Abstract
Epsins are a family of adaptor proteins involved in clathrin-dependent endocytosis. In the vasculature, epsins 1 and 2 are functionally redundant members of this family that are expressed in the endothelial cells of blood vessels and the lymphatic system throughout development and adulthood. These proteins contain a number of peptide motifs that allow them to interact with lipid moieties and a variety of proteins. These interactions facilitate the regulation of a wide range of cell signaling pathways. In this review, we focus on the involvement of epsins 1 and 2 in controlling vascular endothelial growth factor receptor signaling in angiogenesis and lymphangiogenesis. We also discuss the therapeutic implications of understanding the molecular mechanisms of epsin-mediated regulation in diseases such as atherosclerosis and diabetes.



Similar content being viewed by others
References
Fischer JA, Leavell SK, Li Q (1997) Mutagenesis screens for interacting genes reveal three roles for fat facets during drosophila eye development. Dev Genet 21(2):167–174
Chen H et al (2009) Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc Natl Acad Sci USA 106(33):13838–13843
Tian X et al (2004) Epsin potentiates notch pathway activity in drosophila and C. elegans. Development 131(23):5807–5815
Sakamoto C et al (2004) Fission yeast epsin, Ent1p is required for endocytosis and involved in actin organization. Kobe J Med Sci 50(1–2):47–57
Wendland B, Steece KE, Emr SD (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO J 18(16):4383–4393
Aguilar RC et al (2006) Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins. Proc Natl Acad Sci USA 103(11):4116–4121
Chen H et al (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394(6695):793–797
Rosenthal JA et al (1999) The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J Biol Chem 274(48):33959–33965
Ko G et al (2010) Selective high-level expression of epsin 3 in gastric parietal cells, where it is localized at endocytic sites of apical canaliculi. Proc Natl Acad Sci USA 107(50):21511–21516
Chen H, De Camilli P (2005) The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin. Proc Natl Acad Sci USA 102(8):2766–2771
Ford MG et al (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419(6905):361–366
Polo S et al (2002) A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416(6879):451–455
Shih SC et al (2002) Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol 4(5):389–393
Windler SL, Bilder D (2010) Endocytic internalization routes required for delta/notch signaling. Curr Biol 20(6):538–543
Rahman HNA et al (2016) Selective targeting of a novel epsin-VEGFR2 interaction promotes VEGF-mediated angiogenesis. Circ Res 118(6):957–969
Liu X et al (2014) Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function. Sci Signal 7(347):ra97
Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173(2):206–210
Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186
Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14(1):53–65
Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478
Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307
Djonov V, Baum O, Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314(1):107–117
Kaipainen A et al (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570
Leung DW et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309
Joukov V et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15(2):290–298
Achen MG et al (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95(2):548–553
Maglione D et al (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 88(20):9267–9271
Senger DR et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985
Yla-Herttuala S et al (2007) Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 49(10):1015–1026
Carmeliet P et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439
Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442
Tammela T et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660
Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16(2):196–208
Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177
Simons M (2012) An inside view: VEGF receptor trafficking and signaling. Physiol (Bethesda) 27(4):213–222
Nakayama M et al (2013) Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15(3):249–260
McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533
Kaksonen M, Roux A (2018) Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19(5):313–326
Edeling MA et al (2006) Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev Cell 10(3):329–342
Höning S et al (2005) Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol Cell 18(5):519–531
Meyerholz A et al (2005) Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic 6(12):1225–1234
Farsad K et al (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155(2):193–200
Takei K et al (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1(1):33–39
