Skip to main content

How many is enough? exploring the myosin repertoire in the model eukaryoteDictyostelium discoideum

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The cytoplasm of eukaryotic cells is a very complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. It is crucial to understand how organelles and macro-complexes of RNA and/or proteins are transported to and/or maintained at their specific cellular locations. The importance of filamentous-actindirected myosin-powered cargo transport was only recently realized, and after an initial explosion in the identification of new molecules, the field is now concentrating on their functional dissection. Direct connections of myosins to a variety of cellular tasks are now slowly emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport, etc. Unconventional myosins have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark of eukaryotism. The genome ofS. cerevisiae encodes only five myosins, whereas a mammalian cell has the capacity to express between two and three dozen myosins. Why is it so crucial to arrive at this final census? The main questions that we would like to discuss are the following. How many distinct myosin-powered functions are carried out in a typical higher eukaryote? Or, in other words, what is the minimal set of myosins essential to accomplish the multitude of tasks related to motility and intracellular dynamics in a multicellular organism? And also, as a corollary, what is the degree of functional redundancy inside a given myosin class? In that respect, the choice of a model organism suitable for such an investigation is more crucial than ever. Here we argue thatDictyostelium discoideum is affirming its position as an ideal system of intermediate complexity to study myosin-powered trafficking and is or will soon become the second eukaryote for which complete knowledge of the whole repertoire of myosins is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luby-Phelps, K. (1994) Physical properties of cytoplasm.Current Opin. Cell Biol. 6, 3–9.

    Article  CAS  Google Scholar 

  2. Janson, L. W., Ragsdale, K., and Luby-Phelps, K. (1996) Mechanism and size cutoff for steric exclusion from actin-rich cytoplasmic domains.Biophys. J. 71, 1228–1234.

    Article  PubMed  CAS  Google Scholar 

  3. Mermall, V., Post, P. L., and Mooseker, M. S. (1998) Unconventional myosins in cell-movement, membrane traffic, and signal-transduction.Science 279, 527–533.

    Article  PubMed  CAS  Google Scholar 

  4. Probst, F. J., Fridell, R. A., Raphael, Y., Saunders, T. L., Wang, A. H., et al. (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene.Science 280, 1444–1447.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, A. H., Liang, Y., Fridell, R. A., Probst, F. J., Wilcox, E. R., et al. (1998) Association of unconventional myosin myo15 mutations with human nonsyndromic deafness DFNB3.Science 280, 1447–1451.

    Article  PubMed  CAS  Google Scholar 

  6. Cope, M. J. T., Whisstock, J., Rayment, I., and Kendrick-Jones, J. (1996) Conservation within the myosin motor domain, implications for structure and function.Structure 4, 969–987.

    Article  PubMed  CAS  Google Scholar 

  7. de Lanerolle, P., Gorgas, G., Li, X., and Schluns, K. (1993) Myosin light chain phosphorylation does not increase during yeast phagocytosis by macrophages.J. Biol. Chem. 268, 16,883–16,886.

    Google Scholar 

  8. Langford, G. M., Kuznetsov, S. A., Johnson, D., Cohen, D. L., and Weiss, D. G. (1994) Movement of axoplasmic organelles on actin filaments assembled on acrosomal processes, evidence for a barbedend-directed organelle motor.J. Cell Sci. 107, 2291–228.

    PubMed  Google Scholar 

  9. Muallem, S., Kwiatkowska, K., Xu, X., and Yin, H. L. (1995) Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells.J. Cell Biol. 128, 589–598.

    Article  PubMed  CAS  Google Scholar 

  10. Geli, M. I. and Riezman, H. (1996) Role of type I myosins in receptor-mediated endocytosis in yeast.Science 272, 533–535.

    Article  PubMed  CAS  Google Scholar 

  11. Durbach, A., Collins, K., Matsudaira, P., Louvard, D., and Coudrier, E. (1996) Brush border myosin—I, truncated in the motor domain impairs the distribution and the function of endocytic compartments in an hepatoma cell line.Proc. Natl. Acad. Sci. USA 93, 7053–7058.

    Article  Google Scholar 

  12. Jung, G., Wu, X. F., and Hammer III, J. A. (1996) Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions.J. Cell Biol. 133, 305–323.

    Article  PubMed  CAS  Google Scholar 

  13. Novak, K. D., Peterson, M. D., Reedy, M. C., Titus, M. A. (1995) Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.J. Cell Biol. 131, 1205–21.

