoprotein degradation and foam-cell formation in macrophages. Circulation 101:1091–1096

    CAS  PubMed  Google Scholar 

  36. Jalkanen J, Leppanen P, Narvanen O, Greaves DR, Yla-Herttuala S (2003) Adenovirus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor (SR-AI) in LDL receptor knock-out mice. Atherosclerosis 169:95–103

    Article  CAS  PubMed  Google Scholar 

  37. Levine SJ (2004) Mechanisms of soluble cytokine receptor generation. J Immunol 173:5343–5348

    CAS  PubMed  Google Scholar 

  38. Rose-John S, Heinrich PC (1994) Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 300(Pt 2):281–290

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the excellent technical assistance of Jadwiga Kwiatkowska, Christina Neff, Birgit Fehrenbacher, and Barbara Proksch. We also thank Maria Lissner and Lydia Kotchoubey of the Dept. of Transfusion Medicine for providing blood samples and Richard Brandl, Vascular Surgery, Krankenhaus München-Schwabing, Germany for providing specimens of carotid atherectomies.

Funding

The study was supported by grants of the Deutsche Forschungsgemeinschaft (Graduiertenkolleg [GK 794] and [GRK 438]) to M.G., K.D. and S.P. and Transregio-SFB-19 “Inflammatorische Kardiomyopathie”) and the Bundesministerium für Bildung und Forschung (BMBF) to D.S., M.G. and C.L.). M.S. was supported by the Deutsche Forschungsgemeinschaft (Sch 897/3, SFB-773 Z2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinrad Gawaz.

Additional information

Karin Daub, Dorothea Siegel-Axel, and Tanja Schönberger shared first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daub, K., Siegel-Axel, D., Schönberger, T. et al. Inhibition of foam cell formation using a soluble CD68-Fc fusion protein. J Mol Med 88, 909–920 (2010). https://doi.org/10.1007/s00109-010-0629-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0629-y

Keywords