Skip to main content

Advertisement

FBI-1 functions as a novel AR co-repressor in prostate cancer cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The pro-oncogene FBI-1, encoded by Zbtb7a, is a transcriptional repressor that belongs to the POK (POZ/BTB and Krüppel) protein family. In this study, we investigated a potential interaction between androgen receptor (AR) signaling and FBI-1 and demonstrated that overexpression of FBI-1 inhibited ligand-dependent AR activation. A protein–protein interaction was identified between FBI-1 and AR in a ligand-dependent manner. Furthermore, FBI-1, AR and SMRT formed a ternary complex and FBI-1 enhanced the recruitment of NCoR and SMRT to endogenous PSA upstream sequences. Our data also indicated that the FBI-1-mediated inhibition of AR transcriptional activity is partially dependent on HDAC. Interestingly, FBI-1 plays distinct roles in regulating LNCaP (androgen-dependent) and PC-3 cell (androgen-independent) proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486

    Article  CAS  PubMed  Google Scholar 

  2. White R, Parker MG (1998) Molecular mechanisms of steroid hormone action. Endocr Relat Cancer 5:1–14

    Article  CAS  Google Scholar 

  3. Lavery DN, McEwan IJ (2006) The human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics. Biochem Soc Trans 34:1054–1057

    Article  CAS  PubMed  Google Scholar 

  4. Gelmann EP (2002) Molecular biology of the androgen receptor. J Clin Oncol 20:3001–3015

    Article  CAS  PubMed  Google Scholar 

  5. Chen G, Nomura M, Morinaga H, Matsubara E, Okabe T, Goto K, Yanase T, Zheng H, Lu J, Nawata H (2005) Modulation of androgen receptor transactivation by FoxH1, a newly identified androgen receptor corepressor. J Biol Chem 280:36355–36363

    Article  CAS  PubMed  Google Scholar 

  6. Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23:175–200

    Article  CAS  PubMed  Google Scholar 

  7. Maeda T, Hobbs RM, Pandolfi PP (2005) The transcription factor Pokemon: a new key player in caner pathogenesis. Cancer Res 65:8575–8578

    Article  CAS  PubMed  Google Scholar 

  8. Koh DI, Choi WI, Jeon BN, Lee CE, Yun CE, Hur MW (2009) A novel POK family transcription factor, ZBTB5, represses transcription of p21CIP1 gene. J Biol Chem 284:19856–19866

    Article  CAS  PubMed  Google Scholar 

  9. Lee DK, Suh D, Edenberg HJ, Hur MW (2002) POZ domain transcription factor, FBI-1, repress transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of SP1. J Biol Chem 277:26761–26768

    Article  CAS  PubMed  Google Scholar 

  10. Maeda T, Merghoub T, Hobbs RM, Dong L, Maeda M, Zakrzewski J, van den Brink MR, Zelent A, Shigematsu H, Akashi K (2007) Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 316:860–866

    Article  CAS  PubMed  Google Scholar 

  11. Maeda T, Hobbs RM, Merghoub T, Guernah I, Zelent A, Cardon-Cardo C, Teruya-Feldstein J, Pandolfi PP (2005) Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature 433:278–285

    Article  CAS  PubMed  Google Scholar 

  12. Jeon BN, Yoo JY, Choi WI, Lee CE, Yoon HG, Hur MW (2008) Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors. J Biol Chem 283:33199–33210

    Article  CAS  PubMed  Google Scholar 

  13. Choi WI, Jeon BN, Park H, Yoo JY, Kim YS, Koh DI, Kim MH, Kim YR, Lee CE, Kim KS (2008) Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN). J Biol Chem 283:29341–29354

    Article  CAS  PubMed  Google Scholar 

  14. Cleutjens KB, van der Korput HA, van Eekelen CC, van Rooij HC, Faber PW, Trapman J (1997) An androgen response element in a far upstream enhancer region is essential for high androgen regulated activity of the prostate specific antigen promoter. Mol Endocrinol 11:148–161

    Article  CAS  PubMed  Google Scholar 

  15. Yu C, Markan K, Temple KA, Deplewski D, Brady MJ, Cohen RN (2005) The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor γ transcriptional activity and repress 3T3-L1 adipogenesis. J Biol Chem 280:13600–13605

    Article  CAS  PubMed  Google Scholar 

  16. Yoon HG, Wong J (2006) The corepressors silencing mediator of retinoid and thyroid hormone receptor and nuclear receptor corepressor are involved in agonist and antagonist regulated transcription by androgen receptor. Mol Endocrinol 20:1048–1060

    Article  CAS  PubMed  Google Scholar 

  17. Shang Y, Myers M, Brown M (2002) Formation of the androgen receptor transcription complex. Mol Cell 9:601–610

    Article  CAS  PubMed  Google Scholar 

  18. Louie MC, Yang HQ, Ma AH, Xu W, Zou JX, Kung HJ, Chen HW (2003) Androgen-induced recruitment of RNA polymerase II to a nuclear receptor p160 coactivator complex. Proc Natl Acad Sci USA 100:2226–2230

    Article  CAS  PubMed  Google Scholar 

  19. Huynh KD, Bardwell VJ (1998) The BCL-6 POZ domain and other POZ domains interact with the co-repressors NCoR and SMRT. Oncogene 17:2473–2484

