Skip to main content

Advertisement

Log in

Interferon regulatory factor 3 in adaptive immune responses

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Interferon regulatory factor (IRF) 3 plays a key role in innate responses against viruses. Indeed, activation of this transcription factor triggers the expression of type I interferons and downstream interferon-stimulated genes in infected cells. Recent evidences indicate that this pathway also modulates adaptive immune responses. This review focuses on the different mechanisms that are implicated in this process. We discuss the role of IRF3 within antigen-presenting cells and T lymphocytes in the polarization of the cellular immune response and its implication in the pathogenesis of immune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Au WC, Moore PA, Lowther W, Juang YT, Pitha PM (1995) Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc Natl Acad Sci USA 92(25):11657–11661

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6(9):644–658

    PubMed  CAS  Google Scholar 

  3. Honda K, Takaoka A, Taniguchi T (2006) Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 25(3):349–360

    PubMed  CAS  Google Scholar 

  4. Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlradt PF, Sato S, Hoshino K, Akira S (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167(10):5887–5894

    PubMed  CAS  Google Scholar 

  5. Doyle S, Vaidya S, O’Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G (2002) IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17(3):251–263

    PubMed  CAS  Google Scholar 

  6. Kumar KP, McBride KM, Weaver BK, Dingwall C, Reich NC (2000) Regulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1. Mol Cell Biol 20(11):4159–4168

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584

    PubMed  CAS  Google Scholar 

  8. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4(5):491–496

    PubMed  CAS  Google Scholar 

  9. McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 101(1):233–238

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Servant MJ, Grandvaux N, Hiscott J (2002) Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 64(5–6):985–992

    PubMed  CAS  Google Scholar 

  11. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737

    PubMed  CAS  Google Scholar 

  12. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23(1):19–28

    PubMed  CAS  Google Scholar 

  13. Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H, Takeuchi O, Akira S, Way M, Schiavo G, Reis e Sousa CR (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83(20):10761–10769

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Deddouche S, Goubau D, Rehwinkel J, Chakravarty P, Begum S, Maillard PV, Borg A, Matthews N, Feng Q, van Kuppeveld FJ, Reis e Sousa CR (2014) Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. Elife 3:e01535. doi:10.7554/eLife.01535.:e01535

    PubMed  PubMed Central  Google Scholar 

  15. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988

    PubMed  CAS  Google Scholar 

  16. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172

    PubMed  CAS  Google Scholar 

  17. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122(5):669–682

    PubMed  CAS  Google Scholar 

  18. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19(6):727–740

    PubMed  CAS  Google Scholar 

  19. Zhang SY, Herman M, Ciancanelli MJ, Perez DD, Sancho-Shimizu V, Abel L, Casanova JL (2013) TLR3 immunity to infection in mice and humans. Curr Opin Immunol 25(1):19–33

    PubMed  PubMed Central  Google Scholar 

  20. Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Hacker G, Mann M, Karin M (2006) Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439(7073):204–207

    PubMed  Google Scholar 

  21. Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, Hogaboam CM, Kunkel SL (2008) TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 205(11):2609–2621

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Aksoy E, Taboubi S, Torres D, Delbauve S, Hachani A, Whitehead MA, Pearce WP, Berenjeno IM, Nock G, Filloux A, Beyaert R, Flamand V, Vanhaesebroeck B (2012) The p110delta isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat Immunol 13(11):1045–1054

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC (2011) CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147(4):868–880

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H, Sato S, Yamamoto M, Uematsu S, Kawai T, Takeuchi O, Akira S (2006) A toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 7(1):40–48

    PubMed  CAS  Google Scholar 

  25. Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24(1):93–103

    PubMed  CAS  Google Scholar 

  26. Paludan SR, Bowie AG (2013) Immune sensing of DNA. Immunity 38(5):870–880

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K, Ohba Y, Taniguchi T (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152):501–505

    PubMed  CAS  Google Scholar 

  28. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12(10):959–965

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS, Zaver SA, Schenk M, Zeng S, Zhong W, Liu ZJ, Modlin RL, Liu YJ, Cheng G (2012) The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13(12):1155–1161