    Article  PubMed  CAS  Google Scholar 

  14. Johnston, G. C., Prendergast, J. A., and Singer, R. A. (1991) The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles.J. Cell Biol. 113, 539–551.

    Article  PubMed  CAS  Google Scholar 

  15. McGoldrick, C. A., Gruver, C., and May, G. S. (1995) myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth.J. Cell Biol. 128, 577–587.

    Article  PubMed  CAS  Google Scholar 

  16. Hill, K. L., Catlett, N. L., and Weisman L. S. (1996) Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae.J. Cell Biol. 135, 1535–1549.

    Article  PubMed  CAS  Google Scholar 

  17. Doberstein, S. K., Baines, I. C., Wlegans, G., Korn, E. D., and Pollard, T. D. (1993) Inhibition of contractile vacuole function in vivo by antibodies against myosin—I.Nature 365, 841–843.

    Article  PubMed  CAS  Google Scholar 

  18. Mermall, V., McNally, J. G., and Miller, K. G. (1994) Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos.Nature 369, 560–562.

    Article  PubMed  CAS  Google Scholar 

  19. Mermall, V. and Miller, K. G. (1995) The 95F unconventional myosin is required for proper organization of the Drosophila syncytial blastoderm.J. Cell Biol. 129, 1575–1588.

    Article  PubMed  CAS  Google Scholar 

  20. Wei, Q., Wu, X. F., and Hammer III, J. A. (1997) The predominant defect in dilute melanocytes is in melanosome distribution and not cell-shape, supporting a role for myosin—V in melanosome transport.J. Muscle Res. Cell Motil 18, 517–527.

    Article  PubMed  CAS  Google Scholar 

  21. Wu, X. F., Kocher, B., Wei, Q., and Hammer III, J. A. (1998) Myosin Va associates with microtubule-rich domains in both interphase and dividing cells.Cell Motil. Cytosk. 40, 286–303.

    Article  CAS  Google Scholar 

  22. Rodionov, V. I., Hope, A. J., Svitkina, T. M., and Borisy, G. G. (1998) Functional coordination of microtubule-based and actin-based motility in melanophores.Current Biol. 8, 165–168.

    Article  CAS  Google Scholar 

  23. Rogers, S. L. and Gelfand, V. I. (1998) Myosin cooperates with microtubule motors during organelle transport in melanophores.Current Biol. 8, 161–164.

    Article  CAS  Google Scholar 

  24. Prekeris, R. and Terrian, D. M. (1997) Brain Myosin V is a synaptic vesicle-associated motor protein, Evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex.J. Cell Biol. 137, 1589–1601.

    Article  PubMed  CAS  Google Scholar 

  25. Evans, L. L., Lee, A. J., Bridgman, P. C., and Mooseker, M. S. (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport.J. Cell Sci. 111, 2055–2066.

    PubMed  CAS  Google Scholar 

  26. Jansen, R. P., Dowzer, C., Michaelis, C., Galova, M., and Nasmyth, K. (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins.Cell 84, 687–697.

    Article  PubMed  CAS  Google Scholar 

  27. Bobola, N., Jansen, R. P., Shin, T. H., and Nasmyth, K. (1996) Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells.Cell 84, 699–709.

    Article  PubMed  CAS  Google Scholar 

  28. Weiss, A. and Leinwand, L. A. (1996) The mammalian myosin heavy chain gene family.Ann. Rev. Cell & Dev. Biol. 12, 417–439.

    Article  CAS  Google Scholar 

  29. Huang, J. D., Mermall, V., Strobel, M. C., Russell, L. B., Mooseker, M. S., et al. (1998) Molecular-genetic dissection of mouse unconventional myosin-Va-tail region mutations.Genetics 148, 1963–1972.

    PubMed  CAS  Google Scholar 

  30. el-Amraoui, A., Sahly, I., Picaud, S., Sahel, J., Abitbol, M., and Petit, C. (1996) Human Usher 1B/mouse shaker-1, the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells.Hum. Mol. Gen. 5, 1171–1178.

    Article  PubMed  CAS  Google Scholar 

  31. Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K. A., et al. (1995) A type VII myosin encoded by the mouse deafness gene shaker-1.Nature 374, 62–64.

