Skip to main content
Log in

Two-dimensional electrophoretic protein patterns of reciprocal hybrids of the mouse strains DBA and C57BL

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Two-dimensional electrophoretic patterns of cytoplasmic liver proteins of the mouse were investigated in reciprocal hybrids of the two inbred mouse strains DBA and C57BL in order to establish whether strain-specific protein variants reveal a mode of inheritance compatible with the concept of genomic imprinting. Variants of this type were found to account for about 11% of approximately 200 variant protein spots scrutinized. Transmission of the maternal form of a variant protein was more frequent than transmission of the paternal form. Maternal/paternal transmission was observed only for proteins showing strain variations in their amount. The results are discussed in terms of the frequency of imprinted genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, N. D., Norris, M. L., and Surani, M. A. (1990). Epigenetic control of transgene expression and imprinting by genotype-specific modifiers.Cell 61853.

    Article  CAS  PubMed  Google Scholar 

  • Babinet, Ch., Richoux, V., Guénet, J.-L., and Renard, J.-P. (1990). The DDK inbred strain as a model for the study of interactions between parental genomes and egg cytoplasm in mouse preimplantation development.Development Suppl.:81.

  • Barlow, D. P., Stöger, R., Herrmann, B. G., Saito, K., and Schweifer, N. (1991). The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus.Nature 34984.

    Article  CAS  PubMed  Google Scholar 

  • Bartolomei, M. S., Zemel, S., and Tilghman, S. M. (1991). Parental imprinting of the mouse H19 gene.Nature 351153.

    Article  CAS  PubMed  Google Scholar 

  • Barton, S. C., Surani, M. A. H., and Norris, M. L. (1984). Role of paternal and maternal genomes in mouse development.Nature 311374.

    Article  CAS  PubMed  Google Scholar 

  • Cattanach, B. M. (1986). Parental origin effects in mice.J. Embryol. Exp. Morphol. 97(Suppl.):137.

    PubMed  Google Scholar 

  • Cattanach, B. M., and Beechey, C. V. (1990). Autosomal and X-chromosome imprinting.Development Suppl.:63.

  • Cattanach, B. M., and Kirk, M. (1985). Differential activity of maternally and paternally derived chromosome regions in mice.Nature 315496.

    Article  CAS  PubMed  Google Scholar 

  • Cowley, D. E., Pomp, D., Atchley, W. R., Eisen, E. J., and Hawkins-Brown, D. (1989). The impact of maternal uterine genotype on postnatal growth and adult body size in mice.Genetics 122193.

    CAS  PubMed  Google Scholar 

  • DeChiara, T. M., Robertson, E. J., and Efstratiadis, A. (1991). Parental imprinting of the mouse insulin-like growth factor II gene.Cell 64849.

    Article  CAS  PubMed  Google Scholar 

  • Engler, P., Haasch, D., Pinkert, C. A., Doglio, L., Glymour, M., Brinster, R., and Storb, U. (1991). A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci.Cell 65939.

    Article  CAS  PubMed  Google Scholar 

  • Hadchouel, M., Farza, H., Simon, D., Tiollais, P., and Pourcel, C. (1987). Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation.Nature 329454.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. G. (1990). Genomic imprinting: Review and relevance to human diseases.Am. J. Hum. Genet. 46857.

    CAS  PubMed  Google Scholar 

  • Heukeshoven, J., and Dernick, R. (1985). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining.Electrophoresis 6103.

    Article  CAS  Google Scholar 

  • Hitzeroth, H., Klose, J., Ohno, S., and Wolf, U. (1968). Asynchronous activation of parental alleles at the tissue-specific gene loci observed on hybrid trout during early development.Biochem. Genet. 1287.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, M. J. K., and Commerford, S. L. (1961). Pressure homogenization of mammalian tissues.Biochim. Biophys. Acta 47580.

    Article  CAS  PubMed  Google Scholar 

  • Jungblut, P., and Seifert, R. (1990). Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells.J. Biochem. Biophys. Methods 2147.

    Article  CAS  PubMed  Google Scholar 

  • Klose, J. (1975). Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissue. A novel approach to testing for induced point mutations in mammals.Humangenetik 26231.

    CAS  PubMed  Google Scholar 

  • Klose, J. (1983). High resolution of complex protein solutions by two-dimensional electrophoresis. In Tschesche, H. (ed.),Modern Methods in Protein Chemistry—Review Articles Walter de Gryuter Verlag, Berlin-New York, pp. 49–78.

    Google Scholar 

  • Klose, H., and Reik, W. (1992). Expression of maternal and paternal phenotypes at the protein level.Semin. Dev. Biol. 3119.

    Google Scholar 

  • Klose, J., and Wolf, U. (1970). Transitional hemizygosity of the maternally derived allele at the 6PGD locus during early development of the Cyprinid fish rutilus rutilus.Biochem. Genet. 487.

    Article  CAS  PubMed  Google Scholar 

  • Klose, J., Hitzeroth, H., Ritter, H., Schmidt, E., and Wolf, U. (1969). Persistence of maternal isoenzyme patterns of the lactate dehydrogenase and phosphoglucomutase system during early development of hybrid trout.Biochem. Genet. 391.