    Article  CAS  PubMed  Google Scholar 

  20. Ma QP, Fu W, Li PF, Nicosia SV, Jenster G, Zhang XH, Bai WL (2009) FoxO1 Mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment. Mol Endocrinol 23:213–215

    Article  CAS  PubMed  Google Scholar 

  21. Choi WI, Jeon BN, Kim PH, Kim SE, Choi KY, Kim SH, Hur MW (2009) Proto-oncogene FBI-1 represses transcription of p21CIP1 by inhibition of transcription activation by p53 and Sp1. J Biol Chem 284:12633–12644

    Article  CAS  PubMed  Google Scholar 

  22. Han X, JH GUO, Deng WW, Zhang CY, Du P, Shi TP, Ma DL (2008) High-throughput cell based screening reveals a role for ZNF131 as a repressor of ER alpha signaling. BMC Genomics 9:476–485

    Article  PubMed  Google Scholar 

  23. Jiang F, Wang Z (2004) Identification and characterization of PLZF as a prostatic androgen responsive gene. Prostate 59:426–435

    Article  CAS  PubMed  Google Scholar 

  24. Pike J, Holmes D, Kamalati T, Davies D, Tolhurst R, Mazhar D, Fishpool S, Jehani R, Waxman J, Zelent A, Lemoine NR, Ali S, Buluwela L (2004) Silencing of androgen regulated genes using a fusion of AR with the PLZF transcriptional repressor. Oncogene 23:7561–7570

    Article  CAS  PubMed  Google Scholar 

  25. Burd CJ, Morey LM, Knudsen KE (2006) Androgen receptor corepressors and prostate cancer. Endocr Relat Cancer 13:979–994

    Article  CAS  PubMed  Google Scholar 

  26. Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28:778–808

    Article  CAS  PubMed  Google Scholar 

  27. Guenther MG, Barak O, Lazar MA (2001) The SMRT and NCoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21:6091–6101

    Article  CAS  PubMed  Google Scholar 

  28. Hodgson MC, Astapova I, Cheng S, Lee LJ, Verhoeven MC, Choi E, Balk SP, Hollenberg AN (2005) The androgen receptor recruits nuclear receptor corepressor (NCoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists. J Biol Chem 280:6511–6519

    Article  CAS  PubMed  Google Scholar 

  29. Laudes M, Bilkovski R, Oberhauser F, Droste A, Gomolka M, Lesser U, Udelhoven M, Krone W (2008) Transcription factor FBI-1 acts as a dual regulator in adipogenesis by coordinated regulation of cyclin-A and E2F-4. J Mol Med 86:597–608

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto A, Hashimoto Y, Kohri K, Ogata E, Kato S, Ikeda K, Nakanishi M (2000) Cyclin E as a coactivator of the androgen receptor. J Cell Biol 150:873–880

    Article  CAS  PubMed  Google Scholar 

  31. Lim JT, Mansukhani M, Weinstein IB (2005) Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells. Proc Natl Acad Sci USA 102:5156–51561

    Article  CAS  PubMed  Google Scholar 

  32. Fan WQ, Yanase T, Morinaga H, Okabe T, Nomura M, Daitoku H, Fukamizu A, Kato S, Takayanagi R, Nawata H (2007) Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J Biol Chem 282:7329–7338

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Y, Chen WL, Ma WL, Chang C, Ou JH (2007) Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein. Virology 363:454–461

    Article  CAS  PubMed  Google Scholar 

  34. Petre CE, Wetherill YB, Danielsen M, Knudsen KE (2002) Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J Biol Chem 277:2207–2215

    Article  CAS  PubMed  Google Scholar 

  35. Petre CE, Williams EB, Burd CJ, Gladden A, Moghadam H, Meller J, Diehl JA, Knudsen KE (2005) A central domain of cyclin D1 mediates nuclear receptor corepressor activity. Oncogene 24:431–444

    Article  Google Scholar 

  36. Chen SY, Cai C, Fisher CJ, Zheng Z, Omwancha J, Hsieh CL, Shemshedini L (2006) c-Jun enhancement of androgen receptor transactivation is associated with prostate cancer cell proliferation. Oncogene 25:7212–7223

    Article  CAS  PubMed  Google Scholar 

  37. Chiu YT, Han HY, Leung SC, Yuen HF, Chau CW, Guo ZY, Qiu Y, Chan KW, Wang XH, Wong YC (2009) CDC25A functions as a novel AR corepressor in prostate cancer cells. J Mol Biol 385:446–456

    Article  CAS  PubMed  Google Scholar 

  38. Jiang F, Wang Z (2004) Identification and characterization of PLZF as a prostatic androgen-responsive gene. Prostate 59:426–435

    Article  CAS  PubMed  Google Scholar 

  39. Pienta CJ, Bradley D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45

    Article  Google Scholar 

  40. Pienta CJ, Bradley D (2006) Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 12:1665–1671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Glass for kindly providing FLAG-NCoR and FLAG-SMRT. This work was supported by the grant from the National Natural Science Foundation of China (No. 30772001 and No. 30671927) and Beijing Municipal Natural Science Foundation (No. 7102126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanfu Zhang or Hongbin Song.

Additional information

J. Cui, Y. Yang and C. Zhang were contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, J., Yang, Y., Zhang, C. et al. FBI-1 functions as a novel AR co-repressor in prostate cancer cells. Cell. Mol. Life Sci. 68, 1091–1103 (2011). https://doi.org/10.1007/s00018-010-0511-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0511-7

Keywords