    Article  PubMed  CAS  Google Scholar 

  32. Weil, D., Levy, G., Sahly, I., Levi-Acobas, F., Blanchard, S., et al. (1996) Human myosin VIIA responsible for the Usher 1B syndrome, a predicted membrane-associated motor protein expressed in developing sensory epithelia.Proc. Natl. Acad. Sci. USA 93, 3232–3237.

    Article  PubMed  CAS  Google Scholar 

  33. Sobe, T., Taggart, R. T., Vasquez, D. A., Ahituv, N., and Avraham, K. B. (1997) Myosin-VI (myo6)—a candidate gene for non-syndromic sensorineural deafness.American J. Hum. Gen. 61, 2299–2299.

    Google Scholar 

  34. Langford, G. M. (1995) Actin- and microtubule-dependent organelle motors, interrelationships between the two motility systems.Curr. Opin. Cell Biol. 7, 82–88.

    Article  PubMed  CAS  Google Scholar 

  35. Wu, X., Bowers, B., Wei, Q., Kocher, B., and Hammer III, J. A. (1997) Myosin V associates with melanosomes in mouse melanocytes, evidence that myosin V is an organelle motor.J. Cell Sci. 110, 847–859.

    PubMed  CAS  Google Scholar 

  36. Simon, V. R., Swayne, T. C., and Pon, L. A. (1995) Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems, identification of a motor activity on the mitochondrial surface.J. Cell Biol. 130, 345–354.

    Article  PubMed  CAS  Google Scholar 

  37. Tabb, J. S., Kuznetsov, S. A., Weiss, D. G., and Langford, G. M. (1996) Identification of myosin-V on ER in the squid giant axon.Mol. Biol. Cell 7, 226a.

    Google Scholar 

  38. Kuznetsov, S. A., Shonn, M. A., Blocker, A., Burkhardt, J. K., Griffiths, G. M., and Weiss, D. G. (1995) The interaction between phagosomes and actin filaments is mediated by actin binding proteins.Eur. J. Cell Biol. 69, 49a.

    Google Scholar 

  39. Espindola, F. S., Cheney, R. E., King, S. M., Suter, D. M., and Mooseker, M. S. (1996) Myosin-V and dynein share a similar light chain.Mol. Biol. Cell 7, 372a.

    Google Scholar 

  40. Lantz, V. A. and Miller, K. G. (1998) A class-VI unconventional myosin is associated with a homolog of a microtubule-binding protein, cytoplasmic linker protein- 170, in neurons and at the posterior pole of Drosophila embryos.J. Cell Biol. 140, 897–910.

    Article  PubMed  CAS  Google Scholar 

  41. Bähler, M. (1996) Myosins on the move to signal transduction.Current Op. Cell Biol. 8, 18–22.

    Article  Google Scholar 

  42. Spudich, J. A. (1994) How molecular motors work.Nature 372, 515–518.

    Article  PubMed  CAS  Google Scholar 

  43. Bement, W. M. and Mooseker, M. S. (1995) TEDS rule, A molecular rationale for differential regulation of myosin by phosphorylation of the heavy chain head.Cell Motil. Cytosk. 31, 87–92.

    Article  CAS  Google Scholar 

  44. Lee, S. F., Egelhoff, T. T., Mahasneh, A., and Cote, G. P. (1996) Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac.J. Biol. Chem. 271, 27,044–27,048.

    CAS  Google Scholar 

  45. Wu, C., Lee, S. F., Furmaniak-Kazmierczak, E., Cote, G. P., Thomas, D. Y., and Leberer, E. (1996) Activation of myosin-I by members of the Ste20p protein kinase family.J. Biol. Chem. 271, 31,787–31,790.

    CAS  Google Scholar 

  46. Uyeda, T. Q., Abramson, P. D., and Spudich, J. A. (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement.Proc. Natl. Acad. Sci. USA 93, 4459–4464.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, Z.-Y., Sakai, J., Matsudaira, P. T., Baines, I. C., Sellers, J. R., et al. (1997) The amino acid sequence of the light chain of Acanthamoeba myosin IC.J. Muscle Res. Cell Motil. 18, 395–398.

    Article  PubMed  CAS  Google Scholar 

  48. Stevens, R. C. and Davis, T. N. (1998) Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae.J. Cell Biol. 142, 711–722.

    Article  PubMed  CAS  Google Scholar 

  49. Chisholm, R. L., Chen, P., Chen, T. L., Ho, G., and Ostrow, B. D. (1995) The contributions of light chains to myosin function.Biophys. J. 68, 223S.