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, Fitzgerald KA, Paludan SR, Bowie AG (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11(11):997–1004

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792

    PubMed  CAS  Google Scholar 

  32. Tanaka Y, Chen ZJ (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5(214):ra20

    PubMed  PubMed Central  Google Scholar 

  33. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478(7370):515–518

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791

    PubMed  CAS  Google Scholar 

  35. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP–AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121):826–830

    PubMed  CAS  Google Scholar 

  36. Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E, Hornung V (2013) Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503(7477):530–534

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Bhat N, Fitzgerald KA (2014) Recognition of cytosolic DNA by cGAS and other STING-dependent sensors. Eur J Immunol 44(3):634–640

    PubMed  CAS  Google Scholar 

  38. Yang P, An H, Liu X, Wen M, Zheng Y, Rui Y, Cao X (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11(6):487–494

    PubMed  CAS  Google Scholar 

  39. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D (2000) Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103(4):667–678

    PubMed  CAS  Google Scholar 

  40. Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, Taniguchi T (2005) Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434(7036):1035–1040

    PubMed  CAS  Google Scholar 

  41. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004) Interferon-alpha induction through toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5(10):1061–1068

    PubMed  CAS  Google Scholar 

  42. Oganesyan G, Saha SK, Pietras EM, Guo B, Miyahira AK, Zarnegar B, Cheng G (2008) IRF3-dependent type I interferon response in B cells regulates CpG-mediated antibody production. J Biol Chem 283(2):802–808

    PubMed  CAS  Google Scholar 

  43. Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C, Doty KR, Black JC, Hoffmann A, Carey M, Smale ST (2009) A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138(1):114–128

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D, Trombetta JJ, Gennert D, Gnirke A, Goren A, Hacohen N, Levin JZ, Park H, Regev A (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498(7453):236–240

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Goriely S, Molle C, Nguyen M, Albarani V, Ouled HN, Lin R, De Wit D, Flamand V, Willems F, Goldman M (2006) Interferon regulatory factor 3 is involved in Toll like receptor(TLR)4- and TLR3-induced IL-12p35 gene activation. Blood 107(3):1078–1084

    PubMed  CAS  Google Scholar 

  46. Molle C, Nguyen M, Flamand V, Renneson J, Trottein F, De Wit D, Willems F, Goldman M, Goriely S (2007) IL-27 synthesis induced by TLR ligation critically depends on IFN regulatory factor 3. J Immunol 178:7607–7615

    PubMed  CAS  Google Scholar 

  47. Remoli ME, Gafa V, Giacomini E, Severa M, Lande R, Coccia EM (2007) IFN-beta modulates the response to TLR stimulation in human DC: involvement of IFN regulatory factor-1 (IRF-1) in IL-27 gene expression. Eur J Immunol 37(12):3499–3508

    PubMed  CAS  Google Scholar 

  48. Molle C, Goldman M, Goriely S (2010) Critical role of the IFN-stimulated gene factor 3 complex in TLR-mediated IL-27p28 gene expression revealing a two-step activation process. J Immunol 184(4):1784–1792

    PubMed  CAS  Google Scholar 

  49. Koshiba R, Yanai H, Matsuda A, Goto A, Nakajima A, Negishi H, Nishio J, Smale ST, Taniguchi T (2013) Regulation of cooperative function of the Il12b enhancer and promoter by the interferon regulatory factors 3 and 5. Biochem Biophys Res Commun 430(1):95–100

    PubMed  CAS  Google Scholar 

  50. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Teige I, Treschow A, Teige A, Mattsson R, Navikas V, Leanderson T, Holmdahl R, Issazadeh-Navikas S (2003) IFN-beta gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J Immunol 170(9):4776–4784

    PubMed  CAS  Google Scholar 

  52. Guo B, Chang EY, Cheng G (2008) The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118(5):1680–1690

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B (2006) Cutting edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol 177(11):7505–7509

    PubMed  CAS  Google Scholar 

  54. Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J, Lang R, Martin R, Gold R, Becher B, Bruck W, Kalinke U (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28(5):675–686

