Abstract
The cytoplasm of eukaryotic cells is a very complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. It is crucial to understand how organelles and macro-complexes of RNA and/or proteins are transported to and/or maintained at their specific cellular locations. The importance of filamentous-actindirected myosin-powered cargo transport was only recently realized, and after an initial explosion in the identification of new molecules, the field is now concentrating on their functional dissection. Direct connections of myosins to a variety of cellular tasks are now slowly emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport, etc. Unconventional myosins have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark of eukaryotism. The genome ofS. cerevisiae encodes only five myosins, whereas a mammalian cell has the capacity to express between two and three dozen myosins. Why is it so crucial to arrive at this final census? The main questions that we would like to discuss are the following. How many distinct myosin-powered functions are carried out in a typical higher eukaryote? Or, in other words, what is the minimal set of myosins essential to accomplish the multitude of tasks related to motility and intracellular dynamics in a multicellular organism? And also, as a corollary, what is the degree of functional redundancy inside a given myosin class? In that respect, the choice of a model organism suitable for such an investigation is more crucial than ever. Here we argue thatDictyostelium discoideum is affirming its position as an ideal system of intermediate complexity to study myosin-powered trafficking and is or will soon become the second eukaryote for which complete knowledge of the whole repertoire of myosins is available.
Similar content being viewed by others
References
Luby-Phelps, K. (1994) Physical properties of cytoplasm.Current Opin. Cell Biol. 6, 3–9.
Janson, L. W., Ragsdale, K., and Luby-Phelps, K. (1996) Mechanism and size cutoff for steric exclusion from actin-rich cytoplasmic domains.Biophys. J. 71, 1228–1234.
Mermall, V., Post, P. L., and Mooseker, M. S. (1998) Unconventional myosins in cell-movement, membrane traffic, and signal-transduction.Science 279, 527–533.
Probst, F. J., Fridell, R. A., Raphael, Y., Saunders, T. L., Wang, A. H., et al. (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene.Science 280, 1444–1447.
Wang, A. H., Liang, Y., Fridell, R. A., Probst, F. J., Wilcox, E. R., et al. (1998) Association of unconventional myosin myo15 mutations with human nonsyndromic deafness DFNB3.Science 280, 1447–1451.
Cope, M. J. T., Whisstock, J., Rayment, I., and Kendrick-Jones, J. (1996) Conservation within the myosin motor domain, implications for structure and function.Structure 4, 969–987.
de Lanerolle, P., Gorgas, G., Li, X., and Schluns, K. (1993) Myosin light chain phosphorylation does not increase during yeast phagocytosis by macrophages.J. Biol. Chem. 268, 16,883–16,886.
Langford, G. M., Kuznetsov, S. A., Johnson, D., Cohen, D. L., and Weiss, D. G. (1994) Movement of axoplasmic organelles on actin filaments assembled on acrosomal processes, evidence for a barbedend-directed organelle motor.J. Cell Sci. 107, 2291–228.
Muallem, S., Kwiatkowska, K., Xu, X., and Yin, H. L. (1995) Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells.J. Cell Biol. 128, 589–598.
Geli, M. I. and Riezman, H. (1996) Role of type I myosins in receptor-mediated endocytosis in yeast.Science 272, 533–535.
Durbach, A., Collins, K., Matsudaira, P., Louvard, D., and Coudrier, E. (1996) Brush border myosin—I, truncated in the motor domain impairs the distribution and the function of endocytic compartments in an hepatoma cell line.Proc. Natl. Acad. Sci. USA 93, 7053–7058.
Jung, G., Wu, X. F., and Hammer III, J. A. (1996) Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions.J. Cell Biol. 133, 305–323.
Novak, K. D., Peterson, M. D., Reedy, M. C., Titus, M. A. (1995) Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.J. Cell Biol. 131, 1205–21.
Johnston, G. C., Prendergast, J. A., and Singer, R. A. (1991) The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles.J. Cell Biol. 113, 539–551.
McGoldrick, C. A., Gruver, C., and May, G. S. (1995) myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth.J. Cell Biol. 128, 577–587.
Hill, K. L., Catlett, N. L., and Weisman L. S. (1996) Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae.J. Cell Biol. 135, 1535–1549.
