Abstract
The regulators affecting skeletal tissue formation and its maintenance include a wide array of molecules with very diverse functions. More recently, sphingolipids have been added to this growing list of regulatory molecules in the skeletal tissues. Sphingolipids are integral parts of various lipid membranes present in the cells and organelles. For a long time, these macromolecules were considered as inert structural elements. This view, however, has radically changed in recent years as sphingolipids are now recognized as important second messengers for signal-transduction pathways that affect cell growth, differentiation, stress responses and programmed death. In the current review, we discuss the available data showing the roles of various sphingolipids in three different skeletal cell types—chondrocytes in cartilage and osteoblasts and osteoclasts in bone. We provide an overview of the biology of sphingomyelin phosphodiesterase 3 (SMPD3), an important regulator of sphingolipid metabolism in the skeleton. SMPD3 is localized in the plasma membrane and has been shown to cleave sphingomyelin to generate ceramide, a bioactive lipid second messenger, and phosphocholine, an essential nutrient. SMPD3 deficiency in mice impairs the mineralization in both cartilage and bone extracellular matrices leading to severe skeletal deformities. A detailed understanding of SMPD3 function may provide a novel insight on the role of sphingolipids in the skeletal tissues.




Similar content being viewed by others
References
Horton WA, Degnin CR (2009) FGFs in endochondral skeletal development. Trends Endocrinol Metab 20(7):341–348
Karsenty G (2011) Bone endocrine regulation of energy metabolism and male reproduction. C R Biol 334(10):720–724
Karsenty G (2003) The complexities of skeletal biology. Nature 423(6937):316–318
Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648
Mackie EJ, Tatarczuch L, Mirams M (2011) The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 211(2):109–121
Amano K, Hata K, Sugita A, Takigawa Y, Ono K, Wakabayashi M, Kogo M, Nishimura R, Yoneda T (2009) Sox9 family members negatively regulate maturation and calcification of chondrocytes through up-regulation of parathyroid hormone-related protein. Mol Biol Cell 20(21):4541–4551
Amizuka N, Henderson JE, Hoshi K, Warshawsky H, Ozawa H, Goltzman D, Karaplis AC (1996) Programmed cell death of chondrocytes and aberrant chondrogenesis in mice homozygous for parathyroid hormone-related peptide gene deletion. Endocrinology 137(11):5055–5067
Degnin CR, Laederich MB, Horton WA (2010) FGFs in endochondral skeletal development. J Cell Biochem 110(5):1046–1057
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754
Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764
Kozhemyakina E, Cohen T, Yao TP, Lassar AB (2009) Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol Cell Biol 29(21):5751–5762
Merrill AH Jr (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 277(29):25843–25846
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29
Nesbitt T, Fujiwara I, Thomas R, Xiao ZS, Quarles LD, Drezner MK (1999) Coordinated maturational regulation of PHEX and renal phosphate transport inhibitory activity: evidence for the pathophysiological role of PHEX in X-linked hypophosphatemia. J Bone Miner Res 14(12):2027–2035
Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16(12):1446–1465
Retting KN, Song B, Yoon BS, Lyons KM (2009) BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136(7):1093–1104
Roberts S, Narisawa S, Harmey D, Millan JL, Farquharson C (2007) Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization. J Bone Miner Res 22(4):617–627