Barouch W et al (1997) Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets. Biochemistry 36(14):4303–4308
Ungewickell E et al (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378(6557):632–635
Ballmer-Hofer K et al (2011) Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118(3):816–826
Jopling HM et al (2009) Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells. Arterioscler Thromb Vasc Biol 29(7):1119–1124
Reider A, Wendland B (2011) Endocytic adaptors–social networking at the plasma membrane. J Cell Sci 124(Pt 10):1613–1622
Frankel EB, Audhya A (2018) ESCRT-dependent cargo sorting at multivesicular endosomes. Semin Cell Dev Biol 74:4–10
Klumperman J, Raposo G (2014) The complex ultrastructure of the endolysosomal system. Cold Spring Harb Perspect Biol 6(10):a016857
Bright NA, Davis LJ, Luzio JP (2016) Endolysosomes are the principal intracellular sites of acid hydrolase activity. Curr Biol 26(17):2233–2245
Edgar JR (2016) Q and A: what are exosomes, exactly? BMC Biol 14:46
Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10(9):597–608
Clague MJ, Liu H, Urbé S (2012) Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell 23(3):457–467
Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex ESCRT-I. Cell 106(2):145–155
Christ L et al (2017) Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci 42(1):42–56
Schöneberg J et al (2017) Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol 18(1):5–17
Robinson MS (1994) The role of clathrin, adaptors and dynamin in endocytosis. Curr Opin Cell Biol 6(4):538–544
Tebar F et al (1996) Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J Biol Chem 271(46):28727–28730
Ucuzian AA et al (2010) Molecular mediators of angiogenesis. J Burn Care Res 31(1):158–175
Hellstrom M, Phng LK, Gerhardt H (2007) VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr 1(3):133–136
Ruhrberg C et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698
De Bock K, Georgiadou M, Carmeliet P (2013) Role of endothelial cell metabolism in vessel sprouting. Cell Metab 18(5):634–647
Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109(3):227–241
Neufeld G et al (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13(1):9–22
Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611
Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78(6):539–552
Parenti A et al (2002) Effect of hypoxia and endothelial loss on vascular smooth muscle cell responsiveness to VEGF-A: role of flt-1/VEGF-receptor-1. Cardiovasc Res 55(1):201–212
Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660
Van Hove AH, Benoit DS (2015) Depot-based delivery systems for pro-angiogenic peptides: a review. Front Bioeng Biotechnol 3:102
Murakami M et al (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 108(6):1849–1856
Ley CD et al (2004) Angiogenic synergy of bFGF and VEGF is antagonized by angiopoietin-2 in a modified in vivo matrigel assay. Microvasc Res 68(3):161–168
Shibuya M (2006) Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 39(5):469–478
Shibuya M (2011) Vascular endothelial growth factor (VEGF) and Its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105
Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17(10):611–625
Li X et al (2016) VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nat Commun 7:11017
Takahashi T et al (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20(11):2768–2778
Matsumoto T et al (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24(13):2342–2353
Ito N et al (1998) Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J Biol Chem 273(36):23410–23418
Horowitz A, Seerapu HR (2012) Regulation of VEGF signaling by membrane traffic. Cell Signal 24(9):1810–1820
Lampugnani MG et al (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174(4):593–604
Nakayama M, Berger P (2013) Coordination of VEGF receptor trafficking and signaling by coreceptors. Exp Cell Res 319(9):1340–1347
Tessneer KL et al (2014) Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by epsin deficiency. Arterioscler Thromb Vasc Biol 34(2):331–337
Pasula S et al (2012) Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. J Clin Invest 122(12):4424–4438
Wu H et al (2018) Epsin deficiency promotes lymphangiogenesis through regulation of VEGFR3 degradation in diabetes. J Clin Invest 128(9):4025–4043
Yuan L et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129(20):4797–4806
Potente M, Makinen T (2017) Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 18(8):477–494
Norrmén C et al (2009) FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185(3):439–457
Zhang Y et al (2018) Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Nat Commun 9(1):1296
Dong Y et al (2015) Motif mimetic of epsin perturbs tumor growth and metastasis. J Clin Invest 125(12):4349–4364
Kataru RP et al (2009) Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113(22):5650–5659
