Abstract
The exquisite specificity of monoclonal antibodies (MAb) has long provided the potential for creating new reagents for the in vivo delivery of therapeutic drugs or toxins to defined cellular target sites or improved methods of diagnosis. However, many difficulties associated with their production, affinity, specificity, and use in vivo have largely confined their application to research or in vitro diagnostics. This situation is beginning to change with the recent developments in the applied molecular techniques that allow the engineering of the genes that encode antibodies rather than the manipulation of the intact antibodies themselves. Techniques, such as the polymerase chain reaction, have provided essential methods with which to generate and modify the genetic constituents of antibodies, allow their conjugation to toxins or drugs, provide ways of humanizing murine antibodies, and allow discrete modular antigen binding components to be produced. More recent developments of in vitro expression systems and powerful phage surface display technologies will without doubt play a major role in future antibody engineering and in the successful development of new diagnostic and therapeutic antibody-based reagents.
Similar content being viewed by others
References
Horibata, K. and Harris, A.W. (1970) Mouse myelomas and lymphomas in culture.Exp. Cell Res. 60, 61–66.
Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predetermined specificity.Nature 256, 495–497.
Borrebaeck, C. A. K., Danielsson, L., Ohlin, M., Carlsson, J., and Carlsson, R. (1990) The use ofin vitro immunization, cloning of variable regions, and SCID mice for the production of human monoclonal antibodies, inTherapeutic Monoclonal Antibodies (Borrebaeck, C. A. K. and Larrick, J. W., eds.), Stockton, New York, pp. 1–17.
Waldmann, T. A. (1991) Monoclonal antibodies in diagnosis and therapy.Science 252, 1657–1662.
Banchereau, J., DePaoli, P., Valle, A., Garcia, E., and Rousset, F. (1991) Long term human B cell lines dependent on interleukin 4 and anti CD40.Science 251, 70.
Bator, J. M. and Reading, C. L. (1990) Antibody mediated cancer diagnosis and therapy, inTherapeutic Monoclonal Antibodies (Borrebaeck, C. and Larrick, J., eds.), Stockton, New York, pp. 35–56.
Fanger, M. W. and Guyre, P. M. (1991) Bispecific antibodies for targeted cellular cytotoxicity.Trends Biotech. 9, 375–381.
Clark, M., Gilliland, L., and Waldmann, H. (1988) Hybrid antibodies for therapy, inMonoclonal Antibody Therapy (Waldmann, H., ed.), Karger, Basel, pp. 31–49.
Lefranc, G. and Lefranc, M. P. (1991) Antibody engineering and perspectives in therapy.Biochemie 72, 639–649.
Blakey, D. C., Wawrzynczak, E. J., Wallace, P. M., and Thorpe, P. E. (1988) Antibody toxin conjugates: a perspective, inMonoclonal Antibody Therapy (Waldmann, H., ed.), Karger, Basel, pp. 50–89.
Manevich, E. M., Tonevitsky, A. G., and Bergelson, L. D. (1986) The binding of B chain of ricin to Burkitts lymphoma cells.FEBS Lett. 194, 313–318.
Laurent, G., Kuhlein, E., Casellas, P., Canat, X., et al. (1986) Determination of the sensitivity of fresh leukemia cells to immunotoxins.Cancer Res. 46, 2289–2294.
Youle, R. J., Newton, G., Wu, Y. N., Gadina, M., and Rybak, S. M (1993) Cytotoxic ribonucleases and chimeras in cancer therapy.Crit. Rev. Ther. Drug Carrier Syst 10(1), 1–28.
Sandlie, I. and Michaelsen, T. E. (1991) Engineering monoclonal antibodies to determine the structural requirements for complement activation and complement mediated lysis.Mol. Immunol. 28(12), 1361–1366.
Mendelsohn, J. (1988) Growth factor receptors as targets for antitumor therapy with monoclonal antibodies, inMonoclonal Antibody Therapy (Waldmann, H., ed.), Karger, Basel, pp. 147–160.
Winter, G. and Harris, W. J. (1993) Humanized antibodies (1993)Immunol. Today 14(6), 243–246.
Morrison, S. L., Canfield, S., Porter, S., Tan, L. K., Tao, M., and Wims, L. A. (1988) Production and characterization of genetically engineered antibody molecules.Clin. Chem. 34(9), 1668–1672.