Stewart AJ, Roberts SJ, Seawright E, Davey MG, Fleming RH, Farquharson C (2006) The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization. Bone 39(5):1000–1007
Stonich D, Su Y, Dad S, Reddy S, Mostofi Y, Russell D, Chung TDY, Hedrick NM, Rascon J, Garcia X, Sergienko E, Millan JL, Cosford N 2010 The role of PHOSPHO1 in the initiation of skeletal calcification
Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15(4):439–461
Zhou Z, Xie J, Lee D, Liu Y, Jung J, Zhou L, Xiong S, Mei L, Xiong WC (2010) Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation. Dev Cell 19(1):90–102
Aubin I, Adams CP, Opsahl S, Septier D, Bishop CE, Auge N, Salvayre R, Negre-Salvayre A, Goldberg M, Guenet JL, Poirier C (2005) A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet 37(8):803–805
Khavandgar Z, Alebrahim S, Eimar H, Tamimi F, McKee MD, Murshed M (2013) Local regulation of tooth mineralization by sphingomyelin phosphodiesterase 3. J Dent Res 92(4):358–364
Khavandgar Z, Poirier C, Clarke CJ, Li J, Wang N, McKee MD, Hannun YA, Murshed M (2011) A cell-autonomous requirement for neutral sphingomyelinase 2 in bone mineralization. J Cell Biol 194(2):277–289
Stoffel W (1999) Functional analysis of acid and neutral sphingomyelinases in vitro and in vivo. Chem Phys Lipids 102(1–2):107–121
Merrill AH Jr, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E (1997) Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142(1):208–225
Airola MV, Hannun YA (2013) Sphingolipid metabolism and neutral sphingomyelinases. Handb Exp Pharmacol 215:57–76
Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441(3):789–802
Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286(32):27855–27862
Futerman AH, Riezman H (2005) The ins and outs of sphingolipid synthesis. Trends Cell Biol 15(6):312–318
Nilsson A, Duan RD (1999) Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem Phys Lipids 102(1–2):97–105
Kirschnek S, Paris F, Weller M, Grassme H, Ferlinz K, Riehle A, Fuks Z, Kolesnick R, Gulbins E (2000) CD95-mediated apoptosis in vivo involves acid sphingomyelinase. J Biol Chem 275(35):27316–27323
Duan RD, Nyberg L, Nilsson A (1995) Alkaline sphingomyelinase activity in rat gastrointestinal tract: distribution and characteristics. Biochim Biophys Acta 1259(1):49–55
Duan RD (2006) Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim Biophys Acta 1761(3):281–291
Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98(9):2603–2614
Siskind LJ, Kolesnick RN, Colombini M (2006) Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6(3):118–125
Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, Obeid LM, Green DR (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148(5):988–1000
Olivier S, Fillet M, Malaise M, Piette J, Bours V, Merville MP, Franchimont N (2005) Sodium nitroprusside-induced osteoblast apoptosis is mediated by long chain ceramide and is decreased by raloxifene. Biochem Pharmacol 69(6):891–901
Snyder CM, Shroff EH, Liu J, Chandel NS (2009) Nitric oxide induces cell death by regulating anti-apoptotic BCL-2 family members. PLoS One 4(9):e7059
Kitajima I, Soejima Y, Takasaki I, Beppu H, Tokioka T, Maruyama I (1996) Ceramide-induced nuclear translocation of NF-kappa B is a potential mediator of the apoptotic response to TNF-alpha in murine clonal osteoblasts. Bone 19(3):263–270
Chae HJ, Chae SW, Kang JS, Bang BG, Cho SB, Park RK, So HS, Kim YK, Kim HM, Kim HR (2000) Dexamethasone suppresses tumor necrosis factor-alpha-induced apoptosis in osteoblasts: possible role for ceramide. Endocrinology 141(8):2904–2913
Hill PA, Tumber A (2010) Ceramide-induced cell death/survival in murine osteoblasts. J Endocrinol 206(2):225–233