    Google Scholar 

  50. Wolenski, J. S. (1995) Regulation of calmodulin-binding myosins.Trends Cell Biol. 5, 310–316.

    Article  PubMed  CAS  Google Scholar 

  51. Geli, M. I., Wesp, A., and Riezman, H. (1998) Distinct functions of calmodulin are required for the uptake step of receptor-mediated endocytosis in yeast—the type-I myosin myo5p is one of the calmodulin targets.EMBO J. 17, 635–647.

    Article  PubMed  CAS  Google Scholar 

  52. Chacko, S., Jacob, S. S., and Horiuchi, K. Y. (1994) Myosin I from mammalian smooth muscle is regulated by caldesmon-calmodulin.J. Biol. Chem. 269, 15,803–15,807.

    CAS  Google Scholar 

  53. Uyeda, T. Q. P. and Titus, M. A. (1997) The myosins of Dictyostelium, in: Dictyostelium—A Model System for Cell and Developmental Biology, (Maeda, Y., Inouye, K., and Takeuchi, I., eds.), Universal Acadamy, Tokyo, Japan, pp. 43–64.

    Google Scholar 

  54. Adams, R. J. and Pollard, T. D. (1989) Binding of myosin I to membrane lipids.Nature 340, 565–568.

    Article  PubMed  CAS  Google Scholar 

  55. Miyata, H., Bowers, B., and Korn, E. D. (1989). Plasma membrane association of Acanthamoeba myosin I.J. Cell Biol. 109, 1519–1528.

    Article  PubMed  CAS  Google Scholar 

  56. Jung, G. and Hammer III, J. A. (1994) The actin binding site in the tail domain of Dictyostelium myosin IC (myoc) resides within the glycine- and proline-rich sequence (tail homology region 2).FEBS Lett. 342, 197–202.

    Article  PubMed  CAS  Google Scholar 

  57. Rosenfeld, S. S. and Rener, B. (1994) The GPQ-rich segment of Dictyostelium myosin IB contains an actin binding site.Biochem. 33, 2322–2328.

    Article  CAS  Google Scholar 

  58. Lemmon, M. A. and Ferguson, K. M. (1998) Pleckstrin homology domains, inProtein Modules in Signal Transduction, vol. 228, (Pawson, A. J., ed.), Springer, pp. 39–74.

  59. Reinhard, J., Scheel, A. A., Diekmann, D., Hall, A., Ruppert, C., and BähPer, M. (1995) A novel type of myosin implicated in signalling by rho family GTPases.EMBO J. 14, 697–704.

    PubMed  CAS  Google Scholar 

  60. Müller, R. T., Honnert, U., Reinhard, J., and BähPer, M. (1997) The rat myosin myr 5 is a GTPase-activating protein for rho in-vivo—essential role of arginine 1695.Mol. Biol. Cell 8, 2039–2053.

    PubMed  Google Scholar 

  61. Titus, M. A., Warrick, H. M., and Spudich, J. A. (1989). Multiple actin based motor genes in Dictyostelium.Cell Regulation 1, 55–63.

    PubMed  CAS  Google Scholar 

  62. Titus, M. A., Kuspa, A., and Loomis, W. F. (1994) Discovery of myosin genes by physical mapping in Dictyostelium.Proc. Natl. Acad. Sci. USA 91, 9446–9450.

    Article  PubMed  CAS  Google Scholar 

  63. Bement, W. M., Hasson, T., Wirth, J. A., Cheney, R. E., and Mooseker, M. S. (1994) Identification and overlapping expression of multiple unconventional myosin genes in vertebrate cell types.Proc. Natl. Acad. Sci. USA 91, 6549–6553.

    Article  PubMed  CAS  Google Scholar 

  64. Hasson, T., Skowron, J. F., Gilbert, D. J., Avraham, K. B., Perry, W. L., et al. (1996) Mapping of unconventional myosins in mouse and human.Genomics 36, 431–439.

    Article  PubMed  CAS  Google Scholar 

  65. Satterwhite, L. L. and Pollard, T. D. (1992) Cytokinesis.Current Op. Cell Biol. 4, 43–52.

    Article  CAS  Google Scholar 

  66. Spudich, J. A. (1989). In pursuit of myosin function.Cell Regulation 1, 1–11.

    PubMed  CAS  Google Scholar 

  67. Neujahr, R., Albrecht, R., Kohler, J., Matzner, M., Schwartz, J. M., et al. (1998) Microtubule-mediated centrosome motility and the positioning of cleavage furrows in multinucleate myosin-II null-cells.J. Cell Sci. 111, 1227–1240.