Doberstein, S. K., Baines, I. C., Wlegans, G., Korn, E. D., and Pollard, T. D. (1993) Inhibition of contractile vacuole function in vivo by antibodies against myosin—I.Nature 365, 841–843.
Mermall, V., McNally, J. G., and Miller, K. G. (1994) Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos.Nature 369, 560–562.
Mermall, V. and Miller, K. G. (1995) The 95F unconventional myosin is required for proper organization of the Drosophila syncytial blastoderm.J. Cell Biol. 129, 1575–1588.
Wei, Q., Wu, X. F., and Hammer III, J. A. (1997) The predominant defect in dilute melanocytes is in melanosome distribution and not cell-shape, supporting a role for myosin—V in melanosome transport.J. Muscle Res. Cell Motil 18, 517–527.
Wu, X. F., Kocher, B., Wei, Q., and Hammer III, J. A. (1998) Myosin Va associates with microtubule-rich domains in both interphase and dividing cells.Cell Motil. Cytosk. 40, 286–303.
Rodionov, V. I., Hope, A. J., Svitkina, T. M., and Borisy, G. G. (1998) Functional coordination of microtubule-based and actin-based motility in melanophores.Current Biol. 8, 165–168.
Rogers, S. L. and Gelfand, V. I. (1998) Myosin cooperates with microtubule motors during organelle transport in melanophores.Current Biol. 8, 161–164.
Prekeris, R. and Terrian, D. M. (1997) Brain Myosin V is a synaptic vesicle-associated motor protein, Evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex.J. Cell Biol. 137, 1589–1601.
Evans, L. L., Lee, A. J., Bridgman, P. C., and Mooseker, M. S. (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport.J. Cell Sci. 111, 2055–2066.
Jansen, R. P., Dowzer, C., Michaelis, C., Galova, M., and Nasmyth, K. (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins.Cell 84, 687–697.
Bobola, N., Jansen, R. P., Shin, T. H., and Nasmyth, K. (1996) Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells.Cell 84, 699–709.
Weiss, A. and Leinwand, L. A. (1996) The mammalian myosin heavy chain gene family.Ann. Rev. Cell & Dev. Biol. 12, 417–439.
Huang, J. D., Mermall, V., Strobel, M. C., Russell, L. B., Mooseker, M. S., et al. (1998) Molecular-genetic dissection of mouse unconventional myosin-Va-tail region mutations.Genetics 148, 1963–1972.
el-Amraoui, A., Sahly, I., Picaud, S., Sahel, J., Abitbol, M., and Petit, C. (1996) Human Usher 1B/mouse shaker-1, the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells.Hum. Mol. Gen. 5, 1171–1178.
Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K. A., et al. (1995) A type VII myosin encoded by the mouse deafness gene shaker-1.Nature 374, 62–64.
Weil, D., Levy, G., Sahly, I., Levi-Acobas, F., Blanchard, S., et al. (1996) Human myosin VIIA responsible for the Usher 1B syndrome, a predicted membrane-associated motor protein expressed in developing sensory epithelia.Proc. Natl. Acad. Sci. USA 93, 3232–3237.
Sobe, T., Taggart, R. T., Vasquez, D. A., Ahituv, N., and Avraham, K. B. (1997) Myosin-VI (myo6)—a candidate gene for non-syndromic sensorineural deafness.American J. Hum. Gen. 61, 2299–2299.
Langford, G. M. (1995) Actin- and microtubule-dependent organelle motors, interrelationships between the two motility systems.Curr. Opin. Cell Biol. 7, 82–88.
Wu, X., Bowers, B., Wei, Q., Kocher, B., and Hammer III, J. A. (1997) Myosin V associates with melanosomes in mouse melanocytes, evidence that myosin V is an organelle motor.J. Cell Sci. 110, 847–859.
Simon, V. R., Swayne, T. C., and Pon, L. A. (1995) Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems, identification of a motor activity on the mitochondrial surface.J. Cell Biol. 130, 345–354.
Tabb, J. S., Kuznetsov, S. A., Weiss, D. G., and Langford, G. M. (1996) Identification of myosin-V on ER in the squid giant axon.Mol. Biol. Cell 7, 226a.
Kuznetsov, S. A., Shonn, M. A., Blocker, A., Burkhardt, J. K., Griffiths, G. M., and Weiss, D. G. (1995) The interaction between phagosomes and actin filaments is mediated by actin binding proteins.Eur. J. Cell Biol. 69, 49a.