Sabatini M, Rolland G, Leonce S, Thomas M, Lesur C, Perez V, de Nanteuil G, Bonnet J (2000) Effects of ceramide on apoptosis, proteoglycan degradation, and matrix metalloproteinase expression in rabbit articular cartilage. Biochem Biophys Res Commun 267(1):438–444
MacRae VE, Burdon T, Ahmed SF, Farquharson C (2006) Ceramide inhibition of chondrocyte proliferation and bone growth is IGF-I independent. J Endocrinol 191(2):369–377
Takeda H, Ozaki K, Yasuda H, Ishida M, Kitano S, Hanazawa S (1998) Sphingomyelinase and ceramide inhibit formation of F-actin ring in and bone resorption by rabbit mature osteoclasts. FEBS Lett 422(2):255–258
Lee SE, Chung WJ, Kwak HB, Chung CH, Kwack KB, Lee ZH, Kim HH (2001) Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem 276(52):49343–49349
Iwamoto T, Fukumoto S, Kanaoka K, Sakai E, Shibata M, Fukumoto E, Inokuchi Ji J, Takamiya K, Furukawa K, Kato Y, Mizuno A (2001) Lactosylceramide is essential for the osteoclastogenesis mediated by macrophage-colony-stimulating factor and receptor activator of nuclear factor-kappa B ligand. J Biol Chem 276(49):46031–46038
Fukumoto S, Iwamoto T, Sakai E, Yuasa K, Fukumoto E, Yamada A, Hasegawa T, Nonaka K, Kato Y (2006) Current topics in pharmacological research on bone metabolism: osteoclast differentiation regulated by glycosphingolipids. J Pharmacol Sci 100(3):195–200
Kato K, Adachi S, Matsushima-Nishiwaki R, Minamitani C, Natsume H, Katagiri Y, Hirose Y, Mizutani J, Tokuda H, Kozawa O, Otsuka T (2011) Regulation by heat shock protein 27 of osteocalcin synthesis in osteoblasts. Endocrinology 152(5):1872–1882
Kozawa O, Niwa M, Matsuno H, Tokuda H, Miwa M, Ito H, Kato K, Uematsu T (1999) Sphingosine 1-phosphate induces heat shock protein 27 via p38 mitogen-activated protein kinase activation in osteoblasts. J Bone Miner Res 14(10):1761–1767
Sato C, Iwasaki T, Kitano S, Tsunemi S, Sano H (2012) Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophys Res Commun 423(1):200–205
Liu R, Farach-Carson MC, Karin NJ (1995) Effects of sphingosine derivatives on MC3T3-E1 pre-osteoblasts: psychosine elicits release of calcium from intracellular stores. Biochem Biophys Res Commun 214(2):676–684
Lyons JM, Karin NJ (2001) A role for G protein-coupled lysophospholipid receptors in sphingolipid-induced Ca2+ signaling in MC3T3-E1 osteoblastic cells. J Bone Miner Res 16(11):2035–2042
Grey A, Chen Q, Callon K, Xu X, Reid IR, Cornish J (2002) The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. Endocrinology 143(12):4755–4763
Roelofsen T, Akkers R, Beumer W, Apotheker M, Steeghs I, van de Ven J, Gelderblom C, Garritsen A, Dechering K (2008) Sphingosine-1-phosphate acts as a developmental stage specific inhibitor of platelet-derived growth factor-induced chemotaxis of osteoblasts. J Cell Biochem 105(4):1128–1138
Quint P, Ruan M, Pederson L, Kassem M, Westendorf JJ, Khosla S, Oursler MJ (2013) Sphingosine 1-phosphate (S1P) receptors 1 and 2 coordinately induce mesenchymal cell migration through S1P activation of complementary kinase pathways. J Biol Chem 288(8):5398–5406
Kim MK, Lee HY, Kwak JY, Park JI, Yun J, Bae YS (2006) Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation. Biochem Biophys Res Commun 345(1):67–73
Masuko K, Murata M, Beppu M, Nakamura H, Kato T, Yudoh K (2012) Sphingosine-1-phosphate modulates expression of vascular endothelial growth factor in human articular chondrocytes: a possible new role in arthritis. Int J Rheum Dis 15(4):366–373
Masuko K, Murata M, Nakamura H, Yudoh K, Nishioka K, Kato T (2007) Sphingosine-1-phosphate attenuates proteoglycan aggrecan expression via production of prostaglandin E2 from human articular chondrocytes. BMC Musculoskelet Disord 8:29
Ishii M (1831) Kikuta J 2013 Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis. Biochim Biophys Acta 1:223–227
Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Luth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, Horne WC, Baron R (2013) Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest 123(2):666–681
Keller J, Catala-Lehnen P, Huebner AK, Jeschke A, Heckt T, Lueth A, Krause M, Koehne T, Albers J, Schulze J, Schilling S, Haberland M, Denninger H, Neven M, Hermans-Borgmeyer I, Streichert T, Breer S, Barvencik F, Levkau B, Rathkolb B, Wolf E, Calzada-Wack J, Neff F, Gailus-Durner V, Fuchs H, de Angelis MH, Klutmann S, Tsourdi E, Hofbauer LC, Kleuser B, Chun J, Schinke T, Amling M (2014) Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. Nat Commun 21(5), p 5215
Guenet JL, Stanescu R, Maroteaux P, Stanescu V (1981) Fragilitas ossium: a new autosomal recessive mutation in the mouse. J Hered 72(6):440–441
Stoffel W, Jenke B, Block B, Zumbansen M, Koebke J (2005) Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci USA 102(12):4554–4559
Stoffel W, Jenke B, Holz B, Binczek E, Gunter RH, Knifka J, Koebke J, Niehoff A (2007) Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. Am J Pathol 171(1):153–161
Hannun YA, Obeid LM (2002) The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277(29):25847–25850
Li Z, Wu G, Sher RB, Khavandgar Z, Hermansson M, Cox GA, Doschak MR, Murshed M, Beier F, Vance DE (2014) Choline kinase beta is required for normal endochondral bone formation. Biochim Biophys Acta 1840(7):2112–2122
Kakoi H, Maeda S, Shinohara N, Matsuyama K, Imamura K, Kawamura I, Nagano S, Setoguchi T, Yokouchi M, Ishidou Y, Komiya S (2014) Bone morphogenic protein (BMP) signaling up-regulates neutral sphingomyelinase 2 to suppress chondrocyte maturation via the Akt protein signaling pathway as a negative feedback mechanism. J Biol Chem 289(12):8135–8150
Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5(3):167–179
Yadav MC, Simao AM, Narisawa S, Huesa C, McKee MD, Farquharson C, Millan JL (2011) Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 26(2):286–297
Brophy PJ, Choy PC, Toone JR, Vance DE (1977) Choline kinase and ethanolamine kinase are separate, soluble enzymes in rat liver. Eur J Biochem 78(2):491–495
Gallego-Ortega D, Ramirez de Molina A, Ramos MA, Valdes-Mora F, Barderas MG, Sarmentero-Estrada J, Lacal JC (2009) Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment. PLoS One 4(11):e7819
Anderson HC (2003) Matrix vesicles and calcification. Curr Rheumatol Rep 5(3):222–226
Wu LN, Genge BR, Kang MW, Arsenault AL, Wuthier RE (2002) Changes in phospholipid extractability and composition accompany mineralization of chicken growth plate cartilage matrix vesicles. J Biol Chem 277(7):5126–5133
Mebarek S, Abousalham A, Magne D, le Do D, Bandorowicz-Pikula J, Pikula S, Buchet R (2013) Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 14(3):5036–5129
Coleman RM, Aguilera L, Quinones L, Lukashova L, Poirier C, Boskey A (2012) Comparison of bone tissue properties in mouse models with collagenous and non-collagenous genetic mutations using FTIRI. Bone 51(5):920–928
Lipina C, Hundal HS (2011) Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia 54(7):1596–1607
Samad F, Badeanlou L, Shah C, Yang G (2011) Adipose tissue and ceramide biosynthesis in the pathogenesis of obesity. Adv Exp Med Biol 721:67–86
Yang G, Badeanlou L, Bielawski J, Roberts AJ, Hannun YA, Samad F (2009) Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am J Physiol Endocrinol Metab 297(1):E211–E224
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khavandgar, Z., Murshed, M. Sphingolipid metabolism and its role in the skeletal tissues. Cell. Mol. Life Sci. 72, 959–969 (2015). https://doi.org/10.1007/s00018-014-1778-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-014-1778-x