Jolliffe, L. K. (1993) Humanized antibodies: enhancing therapeutic utility through antibody engineering.Int Rev Immunol. 10(2), 241–250.
LoBuglio, A. F., Wheeler, R. H., Trang, J., Haynes, A., et al. (1989) Mouse/human chimeric monoclonal antibody in man: kinetics and immune response.Proc. Natl. Acad. Sci. USA 86, 4220–4224.
Liu, A. Y., Robinson, R. R., Hellstrom, K. E., Murrey, E. D., et al. (1987) Chimeric mouse-human IgGl antibody that can mediate lysis of cancer cells.Proc. Natl. Acad. Sci. USA 84, 3439–3443.
Bright, S., Adair, J., and Secher, D. (1991) From laboratory to clinic: the development of an immunological reagent.Immunol. Today 12(4), 130–136.
Shagan, B. G., Dorai, H., Saltzgaber-Muller, J., Toneguzzo, F., Guindon, C. A., et al. (1986) A genetically engineered murine/human chimeric antibody retains specificity for human tumor associated antigen.J. Immunol. 137, 1066–1072.
Bruggemann, M., Williams, G. T., Bindon, C. I., Teale, C., Clark, M. R., et al. (1987) Comparison of effector functions of human immunoglobulins using a matched set of chimeric antibodies.J. Exp. Med. 166, 1351–1355.
Bruggemann, M., Winter, G., Waldmann, H., and Neuberger, M. S. (1989) The immunogenicity of chimeric antibodies.J. Exp. Med. 170, 2153–2159.
Verhoeyen, M., Milstein, C., and Winter, G. (1988) Reshaping human antibodies: Grafting an anti lysozyme activity.Science 239, 1534–1538.
Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter G. (1986) Replacing the complementarity determining region in a human antibody with those from a mouse.Nature 321, 522–525.
Reichmann, L., Clark, M., Waldmann, H., and Winter, G. (1988) Reshaping human antibodies for therapy.Nature 332, 323–327.
Tempest, P. R., Bremmer, P., Lambert, M., Taylor, G., et al. (1991) Reshaping a human monoclonal antibody to inhibit respiratory syncytical virus infectionin vivo.Bio/Technology 9, 266–271.
Colnaghi, M. I., Menard, S., and Canevari, S. (1993) Evolution of the therapeutic use of new monoclonal antibodies.Curr. Opin. Oncol. 5(6), 1035–1042.
Winter, G. and Milstein, C. (1991) Man-made antibodies.Nature 349, 293–299.
Cunningham, C. and Harris, W. J. (1992) Antibody engineering-how to be human.Trends Biotechnol. 10, 112–118.
Roberts, S., Cheetham, J., and Rees, A. R. (1987) Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering.Nature 328, 731–733.
Kussie, P. H., Parhami-Seren, B., Wysocki, L. J., and Margolies, M. N. (1994) A single engineered amino acid substitution changes antibody fine specificity.J. Immunol. 152(1), 146–152.
Xiang, J., Chen, Z., Delbaere, L. T., and Liu, E. (1993) Differences in antigen binding affinity caused by a single amino acid substitution in the variable region of the heavy chain.Immunol. Cell. Biol. 71(4), 239–247.
Queen, C., Schneider, W. P., Selick, H. E., Payne, P.W., et al. (1989) A humanized antibody that binds to the interleukin 2 receptor.Proc. Natl. Acad. Sci. USA 86, 1029–1034.
Co, M. S. and Queen, C. (1991) Humanized antibodies for therapy.Nature 351, 501–505.
Iverson, B. L., Iverson, S. A., Roberts, V. A., Getzoff, E. D., Tainer, J. A., Benkovic, S. J., and Lerner, R. A. (1990) MetalloantibodiesScience 249, 659–662.
Getzoff, E. D., Tainer, J. A., and Lerner, R. A. (1988) The chemistry and mechanism of antibody binding to protein antigens.Adv. Immunol. 43, 1.
Roberts, V., Iverson, B., Benkovic, S., Lerner, R. A., Getzoff, E. D., and Tainer, J. A. (1990) Antibody remodelling: A general solution to the design of a metal coordination site in an antibody binding pocket.Proc. Natl. Acad. Sci. USA 87, 6654–6658.
Balint, R. F. and Larrick, J. W. (1993) Antibody engineering by parsimonious mutagenesis.Gene 137(1), 109–118.