    PubMed  CAS  Google Scholar 

  55. Inoue M, Williams KL, Oliver T, Vandenabeele P, Rajan JV, Miao EA, Shinohara ML (2012) Interferon-beta therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci Signal 5(225):ra38

    PubMed  PubMed Central  Google Scholar 

  56. Shinohara ML, Kim JH, Garcia VA, Cantor H (2008) Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29(1):68–78

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Fitzgerald DC, Fonseca-Kelly Z, Cullimore ML, Safabakhsh P, Saris CJ, Zhang GX, Rostami A (2013) Independent and interdependent immunoregulatory effects of IL-27, IFN-beta, and IL-10 in the suppression of human Th17 cells and murine experimental autoimmune encephalomyelitis. J Immunol 190(7):3225–3234

    PubMed  CAS  Google Scholar 

  58. Negishi H, Yanai H, Nakajima A, Koshiba R, Atarashi K, Matsuda A, Matsuki K, Miki S, Doi T, Aderem A, Nishio J, Smale ST, Honda K, Taniguchi T (2012) Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat Immunol 13(7):659–666

    PubMed  CAS  Google Scholar 

  59. Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF (2001) Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14(4):461–470

    PubMed  Google Scholar 

  60. Cucak H, Yrlid U, Reizis B, Kalinke U, Johansson-Lindbom B (2009) Type I interferon signaling in dendritic cells stimulates the development of lymph-node-resident T follicular helper cells. Immunity 31(3):491–501

    PubMed  CAS  Google Scholar 

  61. Marichal T, Bedoret D, Mesnil C, Pichavant M, Goriely S, Trottein F, Cataldo D, Goldman M, Lekeux P, Bureau F, Desmet CJ (2010) Interferon response factor 3 is essential for house dust mite-induced airway allergy. J Allergy Clin Immunol 126(4):836–844

    PubMed  CAS  Google Scholar 

  62. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, Lekeux P, Coban C, Akira S, Ishii KJ, Bureau F, Desmet CJ (2011) DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17(8):996–1002

    PubMed  CAS  Google Scholar 

  63. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, Murthy N, Kepler TB, Malissen B, Pulendran B (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11(7):608–617

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, Borrow P, Tough DF (2003) Cross-priming of CD8 + T cells stimulated by virus-induced type I interferon. Nat Immunol 4(10):1009–1015

    PubMed  Google Scholar 

  65. Lorenzi S, Mattei F, Sistigu A, Bracci L, Spadaro F, Sanchez M, Spada M, Belardelli F, Gabriele L, Schiavoni G (2011) Type I IFNs control antigen retention and survival of CD8alpha(+) dendritic cells after uptake of tumor apoptotic cells leading to cross-priming. J Immunol 186(9):5142–5150

    PubMed  CAS  Google Scholar 

  66. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljestrom P, Reis e Sousa CR (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433(7028):887–892

    PubMed  CAS  Google Scholar 

  67. Kumar H, Koyama S, Ishii KJ, Kawai T, Akira S (2008) Cutting edge: cooperation of IPS-1- and TRIF-dependent pathways in poly IC-enhanced antibody production and cytotoxic T cell responses. J Immunol 180(2):683–687

    PubMed  CAS  Google Scholar 

  68. Azuma M, Ebihara T, Oshiumi H, Matsumoto M, Seya T (2012) Cross-priming for antitumor CTL induced by soluble Ag + polyI: C depends on the TICAM-1 pathway in mouse CD11c(+)/CD8alpha(+) dendritic cells. Oncoimmunology 1(5):581–592

    PubMed  PubMed Central  Google Scholar 

  69. Nierkens S, den Brok MH, Garcia Z, Togher S, Wagenaars J, Wassink M, Boon L, Ruers TJ, Figdor CG, Schoenberger SP, Adema GJ, Janssen EM (2011) Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells. Cancer Res 71(20):6428–6437

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K (2005) Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med 202(5):637–650

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF (2005) Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174(8):4465–4469