    PubMed  CAS  Google Scholar 

  68. Faix, J., Steinmetz, M., Boves, H., Kammerer, R. A., Lottspeich, F., et al. (1996) Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail.Cell 86, 631–642.

    Article  PubMed  CAS  Google Scholar 

  69. Neujahr, R., Heizer, C., and Gerisch, G. (1997) Myosin II-independent processes in mitotic cells of Dictyostelium discoideum, Redistribution of the nuclei, rearrangement of the actin system and formation of the cleavage furrow.J. Cell Sci. 110, 123–137.

    PubMed  CAS  Google Scholar 

  70. Pollard, T. D., Doberstein, S. K., and Zot, H. G. (1991) Myosin-I.Annu. Rev. Physiol. 53, 653–681.

    Article  PubMed  CAS  Google Scholar 

  71. Fukui, Y., Lynch, T. J., Brzeska, H., and Korn, E. D. (1989). Myosin I is located at the leading edges of locomoting Dictyostelium amoebae.Nature 341, 328–331.

    Article  PubMed  CAS  Google Scholar 

  72. Hacker, U., Albrecht, R., and Maniak, M. (1997) Fluid-phase uptake by macropinocytosis in Dictyostelium.J. Cell Sci. 110, 105–112.

    PubMed  CAS  Google Scholar 

  73. Jung, G., Fukui, Y., Martin, B., and Hammer III, J. A. (1993) Sequence, expression pattern, intracellular localization, and targeted disruption of the Dictyostelium myosin ID heavy chain isoform.J. Biol. Chem. 268, 14,981–14,990.

    CAS  Google Scholar 

  74. Morita, Y. S., Jung, G., Hammer III, J. A., and Fukui, Y. (1996) Localization of Dictyostelium myoB and myoD to filopodia and cell-cell contact sites using isoform-specific antibodies.Eur. J. Cell Biol. 71, 371–379.

    PubMed  CAS  Google Scholar 

  75. Temesvari, L. A., Bush, J. M., Peterson, M. D., Novak, K. D., Titus, M. A., and Cardelli, J. A. (1996) Examination of the endosomal and lysosomal pathways in Dictyostelium discoideum myosin I mutants.J. Cell Sci. 109, 663–673.

    PubMed  CAS  Google Scholar 

  76. Witke, W., Schleicher, M., and Noegel, A. A. (1992) Redundancy in the microfilament system—abnormal development of Dictyostelium cells lacking two F-actin cross-linking proteins.Cell 68, 53–62.

    Article  PubMed  CAS  Google Scholar 

  77. Novak, K. D. and Titus, M. A. (1997) Myosin I overexpression impairs lell migration.J. Cell Biol. 136, 633–647.

    Article  PubMed  CAS  Google Scholar 

  78. Brzeska, H. and Korn, E. D. (1996) Regulation of class I and class II myosins by heavy chain phosphorylation.J. Biol. Chem. 271, 16,983–16,986.

    CAS  Google Scholar 

  79. Lee, S. F. and Cote, G. P. (1995) Purification and characterization of a Dictyostelium protein kinase required for actin activation of the Mg2+ATPaase activity of Dictyostelium myosin ID.J. Biol. Chem. 270, 11,776–11,782.

    CAS  Google Scholar 

  80. Novak, K. D. and Titus, M. A. (1998) The myosin-ISH3 domain and TEDS rule phosphorylation site are required for in-vivo function.Mol. Biol. Cell,9, 75–88.

    PubMed  CAS  Google Scholar 

  81. Xu, P., Mitchelhill, K. I., Kobe, B., Kemp, B. E., and Zot, H. G. (1997) The myosin-I-binding protein Acan 125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins.Proc. Natl. Acad. Sci. USA 94, 3685–3690.

    Article  PubMed  CAS  Google Scholar 

  82. Anderson, B. L., Boldogh, I., Evangelista, M., Boone, C., Greene, L. A., and Pon, L. A. (1998) The src homology domain-3 (SH3) of a yeast type-I myosin, myo5p, binds to verprolin and is required for targeting to sites of actin polarization.J. Cell Biol. 141, 1357–1370.