Kim H, Kataru RP, Koh GY (2012) Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol 33(7):350–356
Kim H, Kataru RP, Koh GY (2014) Inflammation-associated lymphangiogenesis: a double-edged sword? J Clin Invest 124(3):936–942
Kim KE et al (2009) Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am J Pathol 175(4):1733–1745
Lopez Gelston CA et al (2018) Enhancing Renal Lymphatic Expansion Prevents Hypertension in Mice. Circ Res 122(8):1094–1101
Lee Y et al (2018) Insulin resistance disrupts cell integrity, mitochondrial function and inflammatory signaling in lymphatic endothelium. Microcirculation 25(7):e12492
Lee Y et al (2017) Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. FASEB J 31(7):2744–2759
Garcia Nores GD et al (2016) Obesity but not high-fat diet impairs lymphatic function. Int J Obes (Lond) 40(10):1582–1590
Nitti MD et al (2016) Obesity-induced lymphatic dysfunction is reversible with weight loss. J Physiol 594(23):7073–7087
Weitman ES et al (2013) Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLoS ONE 8(8):e70703
Blum KS et al (2014) Chronic high-fat diet impairs collecting lymphatic vessel function in mice. PLoS ONE 9(4):e94713
Escobedo N et al (2016) Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight 1:2
Chakraborty A et al (2019) Vascular endothelial growth factor-D (VEGF-D) overexpression and lymphatic expansion in murine adipose tissue improves metabolism in obesity. Am J Pathol 189(4):924–939
Guo L et al (2018) CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest 128(3):1106–1124
Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241
Robinson JG et al (2009) Atherosclerosis profile and incidence of cardiovascular events: a population-based survey. BMC Cardiovasc Disord 9:46
Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 27:165–197
Moulton KS et al (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100(8):4736–4741
Rafieian-Kopaei M et al (2014) Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 5(8):927–946
Meir KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24(6):1006–1014
Emini Veseli B et al (2017) Animal models of atherosclerosis. Eur J Pharmacol 816:3–13
Brophy ML et al (2019) Myeloid-specific deletion of epsins 1 and 2 reduces atherosclerosis by preventing LRP-1 downregulation. Circ Res 124(4):e6–e19
Dong Y et al (2020) Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nat Commun 11(1):3984
Jeffcoate WJ, Harding KG (2003) Diabetic foot ulcers. Lancet 361(9368):1545–1551
Lin CT, Ou KW, Chang SC (2013) Diabetic foot ulcers combination with lower limb lymphedema treated by staged charles procedure: case report and literature review. Pak J Med Sci 29(4):1062–1064
Patel S et al (2019) Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 112:108615
Barrientos S et al (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601
Zhou K, Ma Y, Brogan MS (2015) Chronic and non-healing wounds: The story of vascular endothelial growth factor. Med Hypotheses 85(4):399–404
Warren CM et al (2014) A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Signal 7(307):ra1
Saaristo A et al (2006) Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol 169(3):1080–1087
Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476
Jeltsch M et al (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276(5317):1423–1425
Morris A (2018) Epsins as a target for wound-healing therapeutics. Nat Rev Endocrinol 14(10):566
Nishida N et al (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213–219
Itatani Y et al (2018) Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int J Mol Sci 19:4
Quinn TP et al (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci U S A 90(16):7533–7537
Millauer B et al (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72(6):835–846
Tessneer KL et al (2013) Epsin family of endocytic adaptor proteins as oncogenic regulators of cancer progression. J Can Res Updates 2(3):144–150
Coon BG et al (2011) Epsins’ novel role in cancer cell invasion. Commun Integr Biol 4(1):95–97
Coon BG et al (2010) The epsin family of endocytic adaptors promotes fibrosarcoma migration and invasion. J Biol Chem 285(43):33073–33081
Klauber-Demore N (2012) Are epsins a therapeutic target for tumor angiogenesis? J Clin Invest 122(12):4341–4343
Dong Y et al (2016) Motif mimetic of epsin perturbs tumor growth and metastasis. J Clin Invest 126(4):1607
Acknowledgements
This work was supported by NIH grants R01HL093242, R01HL146134, R01HL130845, R01HL133216, and R01HL137229 to H.C. and HL149326 to Y.L. as well as an American Heart Association Established Investigator Award to H.C. and Scientist Development Grant 17SDG334110868 to H.W.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bhattacharjee, S., Lee, Y., Zhu, B. et al. Epsins in vascular development, function and disease. Cell. Mol. Life Sci. 78, 833–842 (2021). https://doi.org/10.1007/s00018-020-03642-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-020-03642-4