    PubMed  CAS  Google Scholar 

  72. Agarwal P, Raghavan A, Nandiwada SL, Curtsinger JM, Bohjanen PR, Mueller DL, Mescher MF (2009) Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J Immunol 183(3):1695–1704

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32(1):79–90

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Le Bon A, Durand V, Kamphuis E, Thompson C, Bulfone-Paus S, Rossmann C, Kalinke U, Tough DF (2006) Direct stimulation of T cells by type I IFN enhances the CD8 + T cell response during cross-priming. J Immunol 176(8):4682–4689

    PubMed  Google Scholar 

  75. Sareneva T, Julkunen I, Matikainen S (2000) IFN-alpha and IL-12 induce IL-18 receptor gene expression in human NK and T cells. J Immunol 165(4):1933–1938

    PubMed  CAS  Google Scholar 

  76. Starbeck-Miller GR, Xue HH, Harty JT (2014) IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. J Exp Med 211(1):105–120

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Wiesel M, Crouse J, Bedenikovic G, Sutherland A, Joller N, Oxenius A (2012) Type-I IFN drives the differentiation of short-lived effector CD8 + T cells in vivo. Eur J Immunol 42(2):320–329

    PubMed  CAS  Google Scholar 

  78. Xiao Z, Casey KA, Jameson SC, Curtsinger JM, Mescher MF (2009) Programming for CD8 T cell memory development requires IL-12 or type I IFN. J Immunol 182(5):2786–2794

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Carrero JA, Calderon B, Unanue ER (2004) Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med 200(4):535–540

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Archer KA, Durack J, Portnoy DA (2014) STING-dependent type I IFN production inhibits cell-mediated immunity to Listeria monocytogenes. PLoS Pathog 10(1):e1003861

    PubMed  PubMed Central  Google Scholar 

  81. Kohlmeier JE, Cookenham T, Roberts AD, Miller SC, Woodland DL (2010) Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 33(1):96–105

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Marshall HD, Prince AL, Berg LJ, Welsh RM (2010) IFN-alpha beta and self-MHC divert CD8 T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. J Immunol 185(3):1419–1428

    PubMed  CAS  PubMed Central  Google Scholar 

  83. McNally JM, Zarozinski CC, Lin MY, Brehm MA, Chen HD, Welsh RM (2001) Attrition of bystander CD8 T cells during virus-induced T-cell and interferon responses. J Virol 75(13):5965–5976

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Kaser A, Nagata S, Tilg H (1999) Interferon alpha augments activation-induced T cell death by upregulation of Fas (CD95/APO-1) and Fas ligand expression. Cytokine 11(10):736–743

    PubMed  CAS  Google Scholar 

  85. Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, Cheng G, Aronow BJ, Karp CL, Brooks DG (2013) Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340(6129):202–207

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, Welch M, Schreiber RD, de la Torre JC, Oldstone MB (2013) Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340(6129):207–211

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Kano S, Sato K, Morishita Y, Vollstedt S, Kim S, Bishop K, Honda K, Kubo M, Taniguchi T (2008) The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4 + T cells. Nat Immunol 9(1):34–41

    PubMed  CAS  Google Scholar 

  88. Rengarajan J, Mowen KA, McBride KD, Smith ED, Singh H, Glimcher LH (2002) Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J Exp Med 195(8):1003–1012

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Lohoff M, Mittrucker HW, Prechtl S, Bischof S, Sommer F, Kock S, Ferrick DA, Duncan GS, Gessner A, Mak TW (2002) Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc Natl Acad Sci USA 99(18):11808–11812

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Huber M, Heink S, Pagenstecher A, Reinhard K, Ritter J, Visekruna A, Guralnik A, Bollig N, Jeltsch K, Heinemann C, Wittmann E, Buch T, Prazeres DC, Brustle A, Brenner D, Mak TW, Mittrucker HW, Tackenberg B, Kamradt T, Lohoff M (2013) IL-17A secretion by CD8 + T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest 123(1):247–260

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Chen Q, Yang W, Gupta S, Biswas P, Smith P, Bhagat G, Pernis AB (2008) IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29(6):899–911