Espindola, F. S., Cheney, R. E., King, S. M., Suter, D. M., and Mooseker, M. S. (1996) Myosin-V and dynein share a similar light chain.Mol. Biol. Cell 7, 372a.
Lantz, V. A. and Miller, K. G. (1998) A class-VI unconventional myosin is associated with a homolog of a microtubule-binding protein, cytoplasmic linker protein- 170, in neurons and at the posterior pole of Drosophila embryos.J. Cell Biol. 140, 897–910.
Bähler, M. (1996) Myosins on the move to signal transduction.Current Op. Cell Biol. 8, 18–22.
Spudich, J. A. (1994) How molecular motors work.Nature 372, 515–518.
Bement, W. M. and Mooseker, M. S. (1995) TEDS rule, A molecular rationale for differential regulation of myosin by phosphorylation of the heavy chain head.Cell Motil. Cytosk. 31, 87–92.
Lee, S. F., Egelhoff, T. T., Mahasneh, A., and Cote, G. P. (1996) Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac.J. Biol. Chem. 271, 27,044–27,048.
Wu, C., Lee, S. F., Furmaniak-Kazmierczak, E., Cote, G. P., Thomas, D. Y., and Leberer, E. (1996) Activation of myosin-I by members of the Ste20p protein kinase family.J. Biol. Chem. 271, 31,787–31,790.
Uyeda, T. Q., Abramson, P. D., and Spudich, J. A. (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement.Proc. Natl. Acad. Sci. USA 93, 4459–4464.
Wang, Z.-Y., Sakai, J., Matsudaira, P. T., Baines, I. C., Sellers, J. R., et al. (1997) The amino acid sequence of the light chain of Acanthamoeba myosin IC.J. Muscle Res. Cell Motil. 18, 395–398.
Stevens, R. C. and Davis, T. N. (1998) Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae.J. Cell Biol. 142, 711–722.
Chisholm, R. L., Chen, P., Chen, T. L., Ho, G., and Ostrow, B. D. (1995) The contributions of light chains to myosin function.Biophys. J. 68, 223S.
Wolenski, J. S. (1995) Regulation of calmodulin-binding myosins.Trends Cell Biol. 5, 310–316.
Geli, M. I., Wesp, A., and Riezman, H. (1998) Distinct functions of calmodulin are required for the uptake step of receptor-mediated endocytosis in yeast—the type-I myosin myo5p is one of the calmodulin targets.EMBO J. 17, 635–647.
Chacko, S., Jacob, S. S., and Horiuchi, K. Y. (1994) Myosin I from mammalian smooth muscle is regulated by caldesmon-calmodulin.J. Biol. Chem. 269, 15,803–15,807.
Uyeda, T. Q. P. and Titus, M. A. (1997) The myosins of Dictyostelium, in: Dictyostelium—A Model System for Cell and Developmental Biology, (Maeda, Y., Inouye, K., and Takeuchi, I., eds.), Universal Acadamy, Tokyo, Japan, pp. 43–64.
Adams, R. J. and Pollard, T. D. (1989) Binding of myosin I to membrane lipids.Nature 340, 565–568.
Miyata, H., Bowers, B., and Korn, E. D. (1989). Plasma membrane association of Acanthamoeba myosin I.J. Cell Biol. 109, 1519–1528.
Jung, G. and Hammer III, J. A. (1994) The actin binding site in the tail domain of Dictyostelium myosin IC (myoc) resides within the glycine- and proline-rich sequence (tail homology region 2).FEBS Lett. 342, 197–202.
Rosenfeld, S. S. and Rener, B. (1994) The GPQ-rich segment of Dictyostelium myosin IB contains an actin binding site.Biochem. 33, 2322–2328.
Lemmon, M. A. and Ferguson, K. M. (1998) Pleckstrin homology domains, inProtein Modules in Signal Transduction, vol. 228, (Pawson, A. J., ed.), Springer, pp. 39–74.
Reinhard, J., Scheel, A. A., Diekmann, D., Hall, A., Ruppert, C., and BähPer, M. (1995) A novel type of myosin implicated in signalling by rho family GTPases.EMBO J. 14, 697–704.