    Article  CAS  Google Scholar 

  • Markert, C. L. (1987). Isozymes and the regulatory structure of the genome. In Rattazzi, M. C., Scandalios, J. G., and Whitt, G. S. (eds.),Isozymes: Current Topics in Biological and Medical Research, Vol. 14 Alan R. Liss, New York, pp. 1–17.

    Google Scholar 

  • Mikami, H., Onishi, A., and Komatsu, M. (1989). Maternal inheritance of mitochondrial cytochrome C oxidase activity in mice.J. Hered. 80132.

    CAS  PubMed  Google Scholar 

  • O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins.J. Biol. Chem. 2504007.

    PubMed  Google Scholar 

  • Ohno, S. (1969). The preferential activation of maternally derived alleles in development of interspecific hybrids. In Defendi, V. (ed.),Heterospecific Genome Interaction, Wistar Institute Press, pp. 137–150.

  • Peters, J., and Ball, S. T. (1990). Parental influences on expression of glucose-6-phosphate dehydrogenase, G6pd, in the mouse; A case of imprinting.Genet. Res. Cambr. 56245.

    Article  CAS  Google Scholar 

  • Petzoldt, U. (1988). Brauchen Säugetierbabies einen Vater?Biol. Unserer Zeit 1897.

    Article  Google Scholar 

  • Reik, W. (1989). Genomic imprinting and genetic disorders in man.Trends Genet. 5331.

    Article  CAS  PubMed  Google Scholar 

  • Reik, W., Collick, A., Norris, M. L., Barton, S. C., and Surani, M. A. H. (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice.Nature 328248.

    Article  CAS  PubMed  Google Scholar 

  • Sapienza, C. (1990a). Parental imprinting of genes.Sci. Am. 26326.

    Article  Google Scholar 

  • Sapienza, C. (1990b). Sex-linked dosage sensitive modifiers as imprinting genes.Development Suppl.:107.

  • Sapienza, C., Tran, T. H., Paquette, J., McGowan, R., and Peterson, A. (1987). Degree of methylation of transgenes is dependent on gamete of origin.Nature 328251.

    Article  CAS  PubMed  Google Scholar 

  • Sapienza, C., Paquette, J., Tran, T. H., and Peterson, A. (1989). Epigenetic and genetic factors affect transgene methylation imprinting.Development 107165.

    CAS  PubMed  Google Scholar 

  • Schmidtke, J., Kuhl, P., and Engel, W. (1976). Transitory hemizygosity of paternally derived alleles in hybrid trout embryos.Nature 260319.

    Article  CAS  PubMed  Google Scholar 

  • Shire, J. G. M. (1989). Unequal parental contributions: Genomic imprinting in mammals.New Biol. 1115.

    CAS  PubMed  Google Scholar 

  • Silva, A. J., and White, R. (1988). Inheritance of allelic blueprints for methylation patterns.Cell 54145.

    Article  CAS  PubMed  Google Scholar 

  • Solter, D. (1988). Differential imprinting and expression of maternal and paternal genomes.Annu. Rev. Genet. 22127.

    Article  CAS  PubMed  Google Scholar 

  • Surani, M. A. H., Reik, W., and Allen, N. D. (1988). Transgenes as molecular probes for genomic imprinting.Trends Genet. 459.

    Article  CAS  PubMed  Google Scholar 

  • Surani, M. A., Kothary, R., Allen, N. D., Singh, P. B., Fundele, R., Ferguson-Smith, A. C., and Barton, S. C. (1990). Genome imprinting and development in the mouse.Development Suppl.:89.

  • Swain, J. L., Stewart, T. A., and Leder, P. (1987). Parental legacy determines methylation and expression of an autosomal transgene: A molecular mechanism for parental imprinting.Cell 50719.

    Article  CAS  PubMed  Google Scholar 

  • Whitt, G. S., Cho, P. L., and Childers, W. F. (1972). Preferential inhibition of allelic isozyme synthesis in an interspecific synfish hybrid.J. Exp. Zool. 179271.

    Article  CAS  Google Scholar 

  • Whitt, G. S., Childers, W. F., and Cho, P. L. (1973). Allelic expression at enzyme loci in an intertribal hybrid sunfish.J. Hered. 6455.

    CAS  Google Scholar 

  • Wright, D. A., and Moyer, F. H. (1966). Parental influences on lactate dehydrogenase in the early development of hybrid frogs in the genus Rana.J. Exp. Zool. 163215.

    Article  CAS  PubMed  Google Scholar 

  • Wright, D. A., and Moyer, F. H. (1968). Inheritance of frog lactate dehydrogenase patterns and the persistence of maternal isozymes during development.J. Exp. Zool. 167197.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Ulrich Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, T., Klose, J. Two-dimensional electrophoretic protein patterns of reciprocal hybrids of the mouse strains DBA and C57BL. Biochem Genet 30, 649–662 (1992). https://doi.org/10.1007/BF02399813

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02399813

Key words