    Article  PubMed  CAS  Google Scholar 

  83. Cerione, R. A. and Zheng, Y. (1996) The Dbl family of oncogenes.Current Op. Cell Biol. 8, 216–222.

    Article  CAS  Google Scholar 

  84. Nascimento, A. A. C., Cheney, R. E., Tauhata, S. B. F., Larson, R. E., and Mooseker, M. S. (1996) Enzymatic characterization and functional domain mapping of brain myosin-V.J. Biol. Chem 271, 17,561–17,569.

    CAS  Google Scholar 

  85. Peterson, M. D., Urioste, A. S., and Titus, M. A. (1996) Dictyostelium discoideum myoJ, A member of a broadly defined myosin V class or a class XI unconventional myosin?J. Muscle Res. Cell Motil. 17, 411–424.

    Article  PubMed  CAS  Google Scholar 

  86. Hammer III, J. A. and Jung, G. (1996) The sequence of the Dictyostelium myo J heavy chain gene predicts a novel, dimeric, unconventional myosin with a heavy chain molecular mass of 258 kDa.J. Biol. Chem. 271, 7120–7127.

    Article  PubMed  CAS  Google Scholar 

  87. Hammer III, J. A., Lydan, M., and Jung, G. (1996) Dictyostelium Myo J associates with membranes of the contractile vacuole complex.Mol. Biol. Cell 7, 374a.

    Google Scholar 

  88. Ulbricht, B. and Soldati, T. (1997) Purification of a potential mitochondria-associated myosin VI from Dictyostelium discoideum.Mol. Biol. Cell, 372a.

  89. Titus, M. A. (1997) An unconventional myosin required for phagocytosis.Mol. Biol. Cell 8, 352a.

    Google Scholar 

  90. Hasson, T., Heintzelman, M. B., Santos-Sacchi, J., Corey, D. P., and Mooseker, M. S. (1995) Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B.Proc. Natl. Acad. Sci. USA 92, 9815–9819.

    Article  PubMed  CAS  Google Scholar 

  91. Levy, G., Levi-Acobas, F., Blanchard, S., Gerber, S., Larget-Piet, D., et al. (1997) Myosin VIIA gene, heterogeneity of the mutations responsible for Usher syndrome type IB.Hum. Mol. Gen. 6, 111–116.

    Article  PubMed  CAS  Google Scholar 

  92. Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., et al. (1995) Defective myosin VIIA gene responsible for Usher syndrome type 1B.Nature 374, 60–61.

    Article  PubMed  CAS  Google Scholar 

  93. Weston, M. D., Kelley, P. M., Overbeck, L. D., Wagenaar, M., Orten, D. J., et al. (1996) Myosin VIIA mutation screening in 189 Usher syndrome type 1 patients.Am. J. of Hum. Gen. 59, 1074–1083.

    CAS  Google Scholar 

  94. Korn, E. D. and Hammer III, J. A. (1990) Myosin-I.Curr. Opin. Cell Biol. 2, 57–61.

    Article  PubMed  CAS  Google Scholar 

  95. Jontes, J. D., Milligan, R. A., Pollard, T. D., and Ostap, E. M. (1997) Kinetic characterization of brush-border myosin-I atpase.Proc. Natl. Acad. Sci. USA 94, 14,332–14,337.

    Article  CAS  Google Scholar 

  96. Cheney, R. E., O'Shea, M. K., Heuser, J. E., Coelho, M. V., Wolenski, J. S., et al. (1993) Brain Myosin-V is a two-headed unconventional myosin with motor activity.Cell 75, 13–23.

    PubMed  CAS  Google Scholar 

  97. Howard, J. (1997) Molecular motors—structural adaptations to cellular functions.Nature 389, 561–567.

    Article  PubMed  CAS  Google Scholar 

  98. Goodson, H. V. (1994) Molecular evolution of the myosin superfamily, application of phylogenetic techniques to cell biological questions.Soc. Gen. Physiol. Series 49, 141–157.

    CAS  Google Scholar 

  99. Goodson, H. V. and Spudich, J. A. (1993) Molecular evolution of the myosin family, relationships derived from comparisons of amino acid sequences.Proc. Natl. Acad. Sci. USA 90, 659–663.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldati, T., Geissler, H. & Schwarz, E.C. How many is enough? exploring the myosin repertoire in the model eukaryoteDictyostelium discoideum . Cell Biochem Biophys 30, 389–411 (1999). https://doi.org/10.1007/BF02738121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738121

Index Entries