Müller, R. T., Honnert, U., Reinhard, J., and BähPer, M. (1997) The rat myosin myr 5 is a GTPase-activating protein for rho in-vivo—essential role of arginine 1695.Mol. Biol. Cell 8, 2039–2053.
Titus, M. A., Warrick, H. M., and Spudich, J. A. (1989). Multiple actin based motor genes in Dictyostelium.Cell Regulation 1, 55–63.
Titus, M. A., Kuspa, A., and Loomis, W. F. (1994) Discovery of myosin genes by physical mapping in Dictyostelium.Proc. Natl. Acad. Sci. USA 91, 9446–9450.
Bement, W. M., Hasson, T., Wirth, J. A., Cheney, R. E., and Mooseker, M. S. (1994) Identification and overlapping expression of multiple unconventional myosin genes in vertebrate cell types.Proc. Natl. Acad. Sci. USA 91, 6549–6553.
Hasson, T., Skowron, J. F., Gilbert, D. J., Avraham, K. B., Perry, W. L., et al. (1996) Mapping of unconventional myosins in mouse and human.Genomics 36, 431–439.
Satterwhite, L. L. and Pollard, T. D. (1992) Cytokinesis.Current Op. Cell Biol. 4, 43–52.
Spudich, J. A. (1989). In pursuit of myosin function.Cell Regulation 1, 1–11.
Neujahr, R., Albrecht, R., Kohler, J., Matzner, M., Schwartz, J. M., et al. (1998) Microtubule-mediated centrosome motility and the positioning of cleavage furrows in multinucleate myosin-II null-cells.J. Cell Sci. 111, 1227–1240.
Faix, J., Steinmetz, M., Boves, H., Kammerer, R. A., Lottspeich, F., et al. (1996) Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail.Cell 86, 631–642.
Neujahr, R., Heizer, C., and Gerisch, G. (1997) Myosin II-independent processes in mitotic cells of Dictyostelium discoideum, Redistribution of the nuclei, rearrangement of the actin system and formation of the cleavage furrow.J. Cell Sci. 110, 123–137.
Pollard, T. D., Doberstein, S. K., and Zot, H. G. (1991) Myosin-I.Annu. Rev. Physiol. 53, 653–681.
Fukui, Y., Lynch, T. J., Brzeska, H., and Korn, E. D. (1989). Myosin I is located at the leading edges of locomoting Dictyostelium amoebae.Nature 341, 328–331.
Hacker, U., Albrecht, R., and Maniak, M. (1997) Fluid-phase uptake by macropinocytosis in Dictyostelium.J. Cell Sci. 110, 105–112.
Jung, G., Fukui, Y., Martin, B., and Hammer III, J. A. (1993) Sequence, expression pattern, intracellular localization, and targeted disruption of the Dictyostelium myosin ID heavy chain isoform.J. Biol. Chem. 268, 14,981–14,990.
Morita, Y. S., Jung, G., Hammer III, J. A., and Fukui, Y. (1996) Localization of Dictyostelium myoB and myoD to filopodia and cell-cell contact sites using isoform-specific antibodies.Eur. J. Cell Biol. 71, 371–379.
Temesvari, L. A., Bush, J. M., Peterson, M. D., Novak, K. D., Titus, M. A., and Cardelli, J. A. (1996) Examination of the endosomal and lysosomal pathways in Dictyostelium discoideum myosin I mutants.J. Cell Sci. 109, 663–673.
Witke, W., Schleicher, M., and Noegel, A. A. (1992) Redundancy in the microfilament system—abnormal development of Dictyostelium cells lacking two F-actin cross-linking proteins.Cell 68, 53–62.
Novak, K. D. and Titus, M. A. (1997) Myosin I overexpression impairs lell migration.J. Cell Biol. 136, 633–647.
Brzeska, H. and Korn, E. D. (1996) Regulation of class I and class II myosins by heavy chain phosphorylation.J. Biol. Chem. 271, 16,983–16,986.
Lee, S. F. and Cote, G. P. (1995) Purification and characterization of a Dictyostelium protein kinase required for actin activation of the Mg2+ATPaase activity of Dictyostelium myosin ID.J. Biol. Chem. 270, 11,776–11,782.
Novak, K. D. and Titus, M. A. (1998) The myosin-ISH3 domain and TEDS rule phosphorylation site are required for in-vivo function.Mol. Biol. Cell,9, 75–88.