Rodwell, J. D. (1989) Engineering monoclonal antibodies.Nature 342, 99–101.
Wetzel, R. (1988) Active immunoglobulin fragments synthesised inE. coli-from Fab to scantibodies.Protein Eng. 2(3), 169–175.
Skerra, A. and Pluckthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment inE. coli. Science 240, 1038–1040.
Pluckthun, A. (1992) Mono and bivalent antibody fragments produced inE. coli: engineering, folding and antigen binding.Immunol. Rev. 130, 151–188.
Skerra, A., Pfitzinger, I., and Pluckthun, A. (1990) The functional expression of antibody Fv fragments inE. coli: improved vectors and a generally applicable purification strategy.Bio/Technology 9, 273–278.
Pluckthun, A. (1991) Antibody engineering: Advances from the use of Escherichia coli expression systems.Bio/Technology 9, 545–551.
Freudl, R. (1989) Insertion of peptides into cell-exposed-areas ofE. coli. OmpA does not interfere with export and membrane assembly.Gene 82, 229–234.
Haseman, C. A. and Capra, J. D. (1990) High level production of a functional immunoglobulin heterodimer in a baculovirus expression system.Proc. Natl. Acad. Sci. USA 87, 3942–3946.
Hiatt, A. C. (1991) Monoclonal antibodies, hybridoma technology and heterologous production systems.Curr. Opin. Immunol. 3, 229–235.
Skerra, A., Dreher, M. L., and Winter, G. (1991) Filter screening of antibody Fab fragments secreted from individual bacterial colonies: specific detection of antigen binding with a two membrane system.Anal. Biochem. 196, 151–156.
Buchner, J. and Rudolph, R. (1991) Renaturation, purification and characterization of recombinant Fab fragments produced inE. coli. Bio/Technology 91, 157–161.
Skerra, A. (1993) Bacterial expression of immunoglobulin fragments.Curr. Opin. Immunol. 5(2), 256–262.
Horwitz, A. H., Chang, C. P., Better, M., Hellstrom, K. E., and Robinson, R. (1988) Secretion of functional antibody and Fab fragment from yeast cells.Proc. Natl. Acad. Sci. USA 85, 8678–8682.
Davis, G. T., Bedzyk, W. D., Voss, E. W., and Jacobs, T. W. (1991) Single chain antibody (SCA) encoding genes: one step construction and expression in eukaryotic cells.Bio/Technology 9, 165–169.
Rodrigues, M. L., Snedecor, B., Chen, C., Wong, W.L., Garg, S., Blank, G. S., Maneval, D., and Carter, P. (1993) Engineering Fab fragments for efficient F(ab)2 formation in Escherichia coli and for improvedin vivo stability.J. Immunol. 151(12), 6954–6961.
Bhat, T. N., Bentley, G. A., Fischmann, T. O., Boulot, G., and Poljak, R. J. (1990) Small rearrangements in structures of Fv and Fab fragments of antibody Dl.3 on antigen binding.Nature. 347, 483–485.
Glockshuber, R., Malia, M., Pfitzinger, I., and Pluckthun, A. (1990) A comparison of strategies to stabilize immunoglobulin Fv fragments.Biochemistry 29, 1362–1367.
Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M. (1988) Single chain antigen binding proteins.Science 242, 423–426.
Huston, J. S., Levinson, D., Mudgett-Hunter, M., et al. (1988) Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single chain Fv analog produced inE. coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.
Pack, P. and Pluckthun, A. (1992) Miniantibodies: Use of amphipathic helicies to produce functional, flexibly linked dimeric Fv fragments with high avidity inE. coli. Biochemistry 31(6), 1579–1584.
Kostelny, S. A., Cole, M. S., and Tso, J. Y. (1992) Formation of a bispecific antibody by the use of leucine zippers.J. Immunol. 148(5), 1547–1551.
Fuchs, P., Breitling, F., Dubel, S., Seehaus, T., and Little M. (1991) Targeting recombinant antibodies to the surface ofE. coli: fusion to a peptidoglycan associated lipoprotein.Bio/Technology 9, 1369–1372.
Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P.T., and Winter, G. (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted fromE. coli. Nature 341, 544–546.
Huse, W. D., Sastry, L., Iverson, S., Kang, A. S., Alting-Mees, M., Burton, D. R., Benkovic, S. J., and Lerner, R. A. (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda.Science 246, 1275–1281.