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33(2):192–202

    PubMed  CAS  Google Scholar 

  93. Bollig N, Brustle A, Kellner K, Ackermann W, Abass E, Raifer H, Camara B, Brendel C, Giel G, Bothur E, Huber M, Paul C, Elli A, Kroczek RA, Nurieva R, Dong C, Jacob R, Mak TW, Lohoff M (2012) Transcription factor IRF4 determines germinal center formation through follicular T-helper cell differentiation. Proc Natl Acad Sci USA 109(22):8664–8669

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, Corcoran L, Treuting P, Klein U, Rudensky AY (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458(7236):351–356

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Yao S, Buzo BF, Pham D, Jiang L, Taparowsky EJ, Kaplan MH, Sun J (2013) Interferon regulatory factor 4 sustains CD8(+) T cell expansion and effector differentiation. Immunity 39(5):833–845

    PubMed  CAS  Google Scholar 

  96. Ouyang X, Zhang R, Yang J, Li Q, Qin L, Zhu C, Liu J, Ning H, Shin MS, Gupta M, Qi CF, He JC, Lira SA, Morse HC III, Ozato K, Mayer L, Xiong H (2011) Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation. Nat Commun 2:314

    PubMed  PubMed Central  Google Scholar 

  97. Ysebrant DL, Tonon S, Nguyen M, Vandevenne P, Welsby I, Martinet V, Molle C, Charbonnier LM, Leo O, Goriely S (2013) Interferon regulatory factor 3 controls interleukin-17 expression in CD8 T lymphocytes. Proc Natl Acad Sci USA 110(34):E3189–E3197

    Google Scholar 

  98. Chattopadhyay S, Marques JT, Yamashita M, Peters KL, Smith K, Desai A, Williams BR, Sen GC (2010) Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J 29(10):1762–1773

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Di Paolo NC, Doronin K, Baldwin LK, Papayannopoulou T, Shayakhmetov DM (2013) The transcription factor IRF3 triggers “defensive suicide” necrosis in response to viral and bacterial pathogens. Cell Rep 3(6):1840–1846

    PubMed  PubMed Central  Google Scholar 

  100. Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L (2013) Trial watch: toll-like receptor agonists for cancer therapy. Oncoimmunology 2(8):e25238

    PubMed  PubMed Central  Google Scholar 

  101. Ebensen T, Libanova R, Schulze K, Yevsa T, Morr M, Guzman CA (2011) Bis-(3′,5′)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 29(32):5210–5220

    PubMed  CAS  Google Scholar 

  102. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316(5831):1628–1632

    PubMed  CAS  Google Scholar 

  103. Garcon N, Van Mechelen M (2011) Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 10(4):471–486

    PubMed  Google Scholar 

  104. Akahoshi M, Nakashima H, Sadanaga A, Miyake K, Obara K, Tamari M, Hirota T, Matsuda A, Shirakawa T (2008) Promoter polymorphisms in the IRF3 gene confer protection against systemic lupus erythematosus. Lupus 17(6):568–574

    PubMed  CAS  Google Scholar 

  105. Martin-Antonio B, Suarez-Lledo M, Arroyes M, Fernandez-Aviles F, Martinez C, Rovira M, Espigado I, Gallardo D, Bosch A, Buno I, Martinez-Laperche C, Jimenez-Velasco A, de la CR, Brunet S, Nieto JB, Urbano-Ispizua A (2013) A variant in IRF3 impacts on the clinical outcome of AML patients submitted to Allo-SCT. Bone Marrow Transpl 48(9): 1205–1211

Download references

Acknowledgments

This work has been funded by a grant from the government of the Walloon Region and GlaxoSmithKline Biologicals. VM and SG are supported by the Fonds National de la Recherche Scientifique (FRS-FNRS, Belgium) and an Interuniversity Attraction Pole of the Belgian Federal Science Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislas Goriely.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ysebrant de Lendonck, L., Martinet, V. & Goriely, S. Interferon regulatory factor 3 in adaptive immune responses. Cell. Mol. Life Sci. 71, 3873–3883 (2014). https://doi.org/10.1007/s00018-014-1653-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1653-9

Keywords

Navigation