Xu, P., Mitchelhill, K. I., Kobe, B., Kemp, B. E., and Zot, H. G. (1997) The myosin-I-binding protein Acan 125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins.Proc. Natl. Acad. Sci. USA 94, 3685–3690.
Anderson, B. L., Boldogh, I., Evangelista, M., Boone, C., Greene, L. A., and Pon, L. A. (1998) The src homology domain-3 (SH3) of a yeast type-I myosin, myo5p, binds to verprolin and is required for targeting to sites of actin polarization.J. Cell Biol. 141, 1357–1370.
Cerione, R. A. and Zheng, Y. (1996) The Dbl family of oncogenes.Current Op. Cell Biol. 8, 216–222.
Nascimento, A. A. C., Cheney, R. E., Tauhata, S. B. F., Larson, R. E., and Mooseker, M. S. (1996) Enzymatic characterization and functional domain mapping of brain myosin-V.J. Biol. Chem 271, 17,561–17,569.
Peterson, M. D., Urioste, A. S., and Titus, M. A. (1996) Dictyostelium discoideum myoJ, A member of a broadly defined myosin V class or a class XI unconventional myosin?J. Muscle Res. Cell Motil. 17, 411–424.
Hammer III, J. A. and Jung, G. (1996) The sequence of the Dictyostelium myo J heavy chain gene predicts a novel, dimeric, unconventional myosin with a heavy chain molecular mass of 258 kDa.J. Biol. Chem. 271, 7120–7127.
Hammer III, J. A., Lydan, M., and Jung, G. (1996) Dictyostelium Myo J associates with membranes of the contractile vacuole complex.Mol. Biol. Cell 7, 374a.
Ulbricht, B. and Soldati, T. (1997) Purification of a potential mitochondria-associated myosin VI from Dictyostelium discoideum.Mol. Biol. Cell, 372a.
Titus, M. A. (1997) An unconventional myosin required for phagocytosis.Mol. Biol. Cell 8, 352a.
Hasson, T., Heintzelman, M. B., Santos-Sacchi, J., Corey, D. P., and Mooseker, M. S. (1995) Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B.Proc. Natl. Acad. Sci. USA 92, 9815–9819.
Levy, G., Levi-Acobas, F., Blanchard, S., Gerber, S., Larget-Piet, D., et al. (1997) Myosin VIIA gene, heterogeneity of the mutations responsible for Usher syndrome type IB.Hum. Mol. Gen. 6, 111–116.
Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., et al. (1995) Defective myosin VIIA gene responsible for Usher syndrome type 1B.Nature 374, 60–61.
Weston, M. D., Kelley, P. M., Overbeck, L. D., Wagenaar, M., Orten, D. J., et al. (1996) Myosin VIIA mutation screening in 189 Usher syndrome type 1 patients.Am. J. of Hum. Gen. 59, 1074–1083.
Korn, E. D. and Hammer III, J. A. (1990) Myosin-I.Curr. Opin. Cell Biol. 2, 57–61.
Jontes, J. D., Milligan, R. A., Pollard, T. D., and Ostap, E. M. (1997) Kinetic characterization of brush-border myosin-I atpase.Proc. Natl. Acad. Sci. USA 94, 14,332–14,337.
Cheney, R. E., O'Shea, M. K., Heuser, J. E., Coelho, M. V., Wolenski, J. S., et al. (1993) Brain Myosin-V is a two-headed unconventional myosin with motor activity.Cell 75, 13–23.
Howard, J. (1997) Molecular motors—structural adaptations to cellular functions.Nature 389, 561–567.
Goodson, H. V. (1994) Molecular evolution of the myosin superfamily, application of phylogenetic techniques to cell biological questions.Soc. Gen. Physiol. Series 49, 141–157.
Goodson, H. V. and Spudich, J. A. (1993) Molecular evolution of the myosin family, relationships derived from comparisons of amino acid sequences.Proc. Natl. Acad. Sci. USA 90, 659–663.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Soldati, T., Geissler, H. & Schwarz, E.C. How many is enough? exploring the myosin repertoire in the model eukaryoteDictyostelium discoideum . Cell Biochem Biophys 30, 389–411 (1999). https://doi.org/10.1007/BF02738121
Issue Date:
DOI: https://doi.org/10.1007/BF02738121