Xu, B. Z., Chang, C. H., and Schiffer, M. (1990) Testing the procedure of simulated annealing by refining homologous immunoglobulin light chain dimers.Protein Eng. 3(7), 583–586.
Williams, W. V., Moss, D. A., Kieber-Emmons, T., and Cohen, J. A. (1989) Development of biologically active peptides based on antibody structure.Proc. Natl. Acad. Sci. USA 86, 5537–5541.
Orlandi, R., Gussow, D. H., Jones, P. T., and Winter, G. (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain reaction.Proc. Natl. Acad. Sci. USA 86, 3833–3837.
Marks, J. D., Tristem, M., Karpas, A., and Winter, G. (1991) Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family specific oligonucleotide probes.Eur. J. Immunol. 21, 985–991.
Larrick, J. W., Danielsson, L., Brenner, C. A., Wallace, E. F., Abrahamson, M., Fry, K. E., and Borrebaeck, C. A. K. (1989) Polymerase chain reaction using mixed primers: cloning of human monoclonal antibody variable region genes from single hybridoma cells.Bio/Technology 7, 934–939.
Mullinax, R. L., Gross, E. A., Amberg, J. R., Hay, B.N., Hogrefe, H. H., et al. (1990) Identification of human antibody fragment clones specific for tetanus toxoid in bacteriophage λ immunoexpression library.Proc. Natl. Acad. Sci. USA. 87, 8095–8099.
Persson, M. A. A., Caothien, R. H., and Burton, D. R. (1991) Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning.Proc. Natl. Acad. Sci. USA 88, 2432–2436.
Griffiths, A. (1993) Production of human antibodies using bacteriophage.Curr. Opin. Immunol. 5(2), 263–267.
Geisow, M. J. (1992) Improved selection systems for man-made antibodies.Trends Biotech. 10, 75–77.
Parmley, S. F. and Smith, G. P. (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes.Gene 73, 305–318.
McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies; filamentous phage displaying antibody variable domains.Nature 348, 552–554.
Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter G. (1991) Making antibody fragments using phage libraries.Nature 352, 642–644.
Garrard, L. J., Yang, M., O’Connell, M. P., Kelley, R. F., and Henner, D. J. (1991) Fab assembly and enrichment in a monovalent phage display system.Bio/Technology 9, 1373–1377.
Owens, R. J. and Young, R. J. (1994) The genetic engineering of monoclonal antibodies.J. Immunol. Methods 168(2), 149–165.
Crameri, R. and Suter, M. (1993) Display of biologically active proteins on the surface of filamentous phages: cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production.Gene 137(1), 69–75.
Hogrefe, H. H., Amberg, J. R., Hay, B. N., Sorge, J.A., and Shopes, B. (1993) Cloning in a bacteriophage lambda vector for the display of binding proteins on filamentous phage.Gene 137(1), 85–91.
Kang, A. S., Barbas, C. F., Janda, K. D., Benkovic, S.J., and Lerner, R. A. (1991) Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces.Proc. Natl. Acad. Sci. USA 88, 4363–4366.
Barbas, C. F., Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991). Assembly of combinatorial librearies on phage surfaces (Phabs): The gene HI site.Proc. Natl. Acad. Sci. USA. 88, 7978–7982.
Shokat, K. M. and Schultz, P. G. (1990) Catalytic antibodies.Ann. Rev. Immunol. 8, 335–345.
Lerner, R. A. and Benkovic, S. A. (1988) Principles of antibody catalysis.Bioessays 9, 107–112.
Tawfik, D. S., Eshhar, Z., and Green, B. S. (1994) Catalytic antibodies: A critical assessment.Mol. Biotechnol.,1(1), 87–103.
Leatherbarrow, R. J. (1990) Catalytic antibodies: On to the second generation.Nature 348, 482–483.
Hilvert, D.(1991) Extending the chemistry of enzymes and abzymes.Trends Biotech. 9, 11–15.
Mayforth, R. D. and Quintans, J. (1990) Designer and catalytic antibodies.N. Engl. J. Med. 323(3), 173–176.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rapley, R. The biotechnology and applications of antibody engineering. Mol Biotechnol 3, 139–154 (1995). https://doi.org/10.1007/BF02789110
Issue Date:
DOI: https://doi.org/10.1007/BF02789110